Equivalence of Markov's and Schur's Inequalities on Compact Subsets of the Complex Plane

L. BIAŁAS-CIEŻ*
Department of Mathematics, Jagiellonian University, 30-059 Kraków, Reymonta 4, Poland

(Received 24 March 1997; Revised 3 September 1997)

We prove that, on an arbitrary compact subset of the complex plane, Markov's and Schur's inequalities are equivalent.

Keywords: Markov inequality; Schur inequality
AMS Subject Classification: 41A17

We recall first the two classical inequalities of the title.
Markov's inequality ([5], 1889): for any polynomial P

$$
\max \left\{\left|P^{\prime}(x)\right|: x \in[-1,1]\right\} \leq(\operatorname{deg} P)^{2} \max \{|P(x)|: x \in[-1,1]\} .
$$

Schur's inequality ([8], 1919): for any polynomial P
$\max \{|P(x)|: x \in[-1,1]\} \leq(1+\operatorname{deg} P) \max \{|x P(x)|: x \in[-1,1]\}$.
These inequalities are extensively used in approximation theory and have been widely generalized in many ways (see e.g. [1,4,6,7]).

[^0]For example in the one-dimensional case, it has been proved for some compact subset E of \mathbf{C} that

$$
\begin{gather*}
\left\|P^{\prime}\right\|_{L^{q}(E)} \leq C_{1}(\operatorname{deg} P)^{m_{1}}\|P\|_{L^{q}(E)} \tag{M}\\
\|P\|_{L^{q}(E)} \leq C_{2}(\operatorname{deg} P)^{m_{2}}\left\|\left(x-x_{0}\right) P(x)\right\|_{L^{q}(E)} \tag{S}
\end{gather*}
$$

where $x_{0} \in \mathbf{C}$ and $C_{1}, m_{1}, C_{2}, m_{2}$ are positive constants depending only on E and q,

$$
\begin{aligned}
& \|f\|_{L^{q}(E)}=\left[\int_{E}|f(x)|^{q} \mathrm{~d} x\right]^{1 / q} ; \quad q \in[1,+\infty) \\
& \|f\|_{L^{\infty}(E)}=\max \{|f(x)|: x \in E\}
\end{aligned}
$$

If $E=[-1,1]$, it is not difficult to show that (S) can be established using (M) (see [2, Lemma 2]); moreover (S) implies (M).

In this note we show that for an arbitrary compact set of $\mathbf{C},(\mathrm{M})$ and (S) are equivalent:

Proposition Let E be a compact subset of \mathbf{R} (or $\mathbf{C})$ and $q \in[1,+\infty]$. Then the following conditions are equivalent:
(i) There exist two positive constants C_{1}, m_{1}, depending only on E and q such that for any polynomial $P \in \mathcal{P}(\mathbf{R})($ resp. $\mathcal{P}(\mathbf{C}))$,

$$
\left\|P^{\prime}\right\|_{L^{q}(E)} \leq C_{1}(\operatorname{deg} P)^{m_{1}}\|P\|_{L^{q}(E)}
$$

(ii) There exist two positive constants C_{2}, m_{2}, depending only on E and q such that for any polynomial $P \in \mathcal{P}(\mathbf{R})($ resp. $\mathcal{P}(\mathbf{C}))$ and any $x_{0} \in \mathbf{R}$ (resp. \mathbf{C}),

$$
\|P\|_{L^{q}(E)} \leq C_{2}(\operatorname{deg} P)^{m_{2}}\left\|\left(x-x_{0}\right) P(x)\right\|_{L^{q}(E)}
$$

(iii) There exist two positive constants C_{3}, m_{3}, depending only on E and q such that for any polynomial $P \in \mathcal{P}(\mathbf{R})($ resp. $\mathcal{P}(\mathbf{C}))$ and any $a, b, c \in \mathbf{R}$ (resp. C),

$$
\left\|\left(a x^{2}+b x+c\right) P^{\prime}(x)\right\|_{L^{q}(E)} \leq C_{3}(\operatorname{deg} P)^{m_{3}}\left\|\left(a x^{2}+b x+c\right) P(x)\right\|_{L^{q}(E)}
$$

(iv) There exist two positive constants C_{4}, m_{4}, depending only on E and q such that for any polynomials P and any polynomial $R \in \mathcal{P}(\mathbf{R})$ (resp. $\mathcal{P}(\mathbf{C})$),

$$
\left\|R P^{\prime}\right\|_{L^{q}(E)} \leq C_{4}(\operatorname{deg} P+\operatorname{deg} R)^{m_{4}}\|R P\|_{L^{q}(E)}
$$

Inequalities of types (iii) and (iv) were investigated by many authors (see e.g. Nevai [6, Chapter 9] and Goetgheluck [1]).

Proof We will give the proof only for the real case; the complex case is similar.
(1) Inequalities (i) and (ii) are equivalent.

The implication (i) \Rightarrow (ii) is due to Goetgheluck [3].
(ii) \Rightarrow (i). We can write $P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{k}\right)\left(x^{2}+\right.$ $\left.b_{1} x+c_{1}\right)\left(x^{2}+b_{2} x+c_{2}\right) \ldots\left(x^{2}+b_{l} x+c_{l}\right)$, where $x_{1}, x_{2}, \ldots, x_{k}, b_{1}$, $b_{2}, \ldots, b_{l}, c_{1}, c_{2}, \ldots, c_{l} \in \mathbf{R}$ and $b_{j}^{2}<4 c_{j}$ for every $j \in\{1,2, \ldots, l\}$. Then we have

