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1. INTRODUCTION

It is well known that variational inequality theory does not only have
many important applications in partial differential equations such as
free boundary problems and so on (e.g., see [2]), but it also has been
successfully used in the study of operations research, mathematical
programming and optimization theory (e.g., see [1]). Due to the
development of set-valued analysis, the study ofvariational inequalities
has been under much attention recently, for example, see Ding and Tan
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[3], Harker and Pang [8], Husain and Tarafdar [9], Granas [7],
Karamolegos and Kravvaritis [11], Kravvaritis [12], Mosco [13], Shih
and Tan [14-16], Tarafdar and Yuan [18] and many others whose
names are not mentioned here. It is our purpose in this paper to study
the existence of solutions for variational inequalities and quasi-
variational inequalities of set-valued mappings either in simultaneous
form or in implicit form as applications of Ky Fan’s KKM-mapping
principle in [5] and Fan-Glicksberg fixed point theorem (see [4,6]).
Precisely, we shall establish the existence of solutions for simultaneous
variational inequalities in Section 2. Then implicit variational inequality
and implicit quasi-variational inequality in which set-valued mappings
are monotone (resp., upper semicontinuous) will be investigated in
Section 3 (resp., in Section 4). Our results either generalize or improve
corresponding ones given in recent literature.
We shall denote by and N the set of real numbers and the set of

natural numbers, respectively. Let Xbe a set. We shall denote by 2x the
family of all non-empty subsets of X. IfXis a topological space (resp., a
non-empty subset of a topological vector space), we shall denote by
K(X) (resp., KC(X)) the family of all non-empty compact subsets of X
(resp., the family of all non-empty compact and convex subsets ofX). If
X is a subset of a vector space E, then cox denotes the convex hull ofX
in E. Let f:X 2t be a (set-valued) mapping. For each x E X, let
inf f(x):=inf{z: z Ef(x)}. Let E* be the dual space of a Hausdorff
topological vector space E and X be a non-empty subset of E. We shall
denote by (w, x) the dual pair between E* and E for w E* and x E,
and by Re(w, x) the real part of the complex number (w, x). A map-
ping T:X 2E* is said to be monotone if for each x,yX,
Re(u-v,x-y) >_0 for all u T(x) and v E T(y). Throughout this
paper, E denotes a given Hausdorff topological vector space unless
otherwise specified.

Let X be a non-empty convex subset of E, f,g:XxX2,
fl:X2t,h:XIRU{-oc, +ec} andH:X 2E*. Then

(1) {f, g} is said to be a monotone pair if for each x, y X, u + w _> 0
for each u f(x, y) and w g(y, x); f is said to be monotone if the
pair {f, f} is monotone. In particular, whenf is single-valued, we
recover the notion of monotone pair reduces to that of a mono-
tone mapping defined by Mosco [13] (see also [9,17]).
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(2) f is said to be hemicontinuous if for each x, y E X, the mapping
k’[0, 1]2 defined by k(t):=f((1-t)x+ty, y) for all tE[0, 1] is
such that for each given s E with f(x, y) c (s, + ), there exists

to E (0, 1] such that f((1-t)x + ty, y) c (s, +) for all E (0, to).
We note that iff is single-valued, our definition of hemicontinuity
reduces to the classical one given by Mosco [13], i.e., the function
Hf(x + t(y x), y) from [0, 1] to is lower semicontinuous as + 0.

(3) fl is said to be concave if for each n E 1, xl,..., X E X and non-
negative A,..., An with i1 Ai and for each u E fl (.= Aixi),
there exist vie f(xi) for i- 1,... ,n such that u >_ in= Aivi.

(4) h is said to be lower semicontinuous (resp., upper semicontinuous)
if for each A E , the set {x E X: h(x) < A} (resp., {x E X: h(x) > }
is closed in X.

(5) H is said to be w*-demicontinuous if for each x E X, A E ] and z E E
with H(x)c {p E E*: Re(p, z) > A}, there exists an open neighbor-
hood N of x in X such that H(y) {p E E*: Re(p, z) > A} for all
yEN.

