J. of Inequal. & Appl., 1999, Vol. 3, pp. 1-23 © 1999 OPA (Overseas Publishers Association) N.V.
Reprints available directly from the publisher Published by license under
Photocopying permitted by license only the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

Explicit Exponential Decay Bounds
in Quasilinear Parabolic Problems

G.A.PHILIPPIN2* and S.VERNIER PIRO®

aDépartement de mathématiques et de statistique, Université Laval,
Québec, Canada, GIK 7P4; ® Dipartimento di matematica,
Universita di Cagliari 09124 Cagliari, Italy

(Received 2 March 1997, Revised 3 September 1997)

This paper deals with classical solutions u(x, f) of some initial boundary value problems
involving the quasilinear parabolic equation

gk(O)|Vu)Au+f(u) =u;, X€Q, 1>0,

where f, g, k are given functions. In the case of one space variable, i.e. when Q :=(—L, L),
we establish a maximum principle for the auxiliary function
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®(x, 1) :=e? {_k_(tj/o 2(€)de + anl + 2/0 f(s) ds},

where «vis an arbitrary nonnegative parameter. In some cases this maximum principle may
be used to derive explicit exponential decay bounds for |u| and [u,|. Some extensions in N
space dimensions are indicated. This work may be considered as a continuation of
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1 INTRODUCTION

Using a maximum principle approach Payne and Philippin [8] derived
pointwise decay bounds for solutions of some initial boundary value
problems involving the parabolic differential equation Au+ f(u) = u,,
x €9, t>0, where  is a bounded convex domain in R". This paper
deals with classical solutions u(x, ¢) of some initial boundary value
problems involving the quasilinear parabolic equation

gk()|VuP)Au+f(u) =u;, x€Q, >0, (1)

where f, g,k are given functions. In Section 2 we consider the case of
one space variable x € (—L, L). Under certain hypotheses we establish
a maximum principle for the auxiliary function

k(H)u2 u
D(x, 1) = 625"{%/0 g(&) dé + au® + 2/0 f(s) ds}, (2)

where « is an arbitrary nonnegative parameter.

When f is zero and k is an exponential function we compute in
Section 3.1 a critical value «q that depends on the boundary condi-
tions and on g in such a way that for 0 < a < ap, ¢ takes its maximum
value initially. This fact leads to explicit exponential decay bounds for
|u| and |uy].

When fis not zero and k=1, we show under certain assumptions
that if the initial data u(x, 0) is nonnegative and small enough in some
sense that will be made precise in Section 3.2, the solution u(x, ) cannot
blow up in finite time. Depending on f we then determine o < g such
that for 0 <a <), ® takes its maximum value initially. This leads
again to explicit exponential decay bounds for u(> 0) and |u,|.

In Section 4, the results of Sections 2 and 3.1 are extended in R in
the case of the parabolic equation g(k(1)|Vu[>)Au=u, x €, 1>0. We
refer to [9] for a similar investigation involving the parabolic equation
V(g(|VulHVu)=u, xeQ, 1> 0.

For maximum principle results related to parabolic partial differ-
ential equations we refer to [10—14].
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2 MAXIMUM PRINCIPLE FOR ®(x, ¢)

In this section we establish the following result.

THEOREM 1 Let u(x,t) be the solution of the initial boundary value
problem

gk ugs +f(u) =w, x€(~L,L), t€(0,T), 3)
u(+L,t) =0, 1€][0,T], (4),
u(x,0) = h(x), xe€[-L,L], (5)

with h(£L)=0, h#0. Let ®(x, t) be defined on u(x, t) by

D(x,1) := ez‘"{k—(lt—) Gku?) + o + 2F(u)}, (6)

where o is an arbitrary nonnegative parameter and with

F(s) = /0 fe) de, )

Glo) = /0 g6 de. (®)

Assume that the given functions g € C%, ke C" are strictly positive and
satisfy the inequality

