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1. Introduction

Throughout this paper let H be a separable complex Hilbert space with inner product 〈·, ·〉.
Let B(H) denote the C∗-algebra of all bounded linear operators onH.

Let T ∈ B(H) and let λ0 be an isolated point of σ(T). Here σ(T) denotes the spectrum
of T . Then there exists a small enough positive number r > 0 such that

{λ ∈ C : |λ − λ0| ≤ r} ∩ σ(T) = {λ0}. (1.1)

Let

E =
1

2πi

∫
|λ−λ0|=r

(λ − T)−1dλ. (1.2)

E is called the Riesz idempotent with respect to λ0, and it is well known that E satisfies E2 = E,
TE = ET , σ(T |EH) = {λ0}, and ker((T − λ0)

n) ⊂ EH for all positive integers n. Stampfli [1]
proved that if T is hyponormal (i.e., operators such that T ∗T − TT ∗ ≥ 0), then

E is self-adjoint and EH = ker(T − λ0) = ker
(
(T − λ0)

∗). (1.3)
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After that many authors extended this result to many other classes of operators. Chō and
Tanahashi [2] proved that (1.3) holds if T is either p-hyponormal or log-hyponormal. In
the case λ0 /= 0, the result was further shown by Tanahashi and Uchiyama [3] to hold for
p-quasihyponormal operators, by Tanahashi et al. [4] to hold for (p, k)-quasihyponormal
operators and by Uchiyama and Tanahashi [5] and Uchiyama [6] for class A and paranormal
operators. Here an operator T is called p-hyponormal for 0 < p ≤ 1 if (T ∗T)p − (TT ∗)p ≥ 0,
and log-hyponormal if T is invertible and log T ∗T ≥ log TT ∗. An operator T is called
(p, k) -quasihyponormal if T ∗k((T ∗T)p − (TT ∗)p)Tk ≥ 0, where 0 < p ≤ 1 and k is
a positive integer; especially, when p = 1, k = 1, and p = k = 1, T is called k-
quasihyponormal, p-quasihyponormal, and quasihyponormal, respectively. And an operator
T is called paranormal if ‖Tx‖2 ≤ ‖T2x‖‖x‖ for all x ∈ H; normaloid if ‖Tn‖ =
‖T‖n for all positive integers n. p-hyponormal, log-hyponormal, p-quasihyponormal, (p, k)-
quasihyponormal, and paranormal operators were introduced by Aluthge [7], Tanahashi [8],
S. C. Arora and P. Arora [9], Kim [10], and Furuta [11, 12], respectively.

In order to discuss the relations between paranormal and p-hyponormal and log-
hyponormal operators, Furuta et al. [13] introduced a very interesting class of bounded linear
Hilbert space operators: class A defined by |T2| − |T |2 ≥ 0, where |T | = (T ∗T)1/2 which is called
the absolute value of T and they showed that class A is a subclass of paranormal and contains
p-hyponormal and log-hyponormal operators. Class A operators have been studied by many
researchers, for example, [5, 14–19].

Recently Jeon and Kim [20] introduced quasiclass A (i.e., T ∗(|T2|−|T |2)T ≥ 0) operators
as an extension of the notion of class A operators, and they also proved that (1.3) holds for
this class of operators when λ0 /= 0. It is interesting to study whether Stampli’s result holds for
other larger classes of operators.

In [21], Tanahashi et al. considered an extension of quasi-class A operators, similar in
spirit to the extension of the notion of p-quasihyponormality to (p, k) -quasihyponormality,
and prove that (1.3) holds for this class of operators in the case λ0 /= 0.

Definition 1.1. T ∈ B(H) is called a k-quasiclass A operator for a positive integer k if

T ∗k
(∣∣∣T2

∣∣∣ − |T |2
)
Tk ≥ 0. (1.4)

Remark 1.2. In [21], this class of operators is called quasi-class (A, k).
It is clear that the class of quasi-class A operators ⊆ the class of k-quasiclass A

operators and

the class of k-quasiclass A operators ⊆ the class of (k + 1)-quasiclass A operators. (1.5)

We show that the inclusion relation (1.5) is strict, by an example which appeared in
[20].
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Example 1.3. Given a bounded sequence of positive numbers {αi}∞i=0, let T be the unilateral
weighted shift operator on l2 with the canonical orthonormal basis {en}∞n=0 by Ten = αnen+1
for all n ≥ 0, that is,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

α0 0

α1 0

α2 0

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.6)

Straightforward calculations show that T is a k-quasiclass A operator if and only if
αk ≤ αk+1 ≤ αk+2 ≤ · · · . So if αk+1 ≤ αk+2 ≤ αk+3 ≤ · · · and αk > αk+1, then T is a (k + 1)-
quasiclass A operator, but not a k-quasiclass A operator.