Example 1.1 Let X be a non-empty convex subset of a Banach space
(E, I[’1[) and :X t_J {+} be a convex function. We may assume
its subdifferential Ob(x) exists for some x E X (e.g., if is lower semi-
continuous and convex by Theorem 5.4.3 of Aubin and Ekeland
[1, p. 262]), i.e.,

Ob(x) {p E E*" b(x) b(z) <_ Re(p, x- z) for all z E X}.

Then the mappingA X 26* defined by A(x) := Ob(x) for each x E Xis
a monotone mapping. Definef: X X 2 byf(x, y) := {Re(u, x y):
u E A(x)} for each x EX. It is clear thatfis a monotone mapping. For
each fixed positive real number/3, define g: X X--+ 2r by

g3(x,y) := {Re(u,x- y): u E A(x)} + 31[x-Y[I}

for each (x, y) E X X. Then it is obvious that {f, g} is a monotone pair.

Let X and Y be two topological spaces, F: X 2Y and G X 2.
Then (a) F is said to be upper semicontinuous (in short, USC) (resp.,
lower semicontinuous (in short, LSC)) if for each x E X and for each
open set U in Y with F(x)C U (resp., F(x)fq U: 0), there is an open
neighborhood N of x in X such that F(y)c U (resp., F(y)N U 0) for
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all y E N; (b) the graph of F is the set {(x, y) E X x Y: y E F(x)}; and
(c) G is lower (resp., upper) demicontinuous if for each x E X and
s E R with G(x) c (s, ee) (resp., G(x) C (-ee, s)), there is an open neigh-
borhood N of x in X such that G(y) c (s, o) (resp., G(y) c (-oe, s))
for all y E N. We note that (i) if G is USC, then G is both lower
demicontinuous and upper demicontinuous; (ii) when Xc E, Y-E*
and E* is equipped with the w*-topology, if F is USC, then F is
w*-demicontinuous; and (iii) when G is single-valued, the notions of
lower demicontinuity (resp., upper demicontinuity) and LSC (resp.,
USC) coincide.

Example 1.2 Define F" [0,)2e by F(x)= {x} if x_> or x-0
and F(x) [x, Ix] if 0 < x < 1. Define G" (-oe, 0] 2 by G(x) {x}
if x <_- or x 0 and G(x)- [I/x, x] if- < x < 0. Then it is easy to
see that (1) F is both lower demicontinuous and w*-demicontinuous but
not USC and not upper demicontinuous and (2) G is both upper
demicontinuous and w*-demicontinuous but not USC and not lower
demicontinuous.

For each non-empty subset A of E and each r > 0, let U(A; r)"-
{wEE*" SUpxA[(w,x)l<r}. Let (E*,E) be the topology on E*
generated by the family U(A; r): A is a non-empty bounded subset of
E and r > 0} as a base for the neighborhood system at 0. Then E*, when
equipped with the topology (E*,E) becomes a locally convex
topological vector space. The topology (E*,E) is called the strong
topology on E*.

2. SIMULTANEOUS VARIATIONAL INEQUALITIES

Let X be a non-empty convex subset of E, "XR and f,g: X x
X R. One of the interesting problem is to find a point x0 E X which
simultaneously satisfies the following inequalities"

and

2(xo) +f(xo,y) <_ 2(Y) for all y E X (I)

(x0) + g(x0, y) _< (y) for all y E X; (II)

i.e., to find a common solution for both variational inequalities (I) and
(II) above. This is the so-called existence problem for solutions of
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simultaneous variational inequalities and this problem has been studied
by Husain and Tarafdar [9]. In this section, we shall study the existence
of solutions for the simultaneous variational inequality problem in the
set-valued setting. We first need the following result.

