J. of Inequal. & Appl., 1999, Vol. 3, pp. 161181 © 1999 OPA (Overseas Publishers Association) N.V.
Reprints available directly from the publisher Published by license under
Photocopying permitted by license only the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

A Study of Variational Inequalities for
Set-Valued Mappings

KOK-KEONG TAN 2, ENAYET TARAFDAR® and
GEORGE XIAN-ZHI YUAN °-*

& Department of Mathematics, Statistics and CS, Dalhousie University,
Halifax, Canada B3H 3J5; ® Department of Mathematics,
The University of Queensland, Brisbane, Australia 4072

(Received 27 November 1997; Revised 14 February 1998)

In this paper, Ky Fan’s KKM mapping principle is used to establish the existence of
solutions for simultaneous variational inequalities. By applying our earlier results together
with Fan—Glicksberg fixed point theorem, we prove some existence results for implicit
variational inequalities and implicit quasi-variational inequalities for set-valued mappings
which are either monotone or upper semi-continuous.

Keywords: Monotone pair; Simultaneous variational inequality; KKM mapping
principle; Fan—Glicksberg fixed point theorem; Implicit quasi-variational inequality

1991 Mathematics Subject Classification: Primary 47HOS, 47H10, 49J40;
Secondary 52A07

1. INTRODUCTION

It is well known that variational inequality theory does not only have
many important applications in partial differential equations such as
free boundary problems and so on (e.g., see [2]), but it also has been
successfully used in the study of operations research, mathematical
programming and optimization theory (e.g., see [1]). Due to the
development of set-valued analysis, the study of variational inequalities
has been under much attention recently, for example, see Ding and Tan
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[3], Harker and Pang [8], Husain and Tarafdar [9], Granas [7],
Karamolegos and Kravvaritis [11], Kravvaritis [12], Mosco [13], Shih
and Tan [14-16], Tarafdar and Yuan [18] and many others whose
names are not mentioned here. It is our purpose in this paper to study
the existence of solutions for variational inequalities and quasi-
variational inequalities of set-valued mappings either in simultaneous
form or in implicit form as applications of Ky Fan’s KKM-mapping
principle in [5] and Fan—Glicksberg fixed point theorem (see [4,6]).
Precisely, we shall establish the existence of solutions for simultaneous
variational inequalities in Section 2. Then implicit variational inequality
and implicit quasi-variational inequality in which set-valued mappings
are monotone (resp., upper semicontinuous) will be investigated in
Section 3 (resp., in Section 4). Our results either generalize or improve
corresponding ones given in recent literature.

We shall denote by R and N the set of real numbers and the set of
natural numbers, respectively. Let X be a set. We shall denote by 2* the
family of all non-empty subsets of X. If Xis a topological space (resp., a
non-empty subset of a topological vector space), we shall denote by
K(X) (resp., KC(X)) the family of all non-empty compact subsets of X
(resp., the family of all non-empty compact and convex subsets of X). If
X is a subset of a vector space E, then coX denotes the convex hull of X
in E. Let f: X—2® be a (set-valued) mapping. For each x X, let
inf f(x):=inf{z: z€ f(x)}. Let E* be the dual space of a Hausdorff
topological vector space E and X be a non-empty subset of E. We shall
denote by (w, x) the dual pair between E* and E for we E* and x € E,
and by Re(w, x) the real part of the complex number (w, x). A map-
ping T:X — 2F" is said to be monotone if for each x,y€X,
Re(u—v,x—y) >0 for all ue T(x) and ve T(y). Throughout this
paper, E denotes a given Hausdorff topological vector space unless
otherwise specified.

Let X be a non-empty convex subset of E, f,g:Xx X— 2%,
fi: X—2R h: X —>RU{—00, +00} and H: X — 2F". Then

(1) {f,g} is said to be a monotone pair if for each x,ye X, u+w>0
for each u€ f(x,y) and w € g(y, x); f'is said to be monotone if the
pair {f, f'} is monotone. In particular, when f'is single-valued, we
recover the notion of monotone pair reduces to that of a mono-
tone mapping defined by Mosco [13] (see also [9,17]).
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(2) fis said to be hemicontinuous if for each x,ye€ X, the mapping
k:[0,1] — 2® defined by k(f):=f((1—f)x + ty, y) for all 1€[0, 1] is
such that for each given s € R with f(x, y) C (s, + 00), there exists
to€(0, 1] such that f((1—-8)x+ty,y) C (s, +00) for all t€(0,tp).
We note that if f is single-valued, our definition of hemicontinuity
reduces to the classical one given by Mosco [13], i.e., the function
t— f(x+t(y — x),y) from[0, 1]to R is lower semicontinuous as ¢ | 0.

(3) fi is said to be concave if for each n€N, x,...,x,€ X and non-
negative Ay,..., A\, with )i ; \; = l and for each u € f1(3°7_; Aixi),
there exist v; € fi(x;) fori=1,...,nsuch thatu > >} | Av;.

(4) h is said to be lower semicontinuous (resp., upper semicontinuous)
if for each A € R, the set {x € X: h(x) <A} (resp., {x € X: h(x) > )}
is closed in X.