In this paper, firstly we consider some inequalities of k-quasiclass A operators;
secondly we prove that if T is a k-quasiclass A operator, then T is isoloid and T − λ has
finite ascent for all complex number λ; at last we give a necessary and sufficient condition for
T ⊗ S to be a k-quasiclass A operator when T and S are both non-zero operators.

2. Results

In the following lemma, Tanahashi, Jeon, Kim, and Uchiyama studied the matrix representa-
tion of a k-quasiclass A operator with respect to the direct sum of ran(Tk) and its orthogonal
complement.

Lemma 2.1 (see [21]). Let T ∈ B(H) be a k-quasiclass A operator for a positive integer k and let

T =
(

T1 T2

0 T3

)
onH = ran(Tk) ⊕ kerT ∗k be 2 × 2 matrix expression. Assume that ranTk is not dense,

then T1 is a class A operator on ran(Tk) and Tk
3 = 0. Furthermore, σ(T) = σ(T1) ∪ {0}.

Proof. Consider the matrix representation of T with respect to the decomposition H =

ran(Tk) ⊕ kerT ∗k: T =
(

T1 T2

0 T3

)
. Let P be the orthogonal projection of H onto ran(Tk). Then

T1 = TP = PTP . Since T is a k-quasiclass A operator, we have

P
(∣∣∣T2

∣∣∣ − |T |2
)
P ≥ 0. (2.1)

Then

∣∣∣T2
1

∣∣∣ = (PT ∗PT ∗TPTP)1/2 = (PT ∗T ∗TTP)1/2 =
(
P
∣∣∣T2
∣∣∣2P
)1/2

≥ P
∣∣∣T2
∣∣∣P (2.2)

by Hansen’s inequality [22]. On the other hand

|T1|2 = T ∗
1T1 = PT ∗TP = P |T |2P ≤ P

∣∣∣T2
∣∣∣P. (2.3)
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Hence

∣∣∣T2
1

∣∣∣ ≥ |T1|2. (2.4)

That is, T1 is a class A operator on ran(Tk).
For any x = (x1, x2) ∈ H,

〈
Tk
3 x2, x2

〉
=
〈
Tk(I − P)x, (I − P)x

〉
=
〈
(I − P)x, T ∗k(I − P)x

〉
= 0, (2.5)

which implies Tk
3 = 0.

Since σ(T)∪G = σ(T1)∪σ(T3), where G is the union of the holes in σ(T)which happen
to be subset of σ(T1) ∩ σ(T3) by [23, Corollary 7], and σ(T3) = 0 and σ(T1) ∩ σ(T3) has no
interior points, we have σ(T) = σ(T1) ∪ {0}.

Theorem 2.2. Let T ∈ B(H) be a k-quasiclass A operator for a positive integer k. Then the following
assertions hold.

(1) ‖Tn+2x‖‖Tnx‖ ≥ ‖Tn+1x‖2 for all x ∈ H and all positive integers n ≥ k.

(2) If Tn = 0 for some positive integer n ≥ k, then Tk+1 = 0.

(3) ‖Tn+1‖ ≤ ‖Tn‖r(T) for all positive integers n ≥ k, where r(T) denotes the spectral radius
of T .

To give a proof of Theorem 2.2, the following famous inequality is needful.

Lemma 2.3 (Hölder-McCarthy’s inequality [24]). Let A ≥ 0. Then the following assertions hold.

(1) 〈Arx, x〉 ≥ 〈Ax, x〉r‖x‖2(1−r) for r > 1 and all x ∈ H.

(2) 〈Arx, x〉 ≤ 〈Ax, x〉r‖x‖2(1−r) for r ∈ [0, 1] and all x ∈ H.