LEMMA 2.1 Letf, g: X X 2.
(1) Suppose {f, g} is a monotone pair and x, y X. If inff(x, y) <_ 0,

then infg(y, x) >_ 0.
(2) Suppose f is hemicontinuous andfor each x X, inff(x, x)<_ 0 and

y--f(x, y) is concave. If Xo X is such that inff(y, xo)>_ 0 for all
y X, then inff(xo, y) <_ 0 for all y X.

Proof (1) If inff(x, y) _< 0, then for any > 0, there exists u f(x, y)
such that u < e. As {f, g} is a monotone pair, for each w g(y, x), we
have u + w >_ 0, so that w _> -u > -. Thus inf g(y, x) _> -, which
implies that infg(y, x) >_ 0 as > 0 is arbitrary.

(2) Assume that inff(y, Xo)>_ 0 for all y X, but inff(xo, Yo)> 0 for
some Yo X. Let s I be such that inff(xo, Yo) > s > 0. Let U’- (s, o).
Thenf(xo, Yo) U. Sincefis hemicontinuous, there exists to (0, 1) such
that f(zt, yo) c U for all (0, to), where zt :- (1 t)Xo + tyo for each

[0, 1]. As y -+f(Zto, y) is concave, for each u f(Zto, (1 t)xo + tyo),
there exist F1 f(Zto,XO) and V2 f(Zto,YO) such that u>_(1-to)vl+
toV2 > ((1-to)-0+ to.Os)--(1-to)S as inff(zo,XO >_ 0 by assumption.
Hence inff(zto,Zto) inff(zto, (1 t)xo + tyo) >_ (1 to)s > 0, which
contradicts the assumption that inff(x, x) < 0 for each x X.

As an application of Lemma 2.1, we have the following:

THEOREM 2.1 Letf, g" X X-+ 2 be such that

(i) { f, g} is a monotone pair;
(ii) for each x X, inff(x, x) <_ 0 and infg(x, x) <_ 0;
(iii) f, g are hemicontinuous; and
(iv) for each x X, the mappings y -+f(x, y) andy g(x, y) are concave.

Then xoX is a solution of the following simultaneous variational
inequalities:

inff(x0, y) <_ 0 for all y E X,
infg(x0, y) <_ 0 for all y X,
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ifand only if that Xo & either a solution of the variational inequality:

inff(xo, y) < 0 for all y E X (III)

or, a solution of thefollowing variational inequality:

infg(x0, y) <_ 0 for all y X. (IV)

Proof We only need to prove the sufficiency. Suppose inff(x0, y) < 0
for all y X. By Lemma 2.1 (1), infg(y, x0) _> 0 for all y X. By Lemma
2.1(2), infg(x0, y)_< 0 for all y X. Similarly, if infg(x0, y)_< 0 for all
y X, then by Lemma 2.1, inff(x0, y) <_ 0 for all y E X.

As an immediate consequence ofTheorem 2.1, we have the following
result which is Theorem 2.1 of Husain and Tarafdar in [9]:

COROLLARY 2.1 Let Xbe a non-empty convex subset ofEand2 X---, IR
a convexfunction. Suppose thatf, g X X IR satisfy:

(1) {f, g} is a monotone pair;
(2) for each x X,f(x, x) g(x, x) 0; and
(3) for eachfixedx X, bothf(x, .) andg(x, .) are concave; andfandg are

hemicontinuous.

Then there exists Xo X is a common solution of both (I) and (II)/f and
only ifXo is either a solution of (I) or a solution of (II).

Proof Definef, g: X X IR by

f(x, y) := (x) +f(x, y) b(y)

and

(x, y) := (x) + g(x, y) (y)

for each (x,y) X X. Applying Theorem 2.1 toJ and , the conclusion
follows.