(5) H is said to be w*-demicontinuous if foreach xe X, \é¢ Rand z€ E
with H(x) C {p € E*: Re(p, z) > A}, there exists an open neighbor-
hood N of x in X such that H(y) C{p€ E*: Re(p,z) > A} for all
YEN.

Example 1.1 Let X be a non-empty convex subset of a Banach space
(E, |||l) and 9 : X — R U {+00} be a convex function. We may assume
its subdifferential dy(x) exists for some x € X (e.g., if 1) is lower semi-
continuous and convex by Theorem 5.4.3 of Aubin and Ekeland
[1, p.262),i.e.,

OY(x) :={p € E*: yp(x) — ¢(z) < Re(p,x —z) for all z € X}

Then the mapping 4 : X — 2£" defined by 4(x) := 0+(x) for each x € Xis
a monotone mapping. Define f: X x X — 2% by f(x, y) := {Re(u, x — y):
u € A(x)} for each x € X. It is clear that f'is a monotone mapping. For
each fixed positive real number £, define g: X x X — 2% by

(% ») = {Re(u, x — y): u € A(x)} + Bllx — ylI}

foreach (x, y) € X x X. Thenitis obvious that { f, g5} isa monotone pair.

Let X and Y be two topological spaces, F: X —2" and G: X — 2%
Then (a) F is said to be upper semicontinuous (in short, USC) (resp.,
lower semicontinuous (in short, LSC)) if for each x € X and for each
open set U in Y with F(x) C U (resp., F(x)N U # ), there is an open
neighborhood N of x in X such that F(y) C U (resp., F(y)N U # 0) for
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all yeN; (b) the graph of F is the set {(x,y)€ X x Y:y € F(x)}; and
(c) G is lower (resp., upper) demicontinuous if for each x€ X and
s € R with G(x) C (s, o) (resp., G(x) C (—o0, 5)), there is an open neigh-
borhood N of x in X such that G(y) C (s,00) (resp., G(¥) C (—00,5))
for all ye N. We note that (i) if G is USC, then G is both lower
demicontinuous and upper demicontinuous; (ii) when XC E, Y=E*
and E* is equipped with the w*-topology, if F is USC, then F is
w*-demicontinuous; and (iii) when G is single-valued, the notions of
lower demicontinuity (resp., upper demicontinuity) and LSC (resp.,
USC) coincide.

Example 1.2 Define F:[0,00) — 2% by F(x)={x} if x>1 or x=0
and F(x)=[x,1/x] if 0 <x < 1. Define G: (—00,0] — 2R by G(x) = {x}
if x<—1or x=0 and G(x)=[1/x,x] if =1 <x<0. Then it is easy to
see that (1) Fis both lower demicontinuous and w*-demicontinuous but
not USC and not upper demicontinuous and (2) G is both upper
demicontinuous and w*-demicontinuous but not USC and not lower
demicontinuous.

For each non-empty subset 4 of E and each r>0, let U(4;r):=
{weE™: sup,c|(w,x)|<r}. Let §(E*,E) be the topology on E*
generated by the family {U(4; r): 4 is a non-empty bounded subset of
E and r > 0} as a base for the neighborhood system at 0. Then E*, when
equipped with the topology &8(E*,E) becomes a locally convex
topological vector space. The topology 6(E™, E) is called the strong
topology on E*.

2. SIMULTANEOUS VARIATIONAL INEQUALITIES

Let X be a non-empty convex subset of E, ¢»: X— R and f,g: X
X — R. One of the interesting problem is to find a point xo € X which
simultaneously satisfies the following inequalities:

P(x0) +f(x0,y) <op(y) forallye X (D
and
Y(x0) + &(x0,¥) < 9P(y) forall y € X; (ID)

i.e., to find a common solution for both variational inequalities (I) and
(IT) above. This is the so-called existence problem for solutions of



A STUDY OF VARIATIONAL INEQUALITIES 165

simultaneous variational inequalities and this problem has been studied
by Husain and Tarafdar [9]. In this section, we shall study the existence
of solutions for the simultaneous variational inequality problem in the
set-valued setting. We first need the following result.

LEMMA 2.1 Letf,g: X x X — 2K,

(1) Suppose {f,g} is a monotone pair and x,y € X. If inff(x,y) <0,
then inf g(y, x) > 0.

(2) Suppose f is hemicontinuous and for each x € X, inff(x,x) <0 and
yf(x,p) is concave. If xog € X is such that inff(y, xo) >0 for all
y € X, then inf f(xq,y) <0 for all y € X.

Proof (1) If inf f(x, y) <0, then for any € > 0, there exists u € f(x, y)
such that u <e. As {f,g} is a monotone pair, for each w € g(y, x), we
have u+w>0, so that w> —u>—e. Thus inf g(y, x) > —e, which
implies that infg(y, x) >0 as € > 0 is arbitrary.

(2) Assume that inf f( y, xo) > 0 for all y € X, but inf f(xo, yo) > 0 for
some yo € X. Let s € R be such that inf f(x, yo) > s > 0. Let U:=(s, 00).
Then f(xo, yo) C U. Since fis hemicontinuous, there exists ¢y € (0, 1) such
that f(z,, yo) C U for all t€ (0, ty), where z,:=(1 — t)xo+ tyo for each
t€[0,1]. As y—f(z,y) is concave, for each u € f(z,,, (1 — £)xo + tyo),
there exist v; € f(zy,x0) and vy € f(z4,¥0) such that u>(1—to)v; +
tovy > (1—19) - 0+ £o - 0s) = (1—to)s as inff(z,,,x0) > 0 by assumption.
Hence inff(zy,z,) = inff(z4, (1 — £)x0 + tyo) > (1 — t9)s > 0, which
contradicts the assumption that inf f(x, x) <0 for each x € X.

