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functions (with the same constants).
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1. INTRODUCTION

Kolmogorov [1] has given the following result: Let f(x), f/(x), . . .,/ ®(x)
be continuous and bounded on R. Then

I ©N2 < Crall £S5 1L PE,

where 0 <k <n, Cyn =K,/ K0,

k=35 ey
=0
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for even i, while

AT i
K,——;Zl/(2j+l)
J=0

for odd i. Moreover the constants are best possible.

This result has been extended by Stein [2] to L,-norm and by Ha Huy
Bang [3] to any Orlicz norm. The Kolmogorov—Stein inequality and its
variants are a problem of interest for many mathematicians and have
various applications (see, for example [4,5] and their references).

In this paper, modifying the methods of [2,3] we prove this inequality
for another norm generated by concave functions. Note that the Orlicz
norm is generated by convex functions and here we must overcome
some essential difficulties because of the difference between the convex
and concave functions.

2. RESULTS

Let £ denote the family of all non-zero concave functions
®(7): 10, 00) — [0, 00], which are non-decreasing and satisfy ®(0)=0.
For an arbitrary measurable function f, ® € £ then we define

17, = | "o (0 () d,

where Ar(y)=mes{x: |f(x)| >y}, (y>0). If the space Ngp=Ng(R)
consists of measurable functions f(x) such that || f|| y, < oo then Ngisa
Banach space. Denote by Mg= Mg(R), the space of measurable
functions g(x) such that

1
llgll s, —sup{mA|g(x)|dx. ACR, 0<mesA<oo} < 00.

Then M is a Banach space, too [6,7].
We have the following results [6]:

LEMMA 1 If ® € L, there is an isometric order-preserving isomorphism
J: My — Ng (of Mg onto N3) such that

@) (/) = / " fWg()dx, (f€ Na, g € Ma).
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LEMMA 2 Iff€ Ng, g€ My then fg € Ly and

/_ : | (x)g() dx < 1S 1w 118l azs -

Now, we give the main theorem:

THEOREM 1 Let ® € L, f(x) and its generalized derivative f ™ (x) be in
No. Then f®(x) € Ng for all 0 < k < n and

17Ol < Ceall WSO, M

Proof We begin to prove (1) with the assumption that f®(x) € Ng,
0<k<n.

By virtue of Lemma 1, it is clear that Ny = Mg, and if f€ Ng, g€ Mo
then

(f.8) = J@)(f) = / " f)g) dx.

Therefore, since ||x||x=||x|/x-. for any normed space X [9, p. 113],
we have

1/ ®lly, = sup 1(/©,8)l

I4 Mg™

= sup
gl =1

: ©

/ " £ (x)g(x) dx

Let € > 0. We choose a function A(x) € Mg such that ||4||,,, = 1 and

[ |7 x| 2 179, e 3)

Put

Flx) = / " flt p)h(y) dy.

By Lemma 2

<SG+ g allagg = 1151 wg

Rl = | [ s i) o) < [ it o
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where the last equality holds because of (2) and the definition |||, -
Then F(x) € L(R), and arguing as in [3] we get

) = [ T FOGe4 o)Ay, 0<r<n )

in the distribution sense.
For all x€R, clearly

IFOE] <100+ iy Mllag, = 17l -

Now we prove continuity of F”(x) on R (0 < r < r). We show this for
r=0 by contradiction: Assume that for some € >0, point x° and

subsequence |t — 0

[0 a0 b 2 k21 9

Since feNgy we get easily f€Lj;,/R). Then for any m=
L2,...,f(te+»)—f(y) in Ly(—m, m). Therefore, there exists a sub-
sequence, denoted again by {#}, such that f(tx+y)—f(p) ae. in
(—m, m). Therefore, there exists a subsequence (for simplicity of
notation we assume that it is coincident with {#}) such that
FO+ te+ ) = f(x° +y) ae. in (o0, 00).

On the other hand, { f(x + #; + »)} is bounded in Ny because of

IFG+ e+, = 1/ s k21
So { f(x°+t+)} is a weak precompact sequence. Therefore, there

exist a subsequence denoted by {f(x’+1+y)} and a function
f+«(y) € Ng such that

(f(+ 1+ ),v(0) = (f0),v())

when k — oo, Vv(y) € Nj.
It means

[ 1@t nama = [T L0M)A0), W)€ Mo ©)
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Let u(x) be an arbitrary function in C§°(R), then u(x) € M. Therefore,
by (6) we get

/_ Oof (* + 1+ y)u(y) dy — /_ oof*(y)u(y) dy, Vue Cy°(R).