In what follows, we shall prove some sufficient conditions which

guarantee that either inequality (III) or (IV) has a solution. In order to
do so, we need the following:

LEMMA 2.2 Let g:X 2 be lower demicontinuous. Then the mapping
G X-- ]K tO {-o} defined by G(x) := infg(x)for each x X is LSC.
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Proof Let A be given. Suppose {x}r is a net in X and Xo E X
such that infg(x) _< A for all a E 1 and x x0. Suppose infg(x0) > A.
Choose any sI such that infg(xo)>s> A. Let U’-(s, oe), then
g(xo)C U. Since g is lower demicontinuous, there exists an open
neighborhood N of Xo in X such that g(x)c U for all x N. But then
there exists a0 1 such that x N for all a >_ a0. Hence g(xo) c U so
that infg(xo) _> s > A which is a contradiction. Therefore we must have
infg(x0) <_ A. This shows that the set {x E X: infg(x) <_ A} is closed in X.
Thus G is lower semicontinuous.

Let X be a non-empty subset of a vector space V and F"X2v.
We recall that F is said to be a KKM mapping (e.g., see [5]) if
CO{X/: 1,..., n} C uin___l F(xi) for each Xl,... x X and n N.
We shall also need the following simple observation:

LEMMA 2.3 Let V be a vector space andXa non-empty convex subset of
V. Supposef X x X 2 is such that

(i) for each x X, inff(x, x) < 0;
(ii) for eachx X, y ---f(x, y) is concave.

Define F" X 2x by F(w) {x X: inff(x, w) _< 0} for each w X. Then
F is a KKM-mapping.

Proof Suppose not, then there exist nGN, Wl,...,wnX and
A1,..., A, > 0 with Ein=l ,i such that in__l /iWi ujn=l F(wj). It
follows that inff(in__l iWi, Wj) > 0 for all j- 1,... ,n. Let s be
suchthatmin<_j_<, inff(;n__/iwi, wj) > s > O.Sinceyf(i ,iwi, y)

f n nis concave by (ii), for each u E (/_1 iWi, Ej--1 )jWj), there exist

vj f(-in=l )iwi, wj) for j-1,...,n such that u >_ jn= Ajvj > s. Thus
inff(Y’ni= iwi, Ejn=l )jWj))_ S > 0, which contradicts (i). Hence F
must be a KKM-mapping.

THEOREM 2.2 Let Xbe a non-empty closed convex subset ofE. Suppose
f X X2 is such that

(i) for each x X, inff(x, x) _< 0;
(ii) for each x X, y Hf(x, y) is concave;
(iii) for each y X, x Hf(x, y) is lower demicontinuous; and
(iv) there exist a non-empty compact subset B ofX and Wo B such that

inff(x, w0) > 0 for all x X\ B.
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Then the set S {x E X: inff(x, w) <_ 0 for all w X} is a non-empty
compact subset ofB.

Proof Define F"X2x by

F(w) {x X: inff(x, w) _< 0}

for each w X. By (i), F(w) for all w X, so that Fis well defined. By
(iii) and Lemma 2.2, for each w X, the set F(w) is closed in X. By (iv),
F(wo) is a closed subset of B so that F(wo) is compact. By (i), (ii) and
Lemma 2.3, F is a KKM-mapping. By Ky Fan’s KKM-mapping
principle [5, Lemma 1], wxF(w). Thus S= ["]wxF(w) is a non-

empty compact subset of B.

LEMMA 2.4 Let X be a non-empty closed convex subset of E. Suppose
g" X 2 and let W:= {x E X: infg(x) >_ 0}. Then (a) W is closed in X
ifg is LSC and (b) W is convex ifg is concave.

Proof (a) If W were not closed in X, then there would exist a net

{x} r in Xand Xo Xsuch thatx x0, and infg(x) >_ 0 for all a E
but infg(x0)<0. Let s]K be such that infg(x0)<s<0 and
U’- (-, s). Then g(xo) U . Since g is LSC, there exists an open
neighborhood N of Xo X such that g(x) U for all x E N. As
x x, there exists ao E such that x N for all a >_ Co. Thus
g(Xo) N U so that infg(x0)< s < 0, which is a contradiction.
Thus W is closed in X.