Proof of Theorem 2.2. (1) Since it is clear that k-quasiclass A operators are (k + 1)-quasiclass A
operators, we only need to prove the case n = k. Since

〈T ∗k|T |2Tkx, x〉 = 〈T ∗kT ∗TTkx, x〉 =
∥∥∥Tk+1x

∥∥∥2,
〈
T ∗k
∣∣∣T2
∣∣∣Tkx, x

〉
=
〈∣∣∣T2

∣∣∣Tkx, Tkx
〉

≤
〈
T ∗T ∗TTTkx, Tkx

〉1/2∥∥∥Tkx
∥∥∥2(1−1/2)

=
∥∥∥Tk+2x

∥∥∥
∥∥∥Tkx

∥∥∥

(2.6)

by Hölder-McCarthy’s inequality, we have

∥∥∥Tk+2x
∥∥∥
∥∥∥Tkx

∥∥∥ ≥
∥∥∥Tk+1x

∥∥∥2 (2.7)

for T is a k-quasiclass A operator.
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(2) If n = k, k + 1, it is obvious that Tk+1 = 0. If Tk+2 = 0, then Tk+1 = 0 by (1). The rest
of the proof is similar.

(3)We only need to prove the case n = k, that is,

∥∥∥Tk+1
∥∥∥ ≤
∥∥∥Tk
∥∥∥r(T). (2.8)

If Tn = 0 for some n ≥ k, then Tk+1 = 0 by (2) and in this case r(T) = (r(Tk+1))1/(k+1) = 0.
Hence (3) is clear. Therefore we may assume Tn /= 0 for all n ≥ k. Then

∥∥Tk+1
∥∥∥∥Tk
∥∥ ≤

∥∥Tk+2
∥∥∥∥Tk+1
∥∥ ≤

∥∥Tk+3
∥∥∥∥Tk+2
∥∥ ≤ · · · ≤

∥∥Tmk
∥∥∥∥Tmk−1∥∥ (2.9)

by (1), and we have

(∥∥Tk+1
∥∥∥∥Tk
∥∥
)mk−k

≤
∥∥Tk+1

∥∥∥∥Tk
∥∥ ×

∥∥Tk+2
∥∥∥∥Tk+1
∥∥ × · · · ×

∥∥Tmk
∥∥∥∥Tmk−1∥∥ =

∥∥Tmk
∥∥∥∥Tk
∥∥ . (2.10)

Hence

(∥∥Tk+1
∥∥∥∥Tk
∥∥
)k−(k/m)

≤
∥∥Tmk

∥∥1/m
∥∥Tk
∥∥1/m . (2.11)

By letting m → ∞, we have

∥∥∥Tk+1
∥∥∥k ≤

∥∥∥Tk
∥∥∥k(r(T))k, (2.12)

that is,

∥∥∥Tk+1
∥∥∥ ≤
∥∥∥Tk
∥∥∥r(T). (2.13)

Lemma 2.4 (see [21]). Let T ∈ B(H) be a k-quasiclass A operator for a positive integer k. If λ/= 0
and (T − λ)x = 0 for some x ∈ H, then (T − λ)∗x = 0.

Proof. We may assume that x /= 0. Let M0 be a span of {x}. Then M0 is an invariant subspace
of T and

T =

(
λ T2

0 T3

)
on H = M0 ⊕M⊥

0 . (2.14)
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Let P be the orthogonal projection of H onto M0. It suffices to show that T2 = 0 in (2.14).
Since T is a k-quasiclass A operator, and x = Tk(x/λk) ∈ ran(Tk), we have

P
(∣∣∣T2

∣∣∣ − |T |2
)
P ≥ 0. (2.15)

We remark

P
∣∣∣T2
∣∣∣2P = PT ∗T ∗TTP = PT ∗PT ∗TPTP =

(|λ|4 0

0 0

)
. (2.16)

Then by Hansen’s inequality and (2.15), we have

(|λ|2 0

0 0

)
=
(
P
∣∣∣T2
∣∣∣2P
)1/2

≥ P
∣∣∣T2
∣∣∣P ≥ P |T |2P = PT ∗TP =

(|λ|2 0

0 0

)
. (2.17)

Hence we may write

∣∣∣T2
∣∣∣ =
(|λ|2 A

A∗ B

)
. (2.18)

We have

(|λ|4 0

0 0

)
= P
∣∣∣T2
∣∣∣
∣∣∣T2
∣∣∣P

=

(
1 0

0 0

) (|λ|2 A

A∗ B

) (|λ|2 A

A∗ B

) (
1 0

0 0

)

=

(|λ|4 +AA∗ 0

0 0

)
.

(2.19)

This implies A = 0 and |T2|2 =
(

|λ|4 0

0 B2

)
. On the other hand,

∣∣∣T2
∣∣∣2 = T ∗T ∗TT

=

(
λ 0

T ∗
2 T ∗

3

) (
λ 0

T ∗
2 T ∗

3

) (
λ T2

0 T3

) (
λ T2

0 T3

)

=

⎛
⎝ |λ|4 λ

2
(λT2 + T2T3)

λ2(λT2 + T2T3)
∗ |λT2 + T2T3|2 +

∣∣T2
3

∣∣2
⎞
⎠.

