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g(k(t)lVul2)ZXu +f(u) ut, x E f, > O,

wheref, g,k are given functions. In the case of one space variable, i.e. when f := (-L, L),
we establish a maximum principle for the auxiliary function
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where c is an arbitrary nonnegative parameter. In some cases this maximum principle may
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1 INTRODUCTION

Using a maximum principle approach Payne and Philippin [8] derived
pointwise decay bounds for solutions of some initial boundary value
problems involving the parabolic differential equation Au +f(u)= ut,

x E 9t, > 0, where ft is a bounded convex domain in 1Ru. This paper
deals with classical solutions u(x, t) of some initial boundary value
problems involving the quasilinear parabolic equation

g(k(t)lVul2)Au +f(u) -u,, x 2, > 0,

where f, g, k are given functions. In Section 2 we consider the case of
one space variable x E (-L, L). Under certain hypotheses we establish
a maximum principle for the auxiliary function

g() d / cu2 / 2 f(s) ds
JO

(2)

where c is an arbitrary nonnegative parameter.
When f is zero and k is an exponential function we compute in

Section 3.1 a critical value c0 that depends on the boundary condi-
tions and on g in such a way that for 0 _< c < c0, takes its maximum
value initially. This fact leads to explicit exponential decay bounds for
u] and ]Ux].
When f is not zero and k 1, we show under certain assumptions

that if the initial data u(x, 0) is nonnegative and small enough in some
sense that will be made precise in Section 3.2, the solution u(x, t) cannot
blow up in finite time. Depending onfwe then determine c < c0 such
that for 0 _< c < c, takes its maximum value initially. This leads
again to explicit exponential decay bounds for u(>_ 0) and ]u].

In Section 4, the results of Sections 2 and 3.1 are extended in u in
the case of the parabolic equation g(k(t)lul2)/ku- ut, x Q, > 0. We
refer to [9] for a similar investigation involving the parabolic equation
(g(lul2)7u)- ut, x , > O.
For maximum principle results related to parabolic partial differ-

ential equations we refer to [10-14].
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2 MAXIMUM PRINCIPLE FOR (X, t)

In this section we establish the following result.

THEOP,EM Let u(x, t) be the solution of the initial boundary value
problem

2g(kux)Uxx +f(u) ut, x E (-L,L), E (0, T), (3)

u(+L, t) 0, [0, T], (4)1

u(x, o) h(x), x

with h(+L) O, h O. Let (x, t) be defined on u(x, t) by

where c is an arbitrary nonnegative parameter and with

F(s) f() d,

(6)

(7)

G(cr) g() d. (S)

Assume that the given functions g C2, k C are strictly positive and
satisfy the inequality

(2ck k’)[crg(a) G(cr)] > 0, (0, T), cr > 0, (9)

and that the given functionfE C satisfies the inequality

sf(s) 2F(s) >_ 0, s . (10)

We then conclude that b takes its maximum value either at an interior

critical point (2, {) of u, or initially. In other words we have

{ ), with Ux(, -{ 0 (i),(x, t) <_ max
max[_c,/] (x, O) (ii). (11)
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For the proof of Theorem we compute

ffx
2at 22e {UxUxxg(kux)+ a UUx +f(U)Ux}

2eZatux(U + ou), (12)

dxx 2e2ct{2k 2 2 gt 2 2
UxUxx + gUxx + gUxUxxx + a ux + oz UUxx

24-f Ux 4-fUxx}
2 2 +fUxx},2e2at{gUxx 4- UxUxt 4- oux 4- oUUxx (13)

k’
’t- e2t Igku2x G(ku2x)] + 2gUxUxt + 2auut + 2fur

+2a +2F(u) (14)

Combining (13) and (14) we obtain after some reduction

gbxx t e2t{ (2ak- k’)[gk 2 G(k 2 2
Ux- Ux)] + 2g Uxx

2f2 2auf- 2o2u2 -4aF(u)}.
From (12) we compute

gUxx 1/2 u- xe-2t (f+ au). (16)