(b) Suppose x, y W and A (0, 1), then infg(x) >_ 0 and infg(y) _> 0.
Since g is concave, for each u g(Ax + (1 A)y), there exist v g(x) and
V2 g(y) such that u _> Av + (1 ,)v2 0. Thus infg(Ax + (1 A)y) >_ 0
and we have Ax + (1 A)y W. Therefore W is convex.

THEOREM 2.3 Let X be a non-empty closed convex subset of E and

f X x X--+ 2 be such that

(i) for each x e X, inff(x, x) < 0;
(ii) for each x X, y --f(x, y) is concave and LSC;
(iii) f is hemicontinuous;
(iv) there exist a non-empty compact B C X and Wo B such that

inff(x, w0) > 0 for all x e X\ B;

(v) f is monotone.
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Then the set S := {x E X." inff(x, w) <_ 0 for all w E X} is a non-empty
compact convex subset ofB.

Proof Define F, G, H: X 2x by

F(w)- {x E X: inff(x, w) _< 0},
G(w) clxF(w),
H(w) {x E X: inf f(w,x) >_ 0),

for each w X. Then by (i), (ii) and Lemma 2.3, Fis a KKM-mapping so
that G is also a KKM-mapping. Note that by (iv), F(wo)C B so that
G(Wo) c B and G(Wo) is compact.
Again by Ky Fan’s KKM-mapping principle, w xG(w) . By (ii)

and Lemma 2.4(a), for each w X, H(w) is closed and convex.
To complete the proof, it is sufficient to show that

S-- N r(w)- G(w)--- N H(w).
wX wX wX

Indeed, if w X and x F(w), then inff(x, w) _< 0 so that by (v)
and Lemma 2.1(1), inff(w,x)>0. It follows that x H(w). Hence
F(w) c H(w) so that G(w) c H(w). Therefore w xF(w) c ["lw xG(w) c
Nw
On the other hand, ifx nw xH(w), then inff(w, x) >_ 0 for all w E X.

Thus by (i)-(iii), (v) and Lemma 2.1(2), we have inff(x, w)<_ 0 for all
w E X. Thus x nw xF(w). Therefore nw xH(w) c nw xF(w). Hence
we have S ["]w e xF(w) OwxG(w) [’-’lw xH(w).

3. IMPLICIT VARIATIONAL INEQUALITIES-
THE MONOTONE CASE

Let C be a non-empty subset of E and C] a non-empty subset of C.
Suppose f:CCCI and g:CC are such that
f(u, v, v)>_ 0 for all u E C and v E C. Mosco [13] had investigated the
following so called implicit variational inequalityproblems: Find a vector
v E C] such that

g(v, v) <_ f(v, v, w) + g(v, w) for all w C. (v)

In this section, it is our goal to study the existence of solutions for imp-
licit variational inequality and implicit quasi-variational inequalities
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which are variant forms of the implicit variational inequality (V) above.
Indeed, as applications of Theorem 2.3 and by combining Fan-
Glicksberg fixed point theorem, we shall provide some sufficient con-
ditions to guarantee the existence of variational and quasi-variational
inequalities in their implicit forms, and in which the set-valued
mappings are monotone.
As an application of Theorem 2.3, we have the following variational

inequality:

THEOREM 3.1 Let X be a non-empty closed convex subset of E and
T: X 2 be monotone such that

(i) for each x E X, T(x) is w*-compact;
(ii) T is w*-USCfrom line segments in X to the weak*-topology r(E*, E)

on E*; and
(iii) there exists a non-empty weakly compact subset B ofX and Wo B

such that

inf Re(u,x- wo) >0 for all x X\ B.
u’(x)

Then the set S:= {y6X:infw-yRe(w,y-x) < Ofor allx EX} is anon-

empty weakly compact convex subset ofB.