As an application of Lemma 2.1, we have the following:
THEOREM 2.1 Let f,g: X x X — 2% be such that

(i) {f,g} is a monotone pair;
(ii) for each x € X, inf f(x, x) <0 and inf g(x, x) <0;
(iii) f, g are hemicontinuous; and
(iv) foreach x € X, the mappings y — f(x, y) and y — g(x, y) are concave.

Then xo€ X is a solution of the following simultaneous variational
inequalities:

{inff(xo,y) <0 foralyelX,
infg(xp,¥) <0 forally€ X,
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if and only if that x is either a solution of the variational inequality:

inf f(x0,y) <0 forallye X (111)
or, a solution of the following variational inequality:

infg(xg,y) <0 forallyeX. av)
Proof We only need to prove the sufficiency. Suppose inf f(xq, y) <0
for all y € X. By Lemma 2.1(1), inf g( y, x¢) > 0 for all y € X. By Lemma

2.1(2), inf g(xo, y) <0 for all y € X. Similarly, if inf g(xq, y) <0 for all
y € X, then by Lemma 2.1, inf f(x¢, y) <0 for all y € X.

As an immediate consequence of Theorem 2.1, we have the following
result which is Theorem 2.1 of Husain and Tarafdar in [9]:

COROLLARY 2.1  Let X be a non-empty convex subset of Eand: X — R
a convex function. Suppose that f, g: X x X — R satisfy:

(1) {f, g} is a monotone pair,

(2) for each x € X, f(x,x)=g(x, x)=0; and

(3) foreachfixedx € X, bothf(x,-) and g(x, -) are concave, andfand g are
hemicontinuous.

Then there exists xo € X is a common solution of both (1) and (1) if and
only if xq is either a solution of (1) or a solution of (1I).

Proof Definef,g: X x X— R by

f(x’y) = ¢(x) +f(x,y) - Q:b(y)

and
g(x’y) = "»b(x) +g(x’y) - ¢()’)

for each (x,y) € X x X. Applying Theorem 2.1 to f and g, the conclusion
follows.

In what follows, we shall prove some sufficient conditions which
guarantee that either inequality (II1I) or (IV) has a solution. In order to
do so, we need the following:

LEMMA 2.2 Let g: X — 2% be lower demicontinuous. Then the mapping
G: X —RU{—o0} defined by G(x):=inf g(x) for each x € X is LSC.
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Proof Let A€R be given. Suppose {x,}aer is a netin X and xo € X
such that inf g(x,) < X for all « € T" and x, — x,. Suppose inf g(xy) > A.
Choose any s€R such that infg(xg)>s>A. Let U:=(s,00), then
g(xo)C U. Since g is lower demicontinuous, there exists an open
neighborhood N of xq in X such that g(x) C U for all x € N. But then
there exists ag € I' such that x, € N for all o > ag. Hence g(x,,) C U so
thatinf g(x,,) > s > A which is a contradiction. Therefore we must have
inf g(xp) < A. This shows that the set {x € X: inf g(x) < A} is closed in X.
Thus G is lower semicontinuous.

Let X be a non-empty subset of a vector space ¥ and F:X —2".
We recall that F is said to be a KKM mapping (e.g., see [5]) if
co{xi:i=1,...,n} C U, F(x;) for each xy,...,x,€ X and neN.

We shall also need the following simple observation:

LEMMA 2.3 Let V be a vector space and X a non-empty convex subset of
V. Suppose f: X x X — 2R is such that

(i) for each x € X, inff(x, x) <0;
(ii) for eachx € X, y— f(x,y) is concave.

Define F: X — 2% by F(w) = {x € X: inf f(x, w) < 0} for each w € X. Then
F is a KKM-mapping.

Proof Suppose not, then there exist neN, wy,...,w,€X and
/\1, ey /\,, >0 with Ztn=1 X=1 such that Zznzl )\jo¢ Un=1 F(Wj). It
follows that inf f(3°;_; Awi, w;) >0 for all j=1,...,n. Let s€R be
suchthatmin, <j<, inf {30 Aiws, w;) > s > 0.Sincey — (32, Aiwi, ¥)
is concave by (ii), for each u € f(3 1 Awi, D_rq Ajw;), there exist
v € (30 Aiwi,w)) for j=1,...,n such that u > 3", Ajw; > s. Thus
inf (3L, Awi, DL Aw;) > s >0, which contradicts (i). Hence F
must be a KKM-mapping.

THEOREM 2.2 Let X be a non-empty closed convex subset of E. Suppose
X x X— 2R is such that

(1) for each x € X, inf f(x, x) <0;
(ii) for each x € X, y — f(x, y) is concave;
(iii) for each y € X, x — f(x, y) is lower demicontinuous; and
(iv) there exist a non-empty compact subset B of X and wy € B such that

inf f(x,wp) >0 forall xe€ X\ B.
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Then the set S:={x e X: inf f(x,w) <0 for all we X} is a non-empty
compact subset of B.