Because each u € C§°(R) has a finite support, then it follows from
FO 4t +y) = f(x° +y) ae. that

[ 1@ sy = [+ u) d, e cr)
(™)
Combining (6), (7), we have
| 16 numay= [ L)), e cr®).
Then it is known that [8, p. 15]:

F&E+p) =£(y) ae

Therefore,
[ 1 s nephmay— [ 760+ m0)a

because of (6), which contradicts (5). The cases 1 <r<n are proved
similarly. The continuity of F(x) has thus been proved.

The functions F(x) are continuous and bounded on R. Therefore, it
follows from the Kolmogorov inequality and (3), (4) that

(IS Plly, — )" < [FO©)" < |IFO|,
< Ceall FIIEIF®E. (8)

On the other hand,

[F oo < 17 Ce 4 2) g 1A atg, = 115 ©)
IF® o < 1O G+ 2l 1) gy = 15, - (10)
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Combining (8)—(10), we get

U Bl = )" < Crnll Allg 11f 1y

By letting ¢ — 0 we have (1).

To complete the proof, it remains to show that f ® e Ng, 0<k<n
if £, f™ € No.

Let 9i(x) € C°(R), ¥a(x)>0, ¥\(x)=0 for |x|>X and
Jia(x)dx=1. We put f)\ =f*1,. Then f,€C™(R) because of
f€ Ly 1,(R). Therefore f)\ =fx ¢E\ ), k> 0 and it is easy to check that
f(”) = £ 5 4h,. Now we provef =fx 1/) € Ng, k> 0. Actually, for
k=0 it follows that

7+l = sw | [ " (Fx ) () (x) dx

4 My=

- IIgﬁ,l:p=1 /_: </_:f (x =¥ () dy)g(x) dx

el /-oo (/_Oof (x = »)g(x) dX)wx(y) dy’

< sup \ / £ — g0 dxlia () dy

gl ary =1

< sup / IS~ Dl a0 dy

lgllarg =

= o (Il [~ oley)

= [/ l0alls-

The cases k>0 are proved similarly. Therefore, by the fact proved
above, we have

k
1A < Conll Al IA 1, 0 <k <n
Therefore, since

1AM g < W U AN = 1A v
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and

1A v, < 1Pl loally = 15w, »

we get that, for any 0 <k <n, the sequence { f;k)} is bounded in Ng.
Now we prove that, for any 0 < k < n, there exists a subsequence, which
is weakly convergent to some g € Np. We will show, for example, the
fact that f), is weakly convergent to f by contradiction: Assume that for
some ¢y >0, g € Mg and a subsequence \; — 0,

\ [ s x| 2 o k21 (1)

Then, it is known that fy — £, A — 0 in L; j,.(R). Therefore, there exists
a subsequence {k,,} (for simplicity we assume that k,, =m) such that

ful®) = f(x) ac.

On the other hand, {f)} is bounded in Ng because of ||/, ||y, <
lf1ln, - So { £y} is a weak precompact sequence. Therefore, there exists
a subsequence, denoted again by { f3, }, and a function f. (x) € Ng such
that

/ " fre () dx — / T A0 d(), W) € Mo (12)

By an argument similar to the previous one, we get
f(x) =fi(x) ae.
Therefore,
/—:f,\k(x)v(x) dx — /_:f(x)v(x) dx
because of (12), which contradicts (11).

Finally, it follows from weak convergence fy—f that for any
¢ € C3°(R)

(B ), 0(x) = (DX ) = (=D (x), " (x))
= (f®O(x), p(x)).
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Therefore, since the weak convergence of some subsequence of { f, /\(k)} to
gk € Ng, we get f® =g, € Ny (0 <k <n). So we have proved the fact
that f® € Ng for all 0 < k < n if f, f™ € Ng. The proof is complete.

Remark For periodic functions we have:

THEOREM 2 Let ®(¢) € L, f(x) and its generalized derivative f ™(x) be
in Ng(T). Then f ®(x) € No(T) for all 0 < k < n and

—k k
MR ry < Ceanlll Mgt 1S Mgy

where T is the torus and |||.|||y, ) the corresponding norm.
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