Proof Definef: X X2 by

f(x,y) {Re(u,x- y): u Tx)

for each x, y E X. Then we have

(1) fis monotone as T is monotone.
(2) For each x, y 6 X, f(x, y) is a non-empty compact subset of.
(3) For each x X, f(x, x)= {0} so that inff(x, x) <_ 0.
(4) For each x 6 X, the mapping y Hf(x,y) is concave. Indeed, for

each n6N, yl,...,y, 6X and A1,...,An6[0, 1] with in__ Ai--
and for each s 6f(x, i Aiyi), there exists u Tx such that
s Re(u, x iL Ai yi). But then Re(u, x Yi) f(x, Yi) for each
i= 1,2,...,n and

i=1 i=1

Therefore y Hf(x, y) is concave.
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(5) For each x E X, the mapping y Hf(x,y) is weakly LSC; i.e., the
mapping y Hf(x, y) is LSC when J( is equipped with the relative
weak topology. Indeed, let Y0 E X and Uc R be open such that
f(x, Y0) f U :/= . Then there exists u Tx such that Re(u, x Y0) U.
For each fixed x X and u T(x), as y Re(u, x- y) is weakly
continuous, there exists a weakly open neighborhood N of Y0 in X
such that Re(u, x y) E U for all y N, so thatf(x, y) N U (0 for all
y N. Thus y --,f(x, y) is weakly LSC.

(6) f is hemicontinuous. Indeed, fix any x, y Xand define k [0, 1] X
by k(t)=f((1 t)x + ty, y) for each [0, 1]. Let U=(s, oe) where
s E R be such thatf(x, y) c U. Note that f(x, y) is compact as Tx is
weak*-compact. Let r0 inff(x, y). Then r0 > s. Set r := (r0 + s)/2,
tl:=(r-s)/r and V:=(r, oc). Then tl(0,1), f(x,y)cV and
(1-t)Vc U for all t(0, tl). Let W= {wE*:Re(w,x- y} >r},
then Wis w*-open and T(x) C W. By (ii), there exists to (0, tl) such
that T((1 t)x + ty) C W for all E (0, to). Thus for each u T
((1 t)x + ty) and (0, to), we have

U D (1 t)V D (1 t) Re(u, x y) Re(u, ((1 t)x + ty) y).

Therefore UDf((1-t)x + ty, y) for all (0, to). Hence f is hemi-
continuous.

(7) By (iii), there exists a non-empty weakly compact subset B ofXand
Wo B such that

inff(x, w0) inf Re(u,x- w0} > 0,
uE Tx

for all x 6 X\ B.
Now equip Ewith weak topology, then all hypotheses ofTheorem 2.3

are satisfied. Thus

S {x E X: inf f(x, w) <_ 0 for all w X}

={xX: infRe(u,x-w)<0forallwX}uETx

is a non-empty weakly compact convex subset of B.

As an application ofTheorem 3.1, we have the following result which
is Theorem of Shih and Tan [16].
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COlOILhrtY 3.1 Let (E, [Ill) be a reflexive Banach space and X a non-

empty closed convex subset of E. Suppose T:X 2e’is monotone such
that each T(x) is a weakly compact subset of E* and T is upper
semicontinuous from line segments in X to the weak topology of E*.
Assume that there exists Xo E X such that

lim inf Re(w, y x0) > 0. (VI)
Ilyll--*o wE Ty
yEX

Then there exists X such that

inf Re(w, 93- x) < 0 for all x X.

Proof By (VI), there exist M > 0 and R > 0 with [Ix0[I <_ R such that

infw E ry Re(w, y x0) > M for all y X with Ilyll > R. Let B := {x X:

Ilxll _< R). Then B is a non-empty weakly compact (and convex) subset
ofX such that infwE ryRe(w, y-xo) > 0 for all x X\ B. It is easy to see
that all hypotheses of Theorem 3.1 are satisfied so that the conclusion
follows.

We note that under the assumptions in Corollary 3.1, the conditions
"T is USC from line segments in X to the weak topology of E" and "T is
w*-demicontinuous from line segments in Xto the w*-topology ofE" are

equivalent (see e.g., [1, Theorem 10, p. 128]).
As a second application of Theorem 2.3, we have the following

implicit variational inequality:

THEOREM 3.2 Let E be locally convex, X be a non-empty compact
convex subset ofE and g X x X x X K(I) be such that

(i) For each u, x X, infg(u, x, x) _< 0.
(ii) For each u, x X, the mapping y g(u, x, y) is concave.