(2ak — K')[og(o) — G(0)] >0, t€(0,T), 0>0, 9
and that the given function f € C' satisfies the inequality
sf(s) —2F(s) >0, seR. (10)

We then conclude that ® takes its maximum value either at an interior
critical point (X,t) of u, or initially. In other words we have

d(x,1), with u(%,1) =0 (i),

®(x 1) < ma"{ max;_;. 1 ®(x, 0) ay. (D
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For the proof of Theorem 1 we compute

B, = 262 {uyttrrg (ki) + ccuy + f()ur}
= 262y, (u, + au), (12)

By = 2672k iPu? g + g1, + Gnthyry + Q1P + Qllllyy
+ 11+ futn}
=22 gu’ + tthy + Qt® + QUlthyy + filrr }, (13)

kl
o, = 620"{%5 [gkui - G(kui)] + 2g Uty + 2ccuu; + 2fu,

+ 2a [%G(kui) + au? + 2F(u)] } (14)

Combining (13) and (14) we obtain after some reduction

¢ — &, — { L ok —K)lghid — Gllid)] + 2642,

)
—2f? —20uf - 2a2u2—4aF(u)}. (15)
From (12) we compute
Sl = %u;léxe“z‘" — (f+ au). (16)

Inserting (16) into (15) we obtain the parabolic differential inequality
g0 +ue(x, 1)@y — @
o 1
=¢? t{ﬁ (ak — K')[gku? — G(ku?)] + 2uf — 2F(u)]} >0,
(17)

where the last inequality in (17) follows from (9) and (10). In (17), ¢(x, ?)
is regular throughout (—L, L) x (0, T'). It then follows from Nirenberg’s
maximum principle [6,10] that ® takes its maximum value (i) at a critical
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point (x,7) of u, or (ii) initially, or (iii) at a boundary point (%, 7) with
X ==L, t € (0, T]. The conclusion of Theorem 1 will follow if we can
show that (iii) implies (i) or (ii). If fact (12) and the boundary conditions
(4)1, imply ® (+L,¢)=0. It then follows from Friedman’s maximum
principle [3,10] that ® can take its maximum value at a boundary point
(%,1) with X = L only if ® is identically constant in (—L, L) x (0, ), in
which case the two possibilities (i) and (ii) hold in (11). This achieves the
proof of Theorem 1.

It is worthy to note that ® can be constant only for some particular
choice of the data in problem (3),(4),(5). In fact ® =const. implies
equality in (17), i.e. also in (9) and in (10). This implies then that

f(u) =Xu, X =const., (18)
and that
either k(f) =e** or g = const. (19)

Moreover ® =const. implies ®,=u, (4, + au)=0, from which we
conclude

either uy =0 or u,+au=0. (20)
The first equation in (20), together with (3) and (18), leads to
u(x,t) = e, (21)
which is impossible in view of (4);. The second equation in (20) leads to
u(x,t) = h(x)e™™, (22)
which solves (3) only if we have
g + (A +a)h=0, xe(-L,L). (23)

To conclude this section we note that Theorem 1 remains true even if we
replace (4), by any one of the following pairs of boundary conditions:

u(=L,1) = ux(L,1) = 0, (4),
ux(=L, 1) = u(L, 1) = (4)3
ux(—L, 1) = uy(L, t) 0 4),
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Moreover if both inequalities (9) and (10) in Theorem 1 are reversed we
then conclude that ® takes its minimum value either at a critical point of
u, or initially.

3 ELIMINATION OF THE FIRST POSSIBILITY (i) IN (11)

We note that the realization of (ii) in (11) leads to lower exponential
decay bounds for both |u| and |u,|. In this section we impose restrictions
on the parameter o> 0 so that the first possibility (i) in (11) cannot
occur. We shall investigate two particular cases.