Proof Define F: X — 2% by
F(w) := {x € X: inf f(x,w) < 0}

for each w € X. By (i), F(w) # 0 for all w € X, so that Fis well defined. By
(iii) and Lemma 2.2, for each w € X, the set F(w) is closed in X. By (iv),
F(wy) is a closed subset of B so that F(wg) is compact. By (i), (ii) and
Lemma 2.3, F is a KKM-mapping. By Ky Fan’s KKM-mapping
principle [5, Lemma 1], (v xF(w) # 0. Thus S=(), < xF(w) is a non-
empty compact subset of B.

LEMMA 2.4 Let X be a non-empty closed convex subset of E. Suppose
g: X — 2R and let W:={x e X:infg(x)>0}. Then (a) W is closed in X
if g is LSC and (b) W is convex if g is concave.

Proof (a) If W were not closed in X, then there would exist a net
{xa}aerin X and xo € X such that x, — xo, and infg(x,) >0 foralla el
but infg(xg)<0. Let s€R be such that infg(xg)<s<0 and
U:=(—00,s). Then g(xo) N U#D. Since g is LSC, there exists an open
neighborhood N of xo€ X such that g(x)NU#0 for all xe N. As
X, — X, there exists ag€I such that x,€N for all >y Thus
8(x4,) NU # 0 so that infg(x,,) <s <0, which is a contradiction.
Thus W is closed in X.

(b) Suppose x,y € Wand A € (0, 1), then inf g(x) > 0 and inf g(y) > 0.
Since g is concave, for each u € g(Ax + (1 — \)y), there exist v; € g(x) and
v, € g(p) such that u > Av; + (1 — A\)v, > 0. Thus infg(Ax + (1 — A)y) >0
and we have Ax + (1 —\)y € W. Therefore W is convex.

THEOREM 2.3 Let X be a non-empty closed convex subset of E and
X x X— 2% be such that
(1) for each x € X, inf f(x, x) <0;
(ii) for each x€ X, y— f(x,y) is concave and LSC;
(iii) f'is hemicontinuous;
(iv) there exist a non-empty compact B C X and wy € B such that
inf f(x,wg) >0 forall x € X\ B;

(v) fis monotone.
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Then the set S:={x € X:inf f(x, w) <0 for all we X} is a non-empty
compact convex subset of B.

Proof Define F, G, H: X — 2% by

F(w) = {x € X: inf f(x,w) <0},
G(w) = clyF(w),
H(w) = {x € X: inf f(w,x) >0},

for each w € X. Then by (i), (ii) and Lemma 2.3, Fis a KKM-mapping so
that G is also a KKM-mapping. Note that by (iv), F(wg) C B so that
G(wo) C B and G(wg) is compact.

Again by Ky Fan’s KKM-mapping principle, (), e xG(w) # 0. By (ii)
and Lemma 2.4(a), for each w € X, H(w) is closed and convex.

To complete the proof, it is sufficient to show that

S=()Fw)=()Gw) =) Hw).
wex weX wex
Indeed, if we X and x € F(w), then inf f(x,w) <0 so that by (v)
and Lemma 2.1(1), inf f(w,x) >0. It follows that x € H(w). Hence
F(w) C H(w) so that G(w) C H(w). Therefore [,y c xF(W) C[we xGw) C
M e xHW).

On the other hand, if x € ("),, « xH(w), then inf f(w, x) > 0 forallw € X.
Thus by (i)—(ii), (v) and Lemma 2.1(2), we have inf f(x, w) <0 for all
w e X. Thus x € ", < xF(w). Therefore N,y e xH(W) C [\ e xF(w). Hence
we have S=\wexFW) =Nwe xGW) =we xHW).

3. IMPLICIT VARIATIONAL INEQUALITIES -
THE MONOTONE CASE

Let C be a non-empty subset of £ and C; a non-empty subset of C.
Suppose f:CixCxC—R and g:C;xC—R are such that
Sf(u,v,v)>0 for all ue C, and ve C. Mosco [13] had investigated the
following so called implicit variational inequality problems: Find a vector
v € C; such that

gv,v) <f(v,v,w)+g(v,w) forallweC. (V)

In this section, it is our goal to study the existence of solutions for imp-
licit variational inequality and implicit quasi-variational inequalities
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which are variant forms of the implicit variational inequality (V) above.
Indeed, as applications of Theorem 2.3 and by combining Fan—
Glicksberg fixed point theorem, we shall provide some sufficient con-
ditions to guarantee the existence of variational and quasi-variational
inequalities in their implicit forms, and in which the set-valued
mappings are monotone.

As an application of Theorem 2.3, we have the following variational
inequality:

THEOREM 3.1 Let X be a non-empty closed convex subset of E and
T: X — 2F be monotone such that

(i) for each x € X, T(x) is w*-compact;
(il Tisw*-USC from line segments in X to the weak*-topology o(E*, E)
on E*; and
(iii) there exists a non-empty weakly compact subset B of X and wy € B
such that

irTx(f)Re(u,x —wo) >0 forall xe X\B.
uel(x

Then the set S:={y € X:inf,, ¢ 1, Re(w, y—x) <0 for all x € X'} is a non-
empty weakly compact convex subset of B.
Proof Define f: X x X — 28 by
f(x,y) = {Re{u,x — y): ue Tx}
for each x, y € X. Then we have

(1) fis monotone as T is monotone.