(iii) For each u X, the mapping (x,y) g(u,x,y) is monotone and
hemicontinuous.

(iv) For each x X, the mapping (u, y) g(u, x, y) is LSC.

Then the set W:= {u X: inff(u, u, w) <_ Ofor allw X} is anon-empty
compact subset ofX.

Proof For each fixed u X, definef:X X 2 by

fu(X, y) g(u, x, y)
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for each x, y E X. Then fu satisfies all hypotheses in Theorem 2.3 so
that the set

S(u) {x 6 X: inffu(x, w) < 0 for all w 6 X}
{x E X: inf g(u,x, w) < 0 for all w X}

is a non-empty compact convex subset of X and S is thus a mapping
from X to K(X). We shall show that S has a closed graph. Indeed, let
(x)s r be a net in X and ys S(xs) for all a I such that xs Xo X
and y y0 E X. Note that for each a I’, infg(x, Ys, w)< 0 for all
w X. Let w X be given and fix an arbitrary a I’. Since g(xs, Ys, w)
is compact, there exists us Eg(xs, ys, w) such that u-infg(xs,
Ys, w) < 0. Since (y, z) H g(xs, y, z) is monotone, for each v g(xs, w,
Ys), we have us + v >_ 0 so that v >_ -us >_ 0. Thus infg(xs, w, y) >_ O.
As w X is arbitrarily given, infg(xs, w, y) _> 0 for all w X. By (iv)
and Lemma 2.4, for each wX, the set {(x,y) EXX:
infg(x, w,y)>_ 0} is closed. It follows that infg(x0, w, yo)>_ 0 for all
w X. By Lemma 2.1 (2), inf g(xo, Yo, w) < 0 for all w X which shows
that Yo S(xo). Hence S has a closed graph so that S is upper
semicontinuous. Now by Fan-Glicksberg fixed point theorem (e.g.,
see [4] or [6]), there exists X such that E S(), i.e., inf g(, , w) < 0
for all w X so that W. To complete the proof, it remains to show
that Wis a closed subset of X. Suppose {us}r is a net in Wsuch that

us u0 X. Then infg(us, us, w)< 0 for all w X. Now by the same
argument as above (with y--xs--us for all a I and x0-Yo- u0),
infg(u0, Uo, w) < 0 for all w E X. Thus Uo S(uo) so that Uo W.
Therefore W is closed in X.

As an application of Theorem 3.2, we have the following implicit
quasi-variational inequality:

THEOREM 3.3 Let E be locally convex, X be a non-empty compact
convex subset ofE, S" X KC(X) be continuous andg" X X X 2t

be such that

(i) For each u, x X, infg(u, x, x) <_ O.
(ii) For each u, x X, the mapping y g(u, x, y) is concave andfor each

y X, the mapping u g(u, y, u) is concave.

(iii) For each u X, the mapping (x, y)-- g(u,x, y) is monotone and
hemicontinuous.
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(iv) For each x E X, the mapping (u,y) g(u, x, y) is LSC.
(v) The mapping (u, x) g(u, x, u) is LSC.

Then (a) there exists X such that

e s(p)
inf g(, :9, w) < o for all w S()

and (b) the set

{y X: y S(y) and inf g(y, y, w) < 0 for all w S(y) }

is a non-empty compact subset ofX.