(2.20)
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Hence λT2 + T2T3 = 0 and B = |T2
3 |. Since T is a k-quasiclass A operator, by a simple

calculation we have

0 ≤ T ∗k
(∣∣∣T2

∣∣∣ − |T |2
)
Tk

=

⎛
⎝ 0 (−1)k+1λ|λ|2kT2

(−1)k+1λ|λ|2kT ∗
2 (−1)k+1|λ|2k|T2|2 + T ∗k

3

∣∣T2
3

∣∣Tk
3 −
∣∣∣Tk+1

3

∣∣∣2
⎞
⎠.

(2.21)

Recall that
(

X Y

Y ∗ Z

)
≥ 0 if and only if X,Z ≥ 0 and Y = X1/2WZ1/2 for some contraction W .

Thus we have T2 = 0. This completes the proof.

Lemma 2.5 (see [25]). If T satisfies ker(T − λ) ⊆ ker(T − λ)∗ for some complex number λ, then
ker(T − λ) = ker(T − λ)n for any positive integer n.

Proof. It suffices to show ker(T − λ) = ker(T − λ)2 by induction. We only need to show
ker(T − λ)2 ⊆ ker(T −λ) since ker(T −λ) ⊆ ker(T − λ)2 is clear. In fact, if (T − λ)2x = 0, then we
have (T − λ)∗(T − λ)x = 0 by hypothesis. So we have ‖(T − λ)x‖2 = 〈(T − λ)∗(T − λ)x, x〉 = 0,
that is, (T − λ)x = 0. Hence ker(T − λ)2 ⊆ ker(T − λ).

An operator is said to have finite ascent if ker Tn = ker Tn+1 for some positive integer
n.

Theorem 2.6. Let T ∈ B(H) be a k-quasiclass A operator for a positive integer k. Then T − λ has
finite ascent for all complex number λ.

Proof. We only need to show the case λ = 0 because the case λ/= 0 holds by Lemmas 2.4 and
2.5.

In the case λ = 0, we shall show that ker Tk+1 = ker Tk+2. It suffices to show that
ker Tk+2 ⊆ ker Tk+1 since ker Tk+1 ⊆ ker Tk+2 is clear. Now assume that Tk+2x = 0. We may
assume Tkx /= 0 since if Tkx = 0, it is obvious that Tk+1x = 0. By Hölder-McCarthy’s inequality,
we have

0 =
∥∥∥Tk+2x

∥∥∥ =
〈
Tk+2x, Tk+2x

〉1/2

=
〈∣∣∣T2

∣∣∣2Tkx, Tkx

〉1/2

≥
〈∣∣∣T2

∣∣∣Tkx, Tkx
〉∥∥∥Tkx

∥∥∥−1

≥
〈
|T |2Tkx, Tkx

〉∥∥∥Tkx
∥∥∥−1

=
∥∥∥Tk+1x

∥∥∥2
∥∥∥Tkx

∥∥∥−1.

(2.22)

So we have Tk+1x = 0, which implies ker Tk+2 ⊆ ker Tk+1. Therefore ker Tk+1 = ker Tk+2.
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In the following lemma, Tanahashi, Jeon, Kim, and Uchiyama extended the result (1.3)
to k-quasiclass A operators in the case λ0 /= 0.

Lemma 2.7 (see [21]). Let T ∈ B(H) be a k-quasiclass A operator for a positive integer k. Let λ0 be
an isolated point of σ(T) and E the Riesz idempotent for λ0. Then the following assertions hold.

(1) If λ0 /= 0, then E is self-adjoint and

EH = ker(T − λ0) = ker
(
(T − λ0)

∗). (2.23)

(2) If λ0 = 0, then EH = ker(Tk+1).

An operator T is said to be isoloid if every isolated point of σ(T) is an eigenvalue of T .

Theorem 2.8. Let T ∈ B(H) be a k-quasiclass A operator for a positive integer k. Then T is isoloid.

Proof. Let λ ∈ σ(T) be an isolated point. If λ/= 0, by (1) of Lemma 2.7, ker(T−λ) = EH/= {0} for
E/= 0. Therefore λ is an eigenvalue of T . If λ = 0, by (2) of Lemma 2.7, ker(Tk+1) = EH/= {0} for
E/= 0. So we have ker(T)/= {0}. Therefore 0 is an eigenvalue of T . This completes the proof.