31 FirstCase: f(1):=0, k(1):=e*", p< o

We consider the parabolic problem (3), (4)r, k=1,2,3 or 4, and (5)
with the particular choices f(u):=0, k(f):=e*, p=const. <a. We
assume (9) so that the conclusion (11) of Theorem 1 holds. Note that if
1= a, assumption (9) is satisfied for any arbitrary function g > 0. If
<, (9) is satisfied if and only if g’ > 0.

Suppose that we have the first possibility (i) in (11), i.e.

O(x,1) < auz(x e 200 — aufdez"" (27)
with

uly = mayL() W (x, 7). (28)

We can rewrite (27) evaluated at 1 = f as
e MG u?) < a(udy — P (x, 7). (29)

Making use of the mean value theorem we may bound the left hand
side of (29) as follows:

ui(x, 1)gmin < e‘z“fG(ez”iui), (30)
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where g, > 0 is the minimum value of g. From (29) and (30) we obtain
the inequality

UA (%, F)gmin < (udy — u?(x, 7)), (31)

that may be rewritten as

|ux
\/u - u2 (x,7) 8min’

Integrating (32) from the critical point X to the nearest zero x € [—L, L]
of u(x, 1), we obtain

(32)

Wzgmin
> oy i=——m—m. 33
TR 39)

Since |x — X| is unknown, we need an upper bound for this quantity in
(33). Obviously we may use

L if we have (4),,

X=X < A= {2L if we have (4),,k =2,3 or 4, (34)

if we assume the existence of X € [-L, L] when we have the boundary
conditions (4)4. This will be the case e.g. if the initial data 4(x) have zero
mean value, i.e. if we have

L
/ h(x)dx = 0. (35)

L

In fact with the auxiliary function p(o) defined by

plo) =30 [ 06 e, (36)

we have

d L L L
~/ u(x, 1) dx:/ u(x, 1) dx=/ 2(e* U2 Yuyy dx
dt —L — —L

/ (i) dx = p(e* e =0. ()
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It then follows from (35) and (37) that

L L
/ u(x, t)dx = / h(x)dx =0, Ve [0, T], (38)
-L -L

i.e. the zero mean value property of u(x, ¢) is inherited from the zero
mean value property of the initial data if we have the boundary
conditions (4)4. But this implies the existence of X € [—L, L] such that
u(x,t) =0.

We conclude from the above investigation that, for 0 < a < aq, the
first possibility (i) in (11) cannot hold, so that |u| and |u,| must decay
exponentially. This shows in fact that u(x, f) cannot blow up and will
exist for all £ > 0. These results are summarized next.

THEOREM 2 Let u(x, t) be the solution of the parabolic problem (3), (4)x
k=1,2,3, or 4, and (5). If we have (4)4 we require that the initial data h(x)
satisfy the further condition (35). Assume either

uw=a< ag, (39)
or
p<a<ay and g >0, (40)
with
7T2gmin
Qg = A2 (41)

where A is defined in (34). Then we may take T=oo in (3) and (4).
Moreover the function ® defined as

®(x, 1) := X {e” M G(e12) + '}, (42)

takes its maximum value initially. The resulting inequality (11) with
a — « takes the form

e M G(eMu?) + apu® < HPe 2, Y < ao, (43)
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with
H? = [mlftl)f]{G(h’z) + aph?}. (44)
We note that the quantities g and H? are explicitely computable in

terms of the initial and boundary data.
A weaker but more practical version of (43) is

Gumintd2 (X, ) + apu? < HPe 20!, (45)
Integrating (45) over (—L, L) we obtain
L L
Zmin / u?(x, 1) dx + ag / w? dx < 2LH?e™ 2!, (46)
-L -L

Moreover depending of the boundary conditions (4), u(x,?) is
admissible for the variational characterization of the first or second
eigenvalue of a vibrating string of length 2L with fixed or free ends.
We have actually

L L
Zmin / ui(x, t)dx > / u? dx, (47)
-L L

valid in all cases considered in Theorem 2. From (46) and (47) we
obtain the following decay bound for ffL w? dx:

L
/ u*(x, 1) dx < Loy ' H?e ", (48)
—-L

We shall now derive a pointwise lower bound for |u(x, )| that is
proportional to the distance |x — x| from x to the nearest zero x of
u(x, t). To this end we rewrite (45) as

|uax| Qo
. 49
\/(Hz/ao)e_zaot —u2 "\ &min ( )
Integrating (49) for fixed ¢ from x to X we obtain
lul d -
arcsin (@luD = 3 < 20 |x —x[, (50)
He= 0 \/(Hz/ao)e‘zaﬂf - €2 &min
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or

lu(x, 1)| < Ix — Fle®, xe(-LL), t>0. (5

min

Of course we can substitute X by +L or —L if we have the boundary
conditions (4),, k=1,2,3.

3.2 SecondCase: f(u) £0, k(H)=1

In this section we consider the parabolic problem (3), (4);, k=1,2,3 or
4, and (5) with the particular choice k(¢) = 1, f(u) Z0. It is well known
that the solution u(x, ) of this problem may not exist for all time. In fact
u(x, t) may blow up at some time #* which may be finite or infinite [1,3].
However if blow-up does occur at ¢ =1¢", then u(x, ¢) will exist on the
time interval (0, £*).

We want to establish conditions involving the data sufficient to
prevent blow-up of u(x,f) and even sufficient to guarantee its expo-
nential decay. To this end we first establish the following comparison
result.

LEMMA 1 Let u(x, t) be the solution of the parabolic problem (3),(4);
k=1,2,3, or 4, and (5) with h(x) > 0 and k(t) = 1. Assume moreover the
following conditions on f and g:

sf'(s) 2 f(s) >0, s>0, f(0) =0, (52)
w :f(;:r) <ap:= fff;—n, (53)
g(0) 20, o>0, (54)

where 12, has been defined in (28). We then have the following bounds for
u(x, 1):

0 <u(x,f) < Uexp{ </:(—:ﬁ4—) - a())t}, te(0,7), (55)
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U:= max 4/h +LG(h’2). (56)
(_L)L) Qo

We note that condition (52) implies condition (10) and the fact that
the ratio f(s)/s is a nondecreasing function of s.

The lower bound in (55) follows from Nirenberg’s and Friedman’s
maximum principles [3,6,10]. To establish the upper bound in (55) we
introduce an auxiliary function v(x, ¢) defined as

with

u(x, 1) = v(x, t)e, (57)

with p:=f(un)/um. Inserting (57) into (3) we obtain
e [g(e¥VE)vxx — vi] = u(,u —f—(uz)—) >0, (58)

where the above inequality results from the definition of y together
with the monotonicity of f(s)/s. The auxiliary function v(x,¢) then
satisfies

g(ezﬂtv)zc)vxx -v 20, xe€ (—L’ L)’ re (0’ T)’ (59)

v(x,0) =h(x), xe€(L,L). (60)

Moreover v(x, t) satisfies the same boundary conditions (4) as u(x, ?).
Let w(x, f) satisfy

g " Wwe —w, =0, xe (=L, L), t€(0,T), (61)

w(x,0) = h(x), xe€(-L,L), (62)

with the same boundary conditions as u and v. From (59) and (61) we
have

2(eV )y — (€ W) wyx — (v — w), > 0. (63)
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Using the mean value theorem we may rewrite the first two terms in
(63) as follows:

g(ezﬂt vi)vxx - g(ezmwi)wxx
_ 2ut 2 _ 2pt 2N 2ut, 2
- g(e vx)(v w)xx + Wixx [g(e vx) g(e wx)]
= g( V)V = W) + W (6 (v — W), (v +w),,  (64)
for some intermediate value £. We conclude from (63) and (64) that

the function w:=v — w satisfies a parabolic inequality of the follow-
ing form:

(V) + C(x, hwy —w; >0, x€(=L,L), te(0,T), (65)

where C(x, ?) is regular throughout (—L, L) x (0, T'). Since w(x,0)=0
and since w satisfies zero Dirichlet or Neumann boundary conditions,
it follows that

w=v-w<0, xe€(LL), te(0,T). (66)
From (57) and (66) we obtain

0 <u(x, 1) <efw(x,t). (67)

Finally since we assume (53) and (54) we may use (43) to bound w(x, 7).
Dropping the first term in (43) we obtain

agw? < H?e 200t (68)

where H? is defined in (44). The desired inequality (55) follows now
from (67) and (68).
Lemma 1 is the main tool in the derivation of the following result.

THEOREM 3 Let u(x, t) be the solution of problem (3), (), k=1,2,3 or
4, and (5) with h(x)>0, and k(t)=1. Assume (52)—(54). Moreover
assume that the data in problem (3)—(5) are small enough in the follow-
ing sense:

(69)



QUASILINEAR PARABOLIC PROBLEMS 13

where U is defined in (56). Then u(x,t) exists for all time t >0 (i.e. we
may take T = oo in problem (3)—(5)). Moreover we have

max fu(x, ) <ag, Vt>0. (70)

(-L,L) u(x,1)

For the proof of Theorem 3 we assume that (70) is not valid and
show that this invalidity is self-contradictory. From the definition of
U we have

U > max h(x). 71
2 max h(x) (71)

Since f(s)/s is nondecreasing, (71) and (69) imply

) SO g, (12)

h U

If (70) is violated, there exists in view of (72) a first time ¢ = 7 for which
we have

max —- = ay. (73)

With f(um)/um <max_g 1y (f(w)/u), we obtain

fln) (74)
um

From (55) and (74) we obtain
u(x,t) < U, xe(-L,L), 0<t<T, (75)
and we conclude that

Slu(x,7) _f(U)
(13113;5) u(x, ) = U

< o, (76)

so that (70) cannot actually be violated in a finite time 7. This estab-
lishes (70) with 7= oo.
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We are now prepared to establish the following result:

THEOREM 4  Let u(x, t) be the solution of the parabolic problem (3), (4)x,
k=1,2o0r 3, and (5) with h(x) > 0, k() = 1. Assume (52)—(54). Moreover
assume that the data in problem (3)—(5) are small enough in the sense that
there exists a constant ) > 0 such that the inequality

jléi) <oy — o (77)

is satisfied, where U is defined in (56). Then we conclude that the first
possibility (i) in (11) cannot hold Vo, 0 < a < ay. We are then led to the
following decay bound for w’and uk:

G(12) + an + 2F(u) < H'e >, x€ (-L,L), t>0  (78)
(valid for all time t > 0) with

H? = (m%{c(h'z) + ayh® + 2F(h)}. (79)

Before proving Theorem 4 we show that the realization of (i) in (11)
with «:= «; implies the inequality

[_(M_M) > g — Q. (80)
um

In fact the realization of (i) in (11) with a::= o implies the inequality

{G(2(x, 1)) + cyu® + 2F(u) }e*" < [aqudy + 2F(up)]e*™!,  (81)
where 3, is defined in (28). Evaluated at ¢ = 7, we obtain

G2 (x,1)) < ay[udy — P (x, 1)) + 2[F(um) — Fu(x,7))). (82)

Using the generalized mean value theorem and the monotonicity of
f(s)/s we may rewrite the last term in (82) as follows:

Flum) = Flu(x, 7)) = F(%)__ %(?;))

[i3g — *(x,7)]

S RGOS e CRECONC
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where £ is some intermediate value of u. Moreover the left hand side of
(82) may be bounded as follows:

gmintt3 (x,7) < Gluy(x, 1)), (84)

with g = £(0). From (82)—(84) we obtain the inequality
i 01) < (L0 ) 69
um

that may be rewritten as

a0 \/gmm <uM>)_ (6)

\/ Uk — ¥ (x,T)

Integrating (86) from the critical point X to the nearest end x = +L
of the interval (—L, L) with u(x, ¢) = 0, we obtain (80).