Inserting (16) into (15) we obtain the parabolic differential inequality

gbxx + u-2c(x, t)’x ’t

e2’t{(2ok- -k’)[gkux-2 G(ku2x)]+2a[uf 2F(u)] } _>0,

(17)

where the last inequality in (17) follows from (9) and (10). In (17), c(x, t)
is regular throughout (-L, L) (0, T). It then follows from Nirenberg’s
maximum principle [6,10] that takes its maximum value (i) at a critical
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point (2, ) of u, or (ii) initially, or (iii) at a boundary point (, ) with
2 +L, " E (0, T]. The conclusion of Theorem will follow if we can
show that (iii) implies (i) or (ii). If fact (12) and the boundary conditions
(4)1, imply x(+L, t)-0. It then follows from Friedman’s maximum
principle [3,10] that q can take its maximum value at a boundary point
(2, ) with 2 +L only if is identically constant in (-L, L) x (0, ), in
which case the two possibilities (i) and (ii) hold in (11). This achieves the
proof of Theorem 1.

It is worthy to note that can be constant only for some particular
choice of the data in problem (3), (4)1, (5). In fact const, implies
equality in (17), i.e. also in (9) and in (10). This implies then that

f(u) Au, A const., (18)

and that

either k(t) e2at or g const. (19)

Moreover ff)=const, implies 6x-Ux(Ut-+-aU)=_O from which we
conclude

either ux=O or ut+au=-O. (20)

The first equation in (20), together with (3) and (18), leads to

u(x,t) =eat, (21)

which is impossible in view of (4)1. The second equation in (20) leads to

u(x, t) h(x)e-t, (22)

which solves (3) only if we have

g(h’:Z)h" + (A + a)h O, x (-L, L). (23)

To conclude this section we note that Theorem remains true even ifwe
replace (4)1 by any one of the following pairs of boundary conditions:

(-c, t) x(C, t) 0,

Ux(-C, t) .(c, t) o,
.x(-C, t) ,,x(I, t) o.

(4)2
(4)3
(4)4
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Moreover if both inequalities (9) and (10) in Theorem are reversed we
then conclude that takes its minimum value either at a critical point of
u, or initially.

3 ELIMINATION OF THE FIRST POSSIBILITY (i) IN (11)

We note that the realization of (ii) in (11) leads to lower exponential
decay bounds for both lul and luxl. In this section we impose restrictions
on the parameter c _> 0 so that the first possibility (i) in (11) cannot
occur. We shall investigate two particular cases.

3.1 First Case:f(u)"- 0, k(t) e2#t, I O

We consider the parabolic problem (3), (4)k, k-1,2, 3 or 4, and (5)
with the particular choices f(u) O, k(t) e2t, # const. _< c. We
assume (9) so that the conclusion (11) of Theorem holds. Note that if

# "-c, assumption (9) is satisfied for any arbitrary function g > 0. If

# < c, (9) is satisfied if and only if g’ > 0.
Suppose that we have the first possibility (i) in (11), i.e.

(x, t) <_ cu2(, )e2 cu2e2", (27)

with

uI max uZ(x, ). (28)

We can rewrite (27) evaluated at as

e-2’G(e2UUx)2 < c (u2rvi u2(x, -)). (29)

Making use of the mean value theorem we may bound the left hand
side of (29) as follows:

2(X, -)gmin _< e-21-{G(e2U-iU2x),b/x (30)
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where gmin > 0 is the minimum value ofg. From (29) and (30) we obtain
the inequality

2(X,/)groin _< Ce(U U2(X,/)),/x (3)

that may be rewritten as

(32)

Integrating (32) from the critical point 2 to the nearest zero I-L, L]
of u(x, ), we obtain

7r2gmin
(33)c > co

41- l2"

Since 12 1 is unknown, we need an upper bound for this quantity in
(33). Obviously we may use

L if we have (4)1 (34)12 l < A :=
2L if we have (4), k 2, 3 or 4,

if we assume the existence of [-L, L] when we have the boundary
conditions (4)4. This will be the case e.g. if the initial data h(x) have zero
mean value, i.e. if we have

c
h(x) dx O. (35)

L

In fact with the auxiliary function p(r) defined by

1/2 fOp(cr) 0"- g()-l/2 d, (36)

we have

dfC fcu(x, t) dx ut(x, t) dx g(e2"tU2x)Uxx dx
dt L -L L

fL(p(e2lZtU2x)Ux)xdx p(e21tUx)UXl_L2 L
O.