$$
\begin{aligned}
& \left\|P^{\prime}\right\|_{L^{q}(E)} \\
& \leq \sum_{i=1}^{k}\left\|\left[\prod_{j=1, j \neq i}^{k}\left(x-x_{j}\right)\right]\left[\prod_{n=1}^{l}\left(x^{2}+b_{n} x+c_{n}\right)\right]\right\|_{L^{q}(E)} \\
& \quad+\sum_{i=1}^{l}\left\|\left(2 x+b_{i}\right)\left[\prod_{j=1}^{k}\left(x-x_{j}\right)\right]\left[\prod_{n=1, n \neq i}^{l}\left(x^{2}+b_{n} x+c_{n}\right)\right]\right\|_{L^{q}(E)} \\
& \leq C_{2} k(\operatorname{deg} P)^{m_{2}}\|P\|_{L^{q}(E)} \\
& \quad+2 C_{2}(\operatorname{deg} P)^{m_{2}} \sum_{i=1}^{l} \|\left(x+\frac{b_{i}}{2}\right)^{2}\left[\prod_{j=1}^{k}\left(x-x_{j}\right)\right] \\
& \quad \times\left[\prod_{n=1, n \neq i}^{l}\left(x^{2}+b_{n} x+c_{n}\right)\right] \|_{L^{q}(E)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|P^{\prime}\right\|_{L^{q}(E)} & \leq C_{2} k(\operatorname{deg} P)^{m_{2}}\|P\|_{L^{q}(E)}+2 l C_{2}(\operatorname{deg} P)^{m_{2}}\|P\|_{L^{q}(E)} \\
& =C_{2}(\operatorname{deg} P)^{m_{2}+1}\|P\|_{L^{q}(E)} .
\end{aligned}
$$

(2) Inequalities (i), (iii) and (iv) are equivalent.
(i) \Rightarrow (iv). Fix an arbitrary unitary polynomial R. We have $R(x)=$ $\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{k}\right)\left(x^{2}+b_{1} x+c_{1}\right)\left(x^{2}+b_{2} x+c_{2}\right) \ldots\left(x^{2}+\right.$ $b_{l} x+c_{l}$), for some $x_{1}, x_{2}, \ldots, x_{k}, b_{1}, b_{2}, \ldots, b_{l}, c_{1}, c_{2}, \ldots, c_{l}, \in \mathbf{R}$ with $b_{j}^{2}<4 c_{j}$ for every $j \in\{1,2, \ldots, l\}$. Then

$$
\begin{aligned}
& \left\|R P^{\prime}\right\|_{L^{q}(E)} \\
& \quad \leq\left\|(R P)^{\prime}\right\|_{L^{q}(E)} \\
& \quad+\sum_{i=1}^{k}\left\|P(x)\left[\prod_{j=1, j \neq i}^{k}\left(x-x_{j}\right)\right]\left[\prod_{n=1}^{l}\left(x^{2}+b_{n} x+c_{n}\right)\right]\right\|_{L^{q}(E)} \\
& \quad+\sum_{i=1}^{l}\left\|P(x)\left(2 x+b_{i}\right)\left[\prod_{j=1}^{k}\left(x-x_{j}\right)\right]\left[\prod_{n=1, n \neq i}^{l}\left(x^{2}+b_{n} x+c_{n}\right)\right]\right\|_{L^{q}(E)}
\end{aligned}
$$

By (i) which is equivalent to (ii), we have

$$
\begin{aligned}
& \left\|R P^{\prime}\right\|_{L^{q}(E)} \\
& \leq C_{1}(\operatorname{deg} P+\operatorname{deg} R)^{m_{1}}\|R P\|_{L^{q}(E)} \\
& \quad+C_{2} k(\operatorname{deg} P+\operatorname{deg} R)^{m_{2}}\|R P\|_{L^{q}(E)} \\
& \quad+2 C_{2} l(\operatorname{deg} P+\operatorname{deg} R)^{m_{2}}\|R P\|_{L^{q}(E)} \\
& \leq
\end{aligned} 2 \max \left\{C_{1}, C_{2}\right\}(\operatorname{deg} P+\operatorname{deg} R)^{\max \left\{m_{1}, m_{2}+1\right\}}\|R P\|_{L^{q}(E)} .
$$

The obvious implications (iv) \Rightarrow (iii) and (iii) \Rightarrow (i) complete the proof.

Remark For the complex case it is easily seen that $m_{1}=m_{2}=m_{3}=m_{4}$.

Acknowledgments

The author wishes to express her gratitude to Professor Pierre Goetgheluck for his interest in this work and stimulating discussions.

The author wishes to thank the University Paris-Sud, where the paper was written.

References

[1] P. Goetgheluck, Polynomial inequalities and Markov's inequality in weighted L^{p}-spaces, Acta Math. Acad. Sci. Hungar. 33 (1979), 325-331.
[2] P. Goetgheluck, Une inégalité polynomiale en plusieurs variables, J. Approx. Theory 40 (1984), 161-172.
[3] P. Goetgheluck, Polynomial inequalities on general subsets of \mathbf{R}^{N}, Coll. Math. 57 (1989), 127-136.
[4] A. Jonsson and H. Wallin, Function Spaces on Subset of \mathbf{R}^{n}, Mathematical Reports, Vol. 2, Part 1, Harwood Academic, London, 1984.
[5] A.A. Markov, On a problem posed by D.I. Mendeleev, Izv. Akad. Nauk St. Petersbourg 62 (1889), 1-24 (in Russian).
[6] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213 (1979), 1-185.
[7] W. Paw̌jucki and W. Pleśniak, Markov's inequality and C^{∞} functions on sets with polynomial cusps, Math. Ann. 275(3) (1986), 467-480.
[8] I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einen gegebenen Intervall, Math. Z. 4 (1919), 271-287.

[^0]: * Fax: (48) (12) 63243 72. E-mail: bialas@im.uj.edu.pl.