(2) For each x,y € X, f(x, y) is a non-empty compact subset of R.

(3) For each x € X, f(x, x) = {0} so that inf f(x, x) <0.

(4) For each x € X, the mapping y+ f(x,y) is concave. Indeed, for
each neN, yy,...,p,€X and Ay,..., A\, €[0,1] with Y/ A, =1
and for each s € f(x, Y.i_; A\iyi), there exists u€ Tx such that
s=Re(u,x — 31| \iy;). But then Re(u, x — y;) € f(x, ;) for each
i=1,2,...,nand

n n
s = Re<u, X — Z )\iy,~> = Z Re(u,x - J/i)~
i=1 i=1

Therefore y+— f(x, y) is concave.
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For each x € X, the mapping y+— f(x,y) is weakly LSC; i.e., the
mapping y— f(x, y) is LSC when X is equipped with the relative
weak topology. Indeed, let yo€ X and UCR be open such that
S(x,0) N U # 0. Then there exists u € Tx such that Re(u, x — yo) € U.
For each fixed x€ X and u€ T(x), as y+— Re(u,x — y) is weakly
continuous, there exists a weakly open neighborhood N of yy in X
such that Re{u, x — y) € Uforall y € N, so that f(x, y) N U # () for all
y € N. Thus y— f(x, y) is weakly LSC.

fis hemicontinuous. Indeed, fix any x, y € X and define k£ : [0, 1] = X
by k(£) =f((1 — £)x + ty, y) for each 1 €[0, 1]. Let U= (s, 00) where
s € R be such that f(x, y) C U. Note that f(x, y) is compact as Tx is
weak*-compact. Let ro=inff(x,y). Then ro>s. Set r:=(ro+5)/2,
t1:=(r—s)/r and V:=(r,00). Then t;€(0,1), f(x,y)CV and
(1—0V U for all t€(0,1;). Let W={we E":Re{w,x—y)>r},
then Wis w*-open and T(x) C W. By (ii), there exists £, € (0, ¢;) such
that T((1 - )x+ty)C W for all t€(0,ty). Thus for each ueT
(1 = fHx+ty)and t € (0, t,), we have

UD(—-0V>(1—1) Re(u,x —y) = Re(u, (1 — t)x + ty) — y).

Therefore UD f((1—£)x+ty,y) for all ¢ € (0, t;). Hence f is hemi-
continuous.

By (iii), there exists a non-empty weakly compact subset B of X and
wo € B such that

inf f(x, wo) = 1€an Re(u, x — wo) > 0,

for all x€ X'\ B.

Now equip E with weak topology, then all hypotheses of Theorem 2.3
are satisfied. Thus

S={x€ X:inf f(x,w) <0 forall we X}
={x€X: inf Re(u,x —w) <0 for allweX}
ucTx

is a non-empty weakly compact convex subset of B.

As an application of Theorem 3.1, we have the following result which
is Theorem 1 of Shih and Tan [16].
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COROLLARY 3.1 Let (E, ||-||) be a reflexive Banach space and X a non-
empty closed convex subset of E. Suppose T: X — 2F is monotone such
that each T(x) is a weakly compact subset of E* and T is upper
semicontinuous from line segments in X to the weak topology of E*.
Assume that there exists xo € X such that

lim inf Re(w,y — xp) > 0. (VI)

W= weT)
yEX Y

Then there exists y € X such that

inf Re(w,y—x) <0 forall x e X.
weTy

Proof By (VI), there exist M >0 and R >0 with ||xo|| < R such that
inf,, ¢ 7, Re(w, y — xo) > M for all y € X with ||y|| > R. Let B:={x € X:
||x|| < R}. Then B is a non-empty weakly compact (and convex) subset
of X such that inf,, ¢ 7,Re(w, y—xo) >0 for all x € X'\ B. It is easy to see
that all hypotheses of Theorem 3.1 are satisfied so that the conclusion
follows.

We note that under the assumptions in Corollary 3.1, the conditions
“Tis USC from line segments in X to the weak topology of E” and “T'is
w*-demicontinuous from line segments in X to the w*-topology of E” are
equivalent (see e.g., [1, Theorem 10, p. 128]).

As a second application of Theorem 2.3, we have the following
implicit variational inequality:

THEOREM 3.2 Let E be locally convex, X be a non-empty compact
convex subset of E and g: X x X x X — K(R) be such that

(i) Foreachu,x € X, infg(u,x,x) <0.
(ii) For each u,x € X, the mapping y— g(u, x, y) is concave.
(iii) For each u€ X, the mapping (x,y)— g(u,x,y) is monotone and
hemicontinuous.
(iv) For each x € X, the mapping (u, y) — g(u, x,y) is LSC.

Then the set W .= {u € X:inf f(u, u, w) <0 for allw € X } is a non-empty
compact subset of X.