L
(37)
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It then follows from (35) and (37) that

u(x, t) dx h(x) dx 0,
L L

vt e [o, r], (38)

i.e. the zero mean value property of u(x, t) is inherited from the zero
mean value property of the initial data if we have the boundary
conditions (4)4. But this implies the existence of E I-L, L] such that
u(L t) 0.
We conclude from the above investigation that, for 0 <_ a <_ ao, the

first possibility (i) in (11) cannot hold, so that [u and [Ux[ must decay
exponentially. This shows in fact that u(x, t) cannot blow up and will
exist for all > 0. These results are summarized next.

THEOREM 2 Let u(x, t) be the solution ofthe parabolic problem (3), (4)k
k 1,2, 3, or 4, and (5). Ifwe have (4)4 we require that the initial data h(x)
satisfy thefurther condition (35). Assume either

#-a < ao, (39)

OF

# < a < ao and g’ >_O, (40)

with

7l’2gmin
a0:= 4A2 (41)

where A is defined in (34). Then we may take T-oc in (3) and (4).
Moreover thefunction b defined as

(x, t)"- e:t{e-2UtG(e2’tUx) + au2}, (42)

takes its maximum value initially. The resulting inequality (11) with
c co takes theform

e-2’tG(e2UtU2x) + cou: <_ H2e-2"t, V# <_ co, (43)
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with

H2 max {G(h’) + c0h2}. (44)

We note that the quantities Co and H2 are explicitely computable in
terms of the initial and boundary data.
A weaker but more practical version of (43) is

2 (X, t) -}- O0u2
__
H2e-2ctgminUx (45)

Integrating (45) over (-L, L) we obtain

2 (X, t)dx + co u2 dx _< 2LH2e-2’. (46)gmin Ux
L L

Moreover depending of the boundary conditions (4), u(x,t) is
admissible for the variational characterization of the first or second
eigenvalue of a vibrating string of length 2L with fixed or free ends.
We have actually

2
gmin Ux(X t) dx >_ co dx,

L L
(47)

valid in all cases considered in Theorem 2. From (46) and (47) we
obtain the following decay bound for f_L u2 dx:

L

U2(x, t) dx < LcIH2e-2t.
L

(48)

We shall now derive a pointwise lower bound for [u(x,t)[ that is

proportional to the distance Ix- 1 from x to the nearest zero of
u(x, t). To this end we rewrite (45) as

v/(ga/oo)e-2Cot- u2
(49)

Integrating (49) for fixed from x to X we obtain

(so)
\He--otj ao v/(n2/oo)e-2oo, 2 V gmin
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or

H
lu(x,t)l __Ix- 1e-’, x (-t,t), > O. (51)

Of course we can substitute by +L or -L if we have the boundary
conditions (4)k, k 1,2, 3.

3.2 Second Case: f(u) O, k(t)

In this section we consider the parabolic problem (3), (4)k, k 1,2, 3 or

4, and (5) with the particular choice k(t)= 1, f(u) O. It is well known
that the solution u(x, t) of this problem may not exist for all time. In fact
u(x, t) may blow up at some time t* which may be finite or infinite [1,3].
However if blow-up does occur at t*, then u(x, t) will exist on the
time interval (0, t*).
We want to establish conditions involving the data sufficient to

prevent blow-up of u(x, t) and even sufficient to guarantee its expo-
nential decay. To this end we first establish the following comparison
result.

LEMMA Let u(x, t) be the solution of the parabolic problem (3), (4)
k 1,2, 3, or 4, and (5) with h(x)> 0 and k(t)= 1. Assume moreover the
following conditions onfand g:

sf’(s) >_ f(s) > 0, s > 0, f(0) -0, (52)

71"2gminf(UM) < S0 := (53)#’--
UM 4A2

g’(cr) > 0, cr >_ 0, (54)

where u2 has been defined in (28). We then have thefollowing boundsfor
u(x, t):

O<-u(x’t)<-Uexp{(f(uM) c)t}uM
(55)
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with

U max 2 +__G(h,2). (56)
(-L,L) O0

We note that condition (52) implies condition (10) and the fact that
the ratio f(s)/s is a nondecreasing function of s.