Let T ⊗ S denote the tensor product on the product space H ⊗ H for nonzero T , S ∈
B(H). The following theorem gives a necessary and sufficient condition for T ⊗ S to be a
k-quasiclass A operator, which is an extension of [20, Theorem 4.2].

Theorem 2.9. Let T , S ∈ B(H) be nonzero operators. Then T ⊗ S is a k-quasiclass A operator if and
only if one of the following assertions holds

(1) Tk+1 = 0 or Sk+1 = 0.

(2) T and S are k-quasiclass A operators.

Proof. It is clear that T ⊗ S is a k-quasiclass A operator if and only if

(T ⊗ S)∗k
(∣∣∣(T ⊗ S)2

∣∣∣ − |T ⊗ S|2
)
(T ⊗ S)k ≥ 0

⇐⇒ T ∗k
(∣∣∣T2

∣∣∣ − |T |2
)
Tk ⊗ S∗k

∣∣∣S2
∣∣∣Sk + T ∗k|T |2Tk ⊗ S∗k

(∣∣∣S2
∣∣∣ − |S|2

)
Sk ≥ 0

⇐⇒ T ∗k
∣∣∣T2
∣∣∣Tk ⊗ S∗k

(∣∣∣S2
∣∣∣ − |S|2

)
Sk + T ∗k

(∣∣∣T2
∣∣∣ − |T |2

)
Tk ⊗ S∗k|S|2Sk ≥ 0.

(2.24)

Therefore the sufficiency is clear.
To prove the necessary, suppose that T ⊗ S is a k-quasiclass A operator. Let x, y ∈ H

be arbitrary. Then we have

〈
T ∗k
(∣∣∣T2

∣∣∣ − |T |2
)
Tkx, x

〉
〈S∗k

∣∣∣S2
∣∣∣Sky, y〉 +

〈
T ∗k|T |2Tkx, x

〉〈
S∗k
(∣∣∣S2

∣∣∣ − |S|2
)
Sky, y

〉
≥ 0.

(2.25)
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It suffices to prove that if (1) does not hold, then (2) holds. Suppose that Tk+1 /= 0 and Sk+1 /= 0.
To the contrary, assume that T is not a k-quasiclass A operator, then there exists x0 ∈ H such
that

〈
T ∗k
(∣∣∣T2

∣∣∣ − |T |2
)
Tkx0, x0

〉
= α < 0,

〈
T ∗k|T |2Tkx0, x0

〉
= β > 0. (2.26)

From (2.25)we have

α
〈
S∗k
∣∣∣S2
∣∣∣Sky, y

〉
+ β
〈
S∗k
(∣∣∣S2

∣∣∣ − |S|2
)
Sky, y

〉
≥ 0 ∀y ∈ H, (2.27)

that is,

(
α + β

)〈
S∗k
∣∣∣S2
∣∣∣Sky, y

〉
≥ β
〈
S∗k|S|2Sky, y

〉
(2.28)

for all y ∈ H. Therefore S is a k-quasiclass A operator. As the proof in Theorem 2.2 (1), we
have

〈
S∗k|S|2Sky, y

〉
=
∥∥∥Sk+1y

∥∥∥2, 〈
S∗k
∣∣∣S2
∣∣∣Sky, y

〉
≤
∥∥∥Sk+2y

∥∥∥
∥∥∥Sky

∥∥∥. (2.29)

So we have

(
α + β

)∥∥∥Sk+2y
∥∥∥
∥∥∥Sky

∥∥∥ ≥ β
∥∥∥Sk+1y

∥∥∥2 (2.30)

for all y ∈ H by (2.28). Because S is a k-quasiclass A operator, from Lemma 2.1 we can write

S =
(

S1 S2

0 S3

)
on H = ran(Sk) ⊕ kerS∗k, where S1 is a class A operator (hence it is normaloid).

By (2.30) we have

(
α + β

)∥∥∥S2
1η
∥∥∥∥∥η∥∥ ≥ β

∥∥S1η
∥∥2 ∀η ∈ ran(Sk). (2.31)

So we have

(
α + β

)‖S1‖2 =
(
α + β

)∥∥∥S2
1

∥∥∥ ≥ β‖S1‖2, (2.32)

where equality holds since S1 is normaloid.
This implies that S1 = 0. Since Sk+1y = S1S

ky = 0 for all y ∈ H, we have Sk+1 = 0. This
contradicts the assumption Sk+1 /= 0. Hence T must be a k-quasiclass A operator. A similar
argument shows that S is also a k-quasiclass A operator. The proof is complete.
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