Proof For each fixed u € X, define f,,: X x X — 2% by

Sulx,y) = g(u, x,p)
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for each x,y€ X. Then f, satisfies all hypotheses in Theorem 2.3 so
that the set

S(u) = {x € X: inf f,(x,w) <0 for all w e X'}
= {x € X:inf g(u,x,w) <O forallwe X}

is a non-empty compact convex subset of X and S is thus a mapping
from X to K(X). We shall show that S has a closed graph. Indeed, let
(Xa)acr be anetin X and y, € S(x,) for all & € " such that x, — xo € X
and y,— yo € X. Note that for each a €T, infg(x,, ya, w) <0 for all
we X. Let we X be given and fix an arbitrary a € I'. Since g(xq, Yo, W)
is compact, there exists u, € g(Xq,Va W) such that u,=infg(x,,
Yar W) <0. Since (y,z) — g(x,,,z) is monotone, for each v e g(x,, w,
Vo), We have u, +v>0 so that v> —u, >0. Thus inf g(x,, w, yo) > 0.
As we X is arbitrarily given, infg(x,, w,y,) >0 for all we X. By (iv)
and Lemma 2.4, for each weX, the set {(x,y)eX xX:
inf g(x, w,y) >0} is closed. It follows that infg(x,, w, o) >0 for all
w € X. By Lemma 2.1(2), inf g(x, yo, w) <0 for all we X which shows
that yo€ S(x¢). Hence S has a closed graph so that S is upper
semicontinuous. Now by Fan—Glicksberg fixed point theorem (e.g.,
see [4] or [6]), there exists X € X such that x € S(%), i.e., inf g(%, X, w) <0
for all w € X so that W+ (). To complete the proof, it remains to show
that W is a closed subset of X. Suppose {#,}.cr is a net in W such that
U, — up € X. Then inf g(uy, u,, w) <0 for all we X. Now by the same
argument as above (with y,=x,=u, for all a €T and xo=yo=uy),
inf g(ug, ug, w) <0 for all weX. Thus uge S(uy) so that uye W.
Therefore W is closed in X.

As an application of Theorem 3.2, we have the following implicit
quasi-variational inequality:

THEOREM 3.3 Let E be locally convex, X be a non-empty compact
convex subset of E, S: X — KC(X) be continuous andg: X x X x X — 2%
be such that

(i) For eachu,x € X, infg(u, x,x) <O0.
(i1) For eachu,x € X, the mapping y — g(u, x, y) is concave and for each
y € X, the mapping u— g(u, y, u) is concave.
(iii) For each ue X, the mapping (x,y)— g(u,x,y) is monotone and
hemicontinuous.
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(iv) For each x € X, the mapping (u, y) — g(u, x, y) is LSC.
(v) The mapping (u, x)— g(u, x,u) is LSC.

Then (a) there exists y € X such that

yesk)
inf g(,p,w) <0 for all w € S(P)

and (b) the set
{ye X: ye S(y) and inf g(y,y,w) <0 for all w € S(»)}

is a non-empty compact subset of X.

Proof (a) Define F: X — KC(X) by
F(u) = {y € S(u): inf g(y,y,w) <0 for all w € S(u)}

for each u€ X. Let u € X be given. By Theorem 3.2, F(u) is non-empty
and compact. We shall now show that F(u) is also convex. Let x,y €
Flu) and A€(0,1) be given. As x,y€ S(u) and S(u) is convex,
Ax+ (1 =Xy e S). Since infg(x,x,w)<0 and infg(y,y,w)<0 for
all we S(u), infg(x,w,x)>0 and infg(y,w,y)>0 for all we S(u) by
(i) and Lemma 2.1(1). It follows that infg(Ax+ (1 — Ay, w, Ax+
(1=X)y) >0 for all we S(u) by (ii) and Lemma 2.4. By Lemma 2.1(2),
infgx+ (1 =Ny, Ax+ (1 —=Ny,w) <0 for all we S(u). Thus Ax+
(1 = ANy € F(u). Hence F(u) is also convex. This shows that F is well
defined.

Now we shall show that Fhas a closed graph. Indeed, let (x4, Yo))aer
be a net in X X X and (xo, yo) € X X X be such that (x,, o) — (X0, o)
and y,, € F(x,) for all a €T". Since y, € S(x,) for each a €T, yy € S(x)
as S is USC. Now fix an arbitrary wg € S(xp). Since S is LSC, there is
a net (Wy)eer in X with w, € S(x,) for all a €I such that w,— wy.
Since inf g(Ya, Yo, Wao) <0 for all « €T, by (iii) and Lemma 2.1(1), we
have inf g(ya, Wa,¥a) >0 for all a€l. By (v) and Lemma 2.4,
inf g(yo, wo, yo) > 0. Since wq € S(xo) is arbitrary, we have inf g (yo, w,
o) > 0 for all w e S(xp). By (ii), (iii) and Lemma 2.1(2), it follows that
inf g(y9, o, w) <0 for all w € S(x) so that y € F(xo). Thus Fhas a closed
graph and hence Fis USC.
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By Fan—Glicksberg fixed point theorem again, there exists y € X such
that y € F(y); i.e.,

y e S(9),
infg(p,p,w) <0 forall we S(p).
(b) By (a), the set {yeX: yeS(y) and infg(y,y,w)<0 for all
we S(¥)} is non-empty; it is also compact by following the same
argument as in the proof of Theorem 3.2.