The lower bound in (55) follows from Nirenberg’s and Friedman’s
maximum principles [3,6,10]. To establish the upper bound in (55) we
introduce an auxiliary function v(x, t) defined as

u(x, t) v(x, t)e"t, (57)

with # "--f(UM)/UM. Inserting (57) into (3) we obtain

et[g(e2tV2x)Vxx vt] u(# -f(--) >_ O, (58)

where the above inequality results from the definition of # together
with the monotonicity of f(s)/s. The auxiliary function v(x, t) then
satisfies

2/zt 2g(e Vx)Vxx Vt >_ O, x E (-L,L), tE(0, T), (59)

v(x, O) h(x), x (-L, L). (60)

Moreover v(x, t) satisfies the same boundary conditions (4) as u(x, t).
Let w(x, t) satisfy

g(e2’tW2x)Wxx wt O, x (-L, L), (0, T), (61)

w(x,O)=h(x), x(-L,L), (62)

with the same boundary conditions as u and v. From (59) and (61) we
have

2 g(e2"’Wx)Wxx (v w), > O.g(e2U’Vx)Vxx (63)
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Using the mean value theorem we may rewrite the first two terms in
(63) as follows:

(64)

for some intermediate value . We conclude from (63) and (64) that
the function "-v- w satisfies a parabolic inequality of the follow-
ing form:

g(e2#t 2Vx)xx + C(x, t)x ot >_ O, x E (-L, L), (0, T), (65)

where C(x, t) is regular throughout (-L, L) (0, T). Since o(x, 0)- 0
and since o satisfies zero Dirichlet or Neumann boundary conditions,
it follows that

(66)

From (57) and (66) we obtain

0 < u(x, t) <_ eUtw(x, t). (67)

Finally since we assume (53) and (54) we may use (43) to bound w(x, t).
Dropping the first term in (43) we obtain

O0W2 HZe-2t, (68)

where H2 is defined in (44). The desired inequality (55) follows now
from (67) and (68).
Lemma is the main tool in the derivation of the following result.

THEOREM 3 Let u(x, t) be the solution ofproblem (3), (4)k, k 1,2, 3 or

4, and (5) with h(x) >_ O, and k(t)= 1. Assume (52)-(54). Moreover
assume that the data in problem (3)-(5) are small enough in the follow-
ing sense:

f(U) 7r2gmin
---U-- < co 4A-----2-, (69)
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where U is defined in (56). Then u(x, t) exists for all time > 0 (i.e. we

may take T= c in problem (3)-(5)). Moreover we have

max
f(u(x, t)) < so, Vt > 0. (70)

(-L,L) U(X, t)

For the proof of Theorem 3 we assume that (70) is not valid and
show that this invalidity is self-contradictory. From the definition of
U we have

U_> max h(x). (71)
(-L,L)

Since f(s)/s is nondecreasing, (71) and (69) imply

f(h) f(< -’ < s0. (72)
h U

If (70) i violated, there exists in view of (72) a first time 7- for which
we have

max ’’u-----t]( co. (73)
(-L,L) U

Withf(UM)/UM <__ max(_L,L) (f(u)/u), we obtain

f(UM) _< SO. (74)
UM

From (55) and (74) we obtain

u(x,t) <_ U, x E (-L,L), O <_ <_ 7-, (75)

and we conclude that

maxf(U(x, 7-)) <f(U)< co, (76)
(-,) u(x, -) U

so that (70) cannot actually be violated in a finite time 7-. This estab-
lishes (70) with 7-- .
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We are now prepared to establish the following result:

THEOREM 4 Let u(x, t) be the solution oftheparabolicproblem (3), (4)k,
k- 1,2 or 3, and (5) with h(x) >_ O, k(t) 1. Assume (52)-(54). Moreover
assume that the data in problem (3)-(5) are small enough in the sense that
there exists a constant c > 0 such that the inequality

U(U) < a0 al (77)U

is satisfied, where U is defined in (56). Then we conclude that the first
possibility (i) in (11) cannot hold Vc, 0 <_ c <_ c. We are then led to the

2.following decay boundfor uZand ux.