For the proof of Theorem 4 we note that the assumption (77) implies
(69), so that conclusion (70) of Theorem 3 holds. In particular we have

fum)

<ag, V>0, (87)
Um

and (55) leads to
Um _<_ U, (88)

from which we obtain using the monotonicity of f(s)/s and assump-
tion (77)

flum) _/(U)

<=t
Um U

<oy — o, (89)

in contradiction to (80), so that (i) in (11) cannot hold. The
inequality (78) follows now from (ii) in (11). This achieves the proof
of Theorem 4.
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As an example, let u(x, ¢) be the solution of the following parabolic
differential equation:

U/ 1+ 12 +ulte =y, xe(—g,g), t>0, (90)

with the boundary conditions

s ™
u(—i,t) -—u(z,t) =0, (91)
and with the initial condition

u(x,0) =acosx, a=const. >0. (92)

With e:=const. >0, the function f(s):=s'"¢ satisfies (52). With
g(0) := (1 + )2, condition (54) is satisfied. Since g(s) is increasing we
have gy, = 1. From (56) with oy =1 and A(x) = acos x we compute

a* sin® x

172
U= max {azcoszx—k V1€ d&} { [(1+a>)** - ]}/.
0

(=/2/2)
(93)

From Theorem 3 we conclude that u(x, ¢) exists for all time ¢ > 0 if (69)

is satisfied, i.e. if we have 0 <a< \/(5/2)2/3— 1 ~20917. From
Theorem 4 we have the decay estimate (78) with op:=1-{2/
3[(1+a®) = 11}¥% > 0.

4 EXTENSION TO THE N-DIMENSIONAL CASE

The results of Sections 2 and 3.1 may be extended in case of N space
variables x:=(xy,...,xy), N>2. In this section we establish the
following maximum principle analogous to Theorem 1.

THEOREM 5 Let Q be a bounded convex domain in RNwith a C**¢
boundary 0. Let u(x,t) be the solution of the initial boundary value
problem

gk VuP)Au=u, xe€Q, te(0,T), (94)
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u(x,1)=0, xed, t€(0,7), (95)

u(x,0) = h(x), x€Q, (96)

where g and k are given positive functions, g € C*, ke C'. Let ®(x, 1) be
defined on u(x, t) by

O(x,1) = {% G(k(1)|Vul*) + auz}ezaﬂ’, (97)
with
6() = [ @)t (98)

In (97), « is an arbitrary nonnegative parameter, and [3 is a constant to
be chosen in (0,1) as indicated below. We distinguish two cases.
If g'(0) > 0, we assume

2ak —kK >0, (99)

and we assume that two constants X\ >0 and 3 € (0, 1) can be determined
such that

g(o) — A\, N, B)og' (o) >0, o >0, (100)
with
-1 _
AN, B) = max{)\N, A—N—T—é?—%} (101)
If ¢'(0) < 0, we assume
K(t) >0, (102)
and we assume that 3 € (0, 1) can be determined such that
og(o) — BG(o) 20, o>0, (103)

g(o) + B(N,B)og'(0) 20, ¢2>0, (104)
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with

B(N, B) = max{N— 1, Ti—ﬁ} (105)

We then conclude that ®(x,t) takes its maximum value either at an
interior critical point (X,t) of u, or initially. In other words we have

B(x,7) with Vu(x,7) =0 (),

maxg (x, 0) . (106)

d(x,1) < max{

We note the presence of a factor 3 in the decay exponent of ®(X, f).
This factor makes Theorem 5 less sharp than Theorem 1 corresponding
to the one-dimensional case.

The existence of a classical solution of (94)-(96) will not be
investigated in this paper. We refer to [1,5] for such existence results.