We would like to remark that our results in this section unify and
generalize corresponding results in the literature given by Aubin and
Ekeland [1], Baiocchi and Capelo [2], Harker and Pang [8], Husain and
Tarafdar [9], Mosco [13], and Shih and Tan [14,16].

4. IMPLICIT VARIATIONAL INEQUALITIES - THE USC CASE

Parallel to the ideas used in Section 3 and as application of Theorem 2.2
instead of Theorem 2.3, we can also study the existence of solutions for
implicit variational and implicit quasi-variational inequalities in which
real set-valued mappings are USC instead of being monotone. First we
have the following implicit variational inequality:

THEOREM 4.1 Let E be locally convex, X be a non-empty compact
convex subset of E and g: X X X x X — K(R) be such that

(1) Foreachue X, infg(u,x,x)<0.
(ii) For each u, x € X, the mapping y— g(u, x, y) is concave.
(ii}) For each y € X, the mapping (u, x) — g(u, x, y) is lower demicontin-
uous.

Then the set W= {u € X:inf f(u,u, w) <0 for allw € X} is a non-empty
compact subset of X.

Proof For each fixed u € X, define f,: X x X — 2% by

Julx,y) = g(u, x,y)
for each x, y € X. Then f,, satisfies all hypotheses in Theorem 2.2 so that
the set
S(u) = {x € X: inf f,(x,w) <O forall we X}
= {x € X: inf g(u,x,w) <0 for all w € X}
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is a non-empty compact convex subset of X and S is thus a map-
ping from X to K(X). We shall now show that S has a closed graph.
Indeed, let (x,)qcr be a net in X and y, € S(x,) for each a €T such
that x,—xo€X and y,—yo€X. Note that for each acT,
inf g(xq, Yo, w) <0 for all we X. By (iii)) and Lemma 2.2, for each
we X, the mapping (x,y)—infg(x,y,w) is LSC. It follows that
inf g(xo, yo, w) <0 for all w € X so that yo € S(xo). Thus S has a closed
graph and hence is USC. Now by Fan-Glicksberg fixed point
theorem, there exists X € X such that xe€ S(%), i.e., infg(x,x,w)<0
for all we X. This shows that x€ W so that the set W is non-
empty. Moreover, by (iii) and Lemma 2.2, the set W is closed in X and
is hence compact.

So far, we have established some existence theorems of solutions
for implicit variational inequalities and quasi-variational inequalities
as applications of Fan—Glicksberg fixed point theorem. However, we
can also study variational inequalities as applications of existence
theorems of equilibria for generalized games (resp., abstract econo-
mics). Some results in this direction have been given by Tarafdar and
Yuan [18]. In what follows, we shall use that method to prove an implicit
quasi-variational inequality (Theorem 4.2 below). We need the
following result which is a special case of Theorem 5 of Tulcea [19]
(See also Yuan [20]):

LEMMA 4.1 Let E be locally convex, X be a non-empty compact con-
vex subset of E, A : X — KC(X) be USC and P : X — 2* U {0} be such that

(i) For each y € X, the set P™'(y):={x € X:y € P(x)} is open in X.
(i) For each x € X, x¢ coP(x).
(ili) The set {x € X: A(x) N P(x) # 0} is open in X.
Then there exists % € X such that X € A(X) and A(X) N P(%) =0.

We shall now apply Lemma 4.1 to prove the following implicit quasi-
variational inequality:
THEOREM 4.2 Let E be locally convex, X be a non-empty compact
convex subset of E, S: X — KC(X) be continuous (i.e., S is both LSC
and USC on X) and [+ X x X — 2® be lower demicontinuous such that

(1) For each x € X, inf f(x, x) <0.
(ii) For each x € X, y— f(x, y) is concave.
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Then there exists u € X such that

u € S(u),
{inff(u, w) <0 for all we S(u).

Proof Define P: X —2¥U {0} by
P(x) = {y € X: inf f(x,y) > 0}

for each x € X. We then have:

(1) For each ye X, the set P™'(y) is open in X by Lemma 2.2 as
x> f(x, y) is lower demicontinuous.

(2) For each x€ X, x¢co P(x). Indeed, suppose there exists xo€ X
such that xo€co P(xo). Let y1,..., ¥, € P(xq), A1, .-., A, >0 with
>oig A = 1 besuch that xo = Y7, Ai yi. As y— f(xo, y) is concave,
for each u € f(xo,x0) =f (X0, 5y Ni i), there exist u; € f(xo, ;)
fori=1,...,nsuchthatu > 57, \au; > >0, Niinf f(xo, ;). Then
inf f'(xo,x0) > > 7y Aiinf f(xo,y;) >0, which contradicts (i).
Hence x ¢ co P(x) for all x € X.

(3) The set {xe€ X: S(x)NP(x)#0} is open in X. Indeed, suppose
S(xo) N P(xg) #B. Let yo€ S(x0) N P(xp). Then yo€ S(xo) and
inf f(xo, yo) >0. Let s€R be such that inff(xo,y0)>s>0 and
U := (s, 00). Since fis lower demicontinuous and f(xg, yo) C U, there
exist open neighborhoods N, of xy in X and V of y, in X such that
f(x,y)C Ufor all (x,y) € N; x V. Since VN S(x¢) #0 and S is LSC,
there exists an open neighborhood N, of x in X such that
VN S(x)#0 for all x€ N,. Let N:=N;NN,. Then N is an open
neighborhood of x, in X. Suppose x € N is given. As VN .S(x) # 0,
we may take any yeVnS(x); then f(x,y)CU so that
inf f(x,y) >s>0 and hence y € P(x)N S(x). Thus S(x)N P(x)# 0
for all x € N. Therefore the set {x € X: S(x) N P(x) # 0} is open in X.