G(u2x) + OelU
2 -k- 2F(u) _< 7-2e-2a’t, x E (-L, L), > 0 (78)

(validfor all time > O) with

7-g2 max {G(h’z) + alh2 + 2F(h)}. (79)
(-L,L)

Before proving Theorem 4 we show that the realization of (i) in (11)
with c--c implies the inequality

f(UM) _> oe0 o1. (80)
btM

In fact the realization of (i) in (11) with c "-c implies the inequality

u2 2F(u) e2c’’{G(u2x(X, t)) + c, + } _< [cu + 2F(uM)]e2’, (8)

where u is defined in (28). Evaluated at t- , we obtain

G(u2x(X, )) _< c [u U2(X, -)] + 2IF(urn)- F(u(x, ))]. (82)

Using the generalized mean value theorem and the monotonicity of
f(s)/s we may rewrite the last term in (82) as follows:

F(UM) F(u(x,-{)) [u u2(x, -)]F(UM) F(u(x,-{)) u u2(x,-{)

[U2M ue(x, -)] 12f(UM)[Uh u2(x, [)], (83)
2 UM
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where is some intermediate value of u. Moreover the left hand side of
(82) may be bounded as follows:

<_groinUx (84)

with gmin- g(0). From (82)-(84) we obtain the inequality

(gminUx(X ) Cel nt- [U2M U2(X, -)],
UM ,/

(85)

that may be rewritten as

V/u2M u2(x, )
min o1 -{-

btM
(86)

Inte.grating (86) from the critical point to the nearest end +L
of the interval (-L, L) with u(, t) 0, we obtain (80).
For the proof of Theorem 4 we note that the assumption (77) implies

(69), so that conclusion (70) of Theorem 3 holds. In particular we have

and (55) leads to

f(UM) <_ C0, Vt > 0, (87)
b/M

/’/M U, (88)

from which we obtain using the monotonicity of f(s)/s and assump-
tion (77)

f(UM) < f(U) < c0 c, (89)
UM U

in contradiction to (80), so that (i) in (11) cannot hold. The
inequality (78) follows now from (ii) in (11). This achieves the proof
of Theorem 4.
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As an example, let u(x, t) be the solution of the following parabolic
differential equation:

Uxx V/1 + Uax + u + ut, xe , ,t>0, (90)

with the boundary conditions

u ,t -u ,t -0, (91)

and with the initial condition

u(x, O) a cos x, a const. > 0. (92)

With e const. _> 0, the function f(s)’-s+ satisfies (52). With
g(e) :=(1 + or) /2, condition (54) is satisfied. Since g(s) is increasing we
have gmin- 1. From (56) with c0- and h(x)-a cos x we compute

/ fo
sinx/1/2/aZU max 2 COS

2
X nt- d [(1 nt- a2) 3/2

(-Tr/2jr/2)

(93)

From Theorem 3 we conclude that u(x, t) exists for all time > 0 if (69)
is satisfied, i.e. if we have 0 < a < V/(5/2))/3- 0.917. From
Theorem 4 we have the decay estimate (78) with c--1-{2/
3[(1 + a2)3/2 1]}e/2 > 0.

4 EXTENSION TO THE N-DIMENSIONAL CASE

The results of Sections 2 and 3.1 may be extended in case of N space
variables X’--(X,...,Xu), N> 2. In this section we establish the
following maximum principle analogous to Theorem 1.

THEOREM 5 Let f be a bounded convex domain in ]RNwith a C2+

boundary 0. Let u(x, t) be the solution of the initial boundary value
problem

g(k(t)lVul2)/ku- ut, x E f, E (0, T), (94)
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u(x,t)=0, xE0f, tE(0, T), (95)

u(x, 0) h(x), x , (96)

where g and k are given positive functions, g C2, k C1. Let I,(x, t) be
deft’ned on u(x, t) by

G(k(t)[Vu[2) )e2t(x, t) :- + (97)

with

G(r) g() d. (98)

In (97), a is an arbitrary nonnegative parameter, and is a constant to

be chosen in (0, 1) as indicated below. We distinguish two cases.