For the proof of Theorem 5 we proceed in two steps. We first
construct a parabolic inequality of the following type:

L := g(k(1)|Vul*)A® + |Vu|%e(x,1) - VO — &, > 0, (107)
where the vector field ¢(x, £) is regular throughout 2 x (0, T'). Using the

following notations: u;:=0u/0x;, i=1,...,N, uz:= 0%u)Ox,0xy, i, k=
1,..,N,u,=0u/0t,uyv; = Zfil u;v; = Vu- Vv, etc., we compute

K
- { K1V — GR(DIVP)] + 2oaat + 2gu e

+2a8 [%G(kWulz) + auz] }ehﬂ’, (108)

D = 2{guiu;+ o g &>, (109)
AP = 2{2g'kugupuipuge+ gui(Au)
+ gu g i + o Vul* + culu}e??, (110)
Moreover differentiating (94) we obtain

gui(Au) ;= —2kg'upuiupAu+uuguy. (111)
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Combining (108), (110), and (111), we obtain after some reduction
gAD — B, = {4gg’ Kl v g joup — e ju e Au) + 28%u o u i
+ 22 [k Vul? ~ BG(K|TuP)
- % [gk|Vu* — G(k|Vu’)] - 2a2ﬂu2}ez"ﬂ’. (112)

In contrast to the one-dimensional case the quantity u ;u i pu,—
uguu,Au is not identically zero. Depending on the sign of g, it
seems convenient to substitute an upper bound or a lower bound for
Ul ;U At

If g >0, we use the arithmetic—geometric mean inequality in the
following form:

2ugeujurAu < )\|Vu|2(Au)2 + )\_1IVu{—z(u,iku,,-u,k)2
S ANVuPugup + X7V 2 (wpuug)’,  (113)

where ) is an arbitrary positive constant. Combining (112) and (113)
we obtain

gAD — D, > {4gg'ku,,~k Uiy + 2g[g — NAGK|\Vul*|u g u
- 2
= 2\ g KVl (e )+ T kIl ~BG K|V
!
- % [gk|Vul* — G(k|Vul*)] - 2a2ﬂu2}e2aﬂf. (114)

Since g — NAg'k|Vu|> > 0 by assumption (100) we may use the Cauchy—
Schwarz inequality

\VulPugen e > vttt o (115)

We then obtain
gAD — D, > {2g|VuI"2[g + (2 = AN K|Vl g wjoa g
X g kYl wn )+ kT ~ GG

!
- % (k| V> — G(k|Vu>)] — 2a2ﬁu2}ezaﬂ'. (116)
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We now make use of (109) to represent u ;u; as follows:

SUjpl;=—0uily+---, k=1,...,N, (117)

where dots stand for a term containing ® ;. From (117) we compute
gZ“Jk UpUiplhy = ozZIVu|2u2 + ey (118)
gz(u,iku,iuyk)2 = ?|Vul*? + - (119)

Inserting (118) and (119) into (116) we obtain after some reduction

gAq)'—(D,t‘i‘

> {2g-‘a2u2[g +(2—NA—A“‘)zk|Vu|2]+%[gklwlz—ﬂG(klwf)]

/
— % [gk|Vu|* — G(k|Vul*)] — 2a2ﬁu2}e2aﬂf. (120)
Using (100) we obtain
g '+ (2 — NA = A gk|Vul*] > BoPu?. (121)

Combining (120) and (121) we are led to the desired inequality
gAD — &, + - > k2 (2ak — K)[gk|Vul* — G(k|Vu[*)]e?** > 0.