Now by Lemma 4.1, there exists y € X such that y€ S(») and
S(HNP(P)=0,ie.,

{ﬁ € S(),
inf f(j,w) <0 for all we S(P).
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LEMMA 4.2 Let X be a non-empty and bounded subset of E and T
X — K(E*) be USC, where E*is equipped with the strong topology. Define
fXxX—-2Rby

f(x,y) ={Re{u,x —y): ue ITx} forall x,y € X.
Then fis USC.
Proof Let xy,y0€ X and U C R be open such that

{Re(u,xo — yo): u € Txo} = f(x0,y0) C U.

Note that the mapping (¥,z) — (u,z) is (jointly) continuous on
(X—X)x E*. Thus for each ue€ Tx,, there exist a strongly open
neighborhood V, of u and an open neighborhood M,, of x, in X and
an open neighborhood N, of yo in X such that

{Re(v,w—2z): vEV,,we M,,z€ N,} CU.

Since Txo C Uyery, Y and Txo is strongly compact, there exist
Uy, ..., un € Txg such that Txg C |J._, V. Since T is USC, there exists
an open neighborhood M, of x, in X such that Tx c ., V,, for all
X € M. Let My, := My N, M,, and Ny, := (., N, Then M,, and
N, are open neighborhoods of xy and y, in X, respectively. Now suppose
X € M,,,y € Ny, and u € Tx are given. Let ip € {1, ...,n} be such that
ueV,. AsxeMnNM, and y € Nuys Re(u, x —y) € U. 1t follows
that f(x,y) C U for all x € M,, and y € Ny,. Therefore fis USC.

By combining both Theorem 4.2 and Lemma 4.2, we have the
following result which is Theorem 4 of Shih and Tan [14]}:

COROLLARY 4.1 Let E be locally convex, X be a non-empty compact
convex subset of E, S: X — KC(X) be continuous and T: X — K(E™) be
USC, where E™* is equipped with the strong topology. Then exists y€ X
such that

V€ S(9),
infyery Re(w,y —x) <0 for all x € S().

Proof Define f:X x X — 2% by

f(x,y) = {Re{u,x — y): u € Tx}
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for each x,y € X. By Lemma 4.2, fis USC. Now the conclusion follows
from Theorem 4.2.

Finally, we have the following implicit quasi-variational inequality:

THEOREM 4.3 Let E be locally convex, X be a non-empty compact
convex subset of E, S: X — KC(X) be continuous and g: X x X x X — 2&
be such that

(i) Foreachu,x€ X, infg(u,x,x)<0.
(ii) For each u,y € X, the mapping w+— g(u, y, w) is concave.
(iii) g is lower demicontinuous on X x X x X.
(iv) For each (u,w) € X x X, the mapping y— inf g(u, y, w) is convex.

Then (a) there exists y € X such that

{f’ € S(),
infg(9,9,w) <0 forallwe S(p)

and (b) the set
{yeX: yeSy){and inf g(y,y,w) <0 for all w € S(y)}

is a (non-empty) compact subset of X.

Proof Define F: X — KC(X) by
Fu) ={y € S(u): infg(u,y,w) <0 forall we S(u)}

for each u € X. By Theorem 2.2, F is non-empty valued. Now we shall
show that F has a closed graph. Indeed, let (x4, ¥o))aer be a net in
X x X, (x0,¥0) € X x X such that (x,, yo) — (X0, Vo) and y, € S(x,) for
each a€T'. Then yo,€ S(xq) since S is USC. Now fix an arbitrary
wo € S(xo). Since Sis LSC, there is a net (w,), « rin X with w,, € S(x,,) for
all « € " such that w, — wy. Note that inf g(x,, Yo, wo) <0 forallaeT.
By (iii) and Lemma 2.2, inf g is jointly lower semicontinuous. It follows
that inf g(xo, yo, wo) < 0. As wy € S(xp) is arbitrary, yo € F(xo). Thus F
has a closed graph. It follows that for each u € X, F(u) is closed in X and
is therefore compact, and is also convex by (iv). Therefore F is well-
defined. Moreover, as X is compact and F has a closed graph, Fis USC.
By Fan—Glicksberg fixed point theorem again, there exists y € X such
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that y € F(p); i.e.,

y € 8(9),
infg(y,y,w) <0 for all w e S(p).

Thus the proof is completed.

Before we conclude this section, we would like to note that the results
established in this paper can be applied to study many nonlinear
problems such as nonlinear operators, nonlinear optimization, com-
plementarity problems and so on by using those ideas which have been
illustrated by Aubin and Ekeland [1], Baiocchi and Capelo [2], Granas
[7], Harker and Pang [8], Husain and Tarafdar [9], Karamolegos and
Kravvaritis [11], Kravvaritis [12], Mosco [13] and references therein.
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