Ifg’(cr) >_ O, we assume

2ak- k’ > 0, (99)

and we assume that two constants A > 0 and (0, 1) can be determined
such that

g(r) A(A,N,)crg’(cr) >_ O, cr >_ O, ( oo)

with

A(A, N,/3) :-- max{ AN, ANq--A-1 -2/-/3
(101)

Ifg’(cr) <_ O, we assume

k’(z) >_o, (102)

and we assume that (0, 1) can be determined such that

crg(r) -/3G(r) >_ O, r >_ O, ( o3)

g(cr) + B(N, )crg’(r) >_ O, cr >_ O, (104)
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with

{ 1}B(N, 3) max N-l,
1-/3

(105)

We then conclude that ,I:,(x, t) takes its maximum value either at an

interior critical point (, ) of u, or initially. In other words we have

(x, t) < max{ (’ )
max (x, 0)

with Vu(, -) 0 (i),
(ii). (106)

We note the presence of a factor/3 in the decay exponent of (x, t).
This factor makes Theorem 5 less sharp than Theorem corresponding
to the one-dimensional case.
The existence of a classical solution of (94)-(96) will not be

investigated in this paper. We refer to [1,5] for such existence results.
For the proof of Theorem 5 we proceed in two steps. We first

construct a parabolic inequality of the following type:

C g(k(t)lVul2)m / IVu[-2e(x, t). V ,t 0, (107)

where the vector field c(x, t) is regular throughout f x (0, T). Using the
following notations" u,i’-Ou/Oxi, i-1,..., N, U,ik’--02u/OxiOxk, i,k-
1,..., N, u,t-Ou/Ot, u,iv,i -Ni= u,il,i u. , etc., we compute

,- [gklul G(k(t)lul=)] + 2uu + 2gusus

1G(klVul2)/ou2 }e2c/t, (108)+2

,1 2{gu,ikU,i / OUU,k }e2ct, (109)

A 2{2g’ku,i u,k u,ieU,e + gu,i(Au),
/ gU,ik U,ik / CeIXTu[ 2 / cuAu}e2t.

Moreover differentiating (94) we obtain

gbl,i(mbl), --2kg’lA,ik tl,i bl,kmld / bl,tk lA,k.

(110)

(111)
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Combining (108), (110), and (111), we obtain after some reduction

garb- b,t {4ggk[u,i U,k U,ie u,e u,i u,i u,Au] + 2g2u,i u,i

2o
/T [gklVulZ fla(klVul2)]

}k2
[gklVul2 G(NlVul2)] 2, 2 u e2t.

In contrast to the one-dimensional case the quantity U,ikU,kU,ieU,e--

U,ikU,iU,kAU is not identically zero. Depending on the sign of g’, it
seems convenient to substitute an upper bound or a lower bound for

U,ik U,iU,k ,/U.

If g’_> 0, we use the arithmetic-geometric mean inequality in the
following form:

(113)

where A is an arbitrary positive constant. Combining (112) and (113)
we obtain

gAD b,t >_ {4gg’ku,ikU,kU,ieu,e + 2gig NAg’klVul2] U,ik IA,ik

2A-lggtk[Vul-2(U,ikU,iU,k)2-1- [gklVul2-flG(klVul2)]
k’ 2) }k2 [gklVul2 G(klVu 2o2flu2 e2aflt. (ll4)

Since g NAg’k]7u]2 > 0 by assumption (100) we may use the Cauchy-
Schwarz inequality

[Vll[2U,ik bl,ik IA,ik 1d,k U,ig b/,g. (115)

We then obtain

gAd9 rb,t >_ {2g[Vul-2[g + (2 AN)g’klVul2] bl,ik bl,k U,ig U,g

2A-lgg’klVul-2(U,ikU,iU,k)2 + [gklVu[2 flG(klVul2)]
k’ 2) }k2

[gklgul2 G(klVu 2oe2flu2 e2flt (116)
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We now make use of (109) to represent 1.l,ikU,i as follows:

gU,ik U,i --OUU,k -+- k 1,..., N, (117)

where dots stand for a term containing ,. From (117) we compute

g2 ce2U,ik U,k U,ig u,g Iul2u2 -- |8)

g2(u,ik U,iU,k)2 c217ul4u2 /... (119)

Inserting (118) and (119) into (116) we obtain after some reduction

gaff) ff),t +
>_ {2g-lo2u2[g + (2-N)-/-1)g’klul2]/ [gklul2-G(klVul2)]

}k- [gklVul2 a(klVul2)] 2a2/3u2 e2t. (120)

Using (100) we obtain

g-c2u2[g / (2- g&- ,-)g’klu[2] >_/o2u. (121)

Combining (120) and (121) we are led to the desired inequality

gaff) if),, +... _> k-2(2k- k’)[gklul 2 a(klul2)]e2’ >_ o.