(122)
If ¢ < 0, we use the inequality
2_uugoujuy > — (N — 1)|Vu12u,,-k u g + |Vu|_2(uy,-k u‘iu,k)2
+ (N = Dt e joup, (123)

derived in [7]. Combining (112) and (123) we obtain

gAD —®, > {2(3—N)gg’ku,,‘k Uptioug+2glg + (N— 1)g’k|Vu|2]u,,-k Uik
— 288 k|Vu| A (uguiur)’ + 2?“ [gk|Vu® — BG(k|Vul*)]
- % [gk|Vul* — G(k|Vul*)] — 2a2ﬁu2}e2aﬁf

> {23-N)gg'kuguguious + 2glg +(N—1)g'k|Vul|u
- 2gg’k|Vu|_2(u7,-k u7,-u7k)2 — 2% put}e*?, (124)
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where the last inequality in (124) follows from assumptions (102) and
(103). Now since g + (N — 1)g’k|Vu|*> 0 by assumption (104) we may
use (115). Moreover inserting (118) and (119) we obtain after some
reduction

gAD — B+ - > {20%g 7 [g + k| Vul’] — 202 Bu } > 0,
| (125)

where the last inequality follows from (104). The inequality (125) is
again of the desired type.

It follows from Nirenberg’s maximum principle [6,10] that ® takes its
maximum value (i) at an interior critical point (X, 7) of u, or (ii) initially,
or (iii) at a boundary point (X, 7) with X € 9. The second step of the
proof of Theorem 5 consists in showing that the later possibility
(iii) cannot hold. To this end we compute the outward normal derivative
of ® on 99). Using (94) rewritten in normal coordinates we obtain

-‘3%’ =260y g = —2(N — 1)e*¥gK|Vul* <0 on 89, (126)

where K(>0) is the average curvature of 9. Let (X,7) be a point at
which @ takes its maximum value with X € 9. Friedman’s boundary
lemma [3,10] implies that ®=const. in  x [0,7], so that we must
actually have ®/0n=0 on 9Q. Since we have |[Vu|>>0 on 99, we
conclude then that the average curvature K vanishes identically on 02,
which is clearly impossible. This achieves the proof of Theorem 5.

Now we want to select o > 0 in such a way that the first possibility (i)
in (106) cannot occur. To this end we proceed as in Section 3.1. In the
particular case of k(¢) = 1, this leads to the following result.

THEOREM 6 Let Q be a bounded convex domain in R"whose boundary
is C2*¢. Let d be the radius of the greatest ball contained in Q0. Let u(xX, 1)
be the solution of the parabolic problem (94)—(96) with k(t) = 1. Assume
that the hypotheses of Theorem 5 are satisfied. We then conclude that if
7T2gmin

4d? °
the first possibility (i) in (106) cannot occur. With o — o we are then
led to the following decay bound for ®:

0<a<a:= (127)

G(|Vu)?) + apu? < HPe 2000, (128)



22 G.A. PHILIPPIN AND S. VERNIER PIRO
with
H? = mgx{G(thlz) + agh?}. (129)
We note that in the context of Theorem 6, the quantity
W= |Vuf’ (130)
satisfies the parabolic inequality
gAY~ + 97 Vep- & >0, (131)

where the vector field ¢ is regular throughout € x (0, 00). Moreover
we have

% = —2(N-1)Ki2 <0 on 9. (132)

It then follows from (131) and (132) that ¢ takes its maximum value
initially. This shows that if g’ <0, we have

8min = g("/)max), (133)

With 9may = maxg| VA%

As a first example consider g(o):=(1+0)"?. Since g(0)=
la+ 0)~"2 > 0, we have to determine the (greatest) 8 € (0, 1) such that
(100) is satisfied, i.e. such that A(\, N, 3) <2, where A4 is defined in
(101). This condition is satisfied only for N <4. We are then led to
f=2—-+VN>0if N=2or N=3.

As a second example, consider g(o):=(14+0)"% 0<e<E:=
min{%, 1/(N —1)}. Since g’ = —e(14+0)"'7¢< 0, we have to determine
the (greatest) 8 € (0, 1) such that (103) and (104) are both satisfied. This
will be the case for =1 —¢.

We refer to [9] for similar results involving solutions of the parabolic
differential equation

(g(lvu|2)u,i),,~ =uy. (134)
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