If g’ <_ 0, we use the inequality

2Au U,ik tt,i U,k N 1) Vul 2u,ik U,ik -+-IVul-2(U,ikU,iU,k) 2

+ (N u,iku,, u,ie u,e,

(122)

(123)

derived in [7]. Combining (112) and (123) we obtain

if),, >_ 12(3-N)gg’ku,iu,lcu,ieu,e + 2g[g + (N-gaff) 1)g’kl7ul2]u,i u,i

2gg’klVul-2(u,i&u,iu,k)2 + [gklul2 /a(klVul2)]
kt 2) }k2

[gklul2 G(klul -,22u2 e2’

>_ {2 3 N)gg k u,izc u,: u,ie u,e + 2gig + N-1)g’k Vul2 u,ik u,i

2gg’klVul-2(u,iku,iu,k) 2 2o2/3u2}e2/t, (124)
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where the last inequality in (124) follows from assumptions (102) and
(103). Now since g + (N- 1)g’k[Vul2 >_ 0 by assumption (104) we may
use (115). Moreover inserting (118) and (119) we obtain after some
reduction

gA ,t +"" >_ {2c2u2g-[g + g’k[u[2] 2oz2/u2}e2c/3’ _> 0,

(125)

where the last inequality follows from (104). The inequality (125) is

again of the desired type.
It follows from Nirenberg’s maximum principle [6,10] that takes its

maximum value (i) at an interior critical point (, -) of u, or (ii) initially,
or (iii) at a boundary point (i, ) with i 0f. The second step of the
proof of Theorem 5 consists in showing that the later possibility
(iii) cannot hold. To this end we compute the outward normal derivative
of q, on Oft. Using (94) rewritten in normal coordinates we obtain

0
On

2eZtUnUnng -2(N- 1)eZtgKIVul2 < 0 on 0f, (126)

where K(_> 0) is the average curvature of Oft. Let (i, ) be a point at
which takes its maximum value with : OFt. Friedman’s boundary
lemma [3,10] implies that -const. in f x [0, ], so that we must
actually have O/On-O on 0f. Since we have IVul> 0 on 0f, we
conclude then that the average curvature K vanishes identically on OFt,
which is clearly impossible. This achieves the proof of Theorem 5.
Now we want to select c _> 0 in such a way that the first possibility (i)

in (106) cannot occur. To this end we proceed as in Section 3.1. In the
particular case of k(t)= 1, this leads to the following result.

THEOREM 6 Let f be a bounded convex domain in RNwhose boundary
is C + . Let d be the radius of the greatest ball contained in Ft. Let u(x, t)
be the solution of the parabolic problem (94)-(96) with k(t)=_ 1. Assume
that the hypotheses of Theorem 5 are satisfied. We then conclude that if

7r2gmin
0_<c<c0"=

4d
(127)

the first possibility (i) in (106) cannot occur. With c co we are then
led to the following decay boundfor

G(IVul2) + c0u
2 < HZe-2t, (128)
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with

H2 :- max{G(lVh[) + aoh2}. (129)

We note that in the context of Theorem 6, the quantity

(130)

satisfies the parabolic inequality

gA ,t nt- -1V. . 0, (131)

where the vector field . is regular throughout f x (0, oo). Moreover
we have

-2(N- 1)KuZn < 0 on 0f. (132)On

It then follows from (131) and (132) that b takes its maximum value
initially. This shows that ifg < 0, we have

gmin g(max), (133)

with )max max]Vh[2.
As a first example consider g(0-):=(1 +0") 1/2. Since g’(0")-

1/2(1 + 0")-1/2 _> 0, we have to determine the (greatest)/3 E (0, 1) such that
(100) is satisfied, i.e. such that A(A,N,/3) < 2, where A is defined in
(101). This condition is satisfied only for N< 4. We are then led to

/3= 2 x/- > 0 ifN=2 or N--3.
As a second example, consider g(0")’=(1 +0")-, O<_e<E’--

min{1/2, 1/(N- 1)}. Since g’--e(1 +0-)-1-< 0, we have to determine
the (greatest)/3 E (0, 1) such that (103) and (104) are both satisfied. This
will be the case for/3- -e.
We refer to [9] for similar results involving solutions of the parabolic

differential equation

(g(lVul2)u,i),i u,t. (134)
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