Proof (a) Define F:X KC(X) by

F(u) {y S(u)" inf g(y, y, w) < 0 for all w S(u)}

for each u E X. Let u X be given. By Theorem 3.2, F(u) is non-empty
and compact. We shall now show that F(u) is also convex. Let x, y
F(u) and A E(0, 1) be given. As x, yES(u) and S(u) is convex,
Ax + (1 A)y E S(u). Since infg(x, x, w) < 0 and infg(y, y, w) < 0 for
all w S(u), infg(x, w, x) >_ 0 and infg(y, w, y) >_ 0 for all w S(u) by
(iii) and Lemma 2.1(1). It follows that infg(Ax+(1-A)y,w, Ax+
(1 A)y) _> 0 for all w S(u) by (ii) and Lemma 2.4. By Lemma 2.1 (2),
infg(Ax + (1 A)y, Ax + (1 A)y, w) <_ 0 for all w S(u). Thus Ax +
(1- A)y F(u). Hence F(u) is also convex. This shows that F is well
defined.
Now we shall show that Fhas a closed graph. Indeed, let ((x, y,)) r

be a net in X x X and (Xo, Yo) X x X be such that (x, y) - (Xo, Yo)
and y F(x) for all a E F. Since y S(x) for each a I’, Yo S(Xo)
as S is USC. Now fix an arbitrary Wo S(xo). Since S is LSC, there is
a net (w,)er in X with w S(x) for all a I’ such that w Wo.
Since inf g(y, y, w)<_ 0 for all a I’, by (iii) and Lemma 2.1(1), we
have infg(y,w,y,)>_0 for all a EI’. By (v) and Lemma 2.4,
inf g(Yo, Wo, Yo) >_ 0. Since Wo S(xo) is arbitrary, we have inf g (Yo, w,
Yo) >_ 0 for all w S(xo). By (ii), (iii) and Lemma 2.1(2), it follows that
infg(yo, Yo, w) _< 0 for all w S(Xo) so that Yo F(xo). Thus Fhas a closed
graph and hence F is USC.
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By Fan-Glicksberg fixed point theorem again, there exists 33 E Xsuch
that 33 E F03); i.e.,

p s(p),
infg(33, 33, w) <_ 0 for all w S(33).

(b) By (a), the set (y X: y S(y) and infg(y, y, w) _< 0 for all
wS(y)} is non-empty; it is also compact by following the same
argument as in the proof of Theorem 3.2.

We would like to remark that our results in this section unify and
generalize corresponding results in the literature given by Aubin and
Ekeland [1], Baiocchi and Capelo [2], Harker and Pang [8], Husain and
Tarafdar [9], Mosco [13], and Shih and Tan [14,16].

4. IMPLICIT VARIATIONAL INEQUALITIES- THE USC CASE

Parallel to the ideas used in Section 3 and as application ofTheorem 2.2
instead of Theorem 2.3, we can also study the existence of solutions for
implicit variational and implicit quasi-variational inequalities in which
real set-valued mappings are USC instead of being monotone. First we
have the following implicit variational inequality:

THEOREM 4.1 Let E be locally convex, X be a non-empty compact
convex subset ofE and g" X X X-+ K() be such that

(i) For each u X, infg(u, x, x) <_ O.
(ii) For each u, x X, the mapping y H g(u, x, y) is concave.

(iii) For each y X, the mapping (u, x) - g(u, x, y) is lower demicontin-
UOUS.

Then the set W:- {u X: inff(u, u, w) < Ofor allw X} is anon-empty
compact subset ofX.

Proof For each fixed u E X, define fu" X X 2 by

fu(X, y) g(u, x, y)

for each x, y X. Thenfu satisfies all hypotheses in Theorem 2.2 so that
the set

S(u) {x X: inffu(X, w) < 0 for all w X}
{x X: inf g(u, x, w) < 0 for all w E X}
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is a non-empty compact convex subset of X and S is thus a map-
ping from X to K(X). We shall now show that S has a closed graph.
Indeed, let (x) v be a net in X and y E S(x,) for each c E I such
that x---,x0X and yy0X. Note that for each cT,
infg(x,y, w)<_ 0 for all w X. By (iii) and Lemma 2.2, for each
w EX, the mapping (x, y) H infg(x, y, w) is LSC. It follows that
infg(x0, yo, w) <_ 0 for all w X so that Yo S(xo). Thus S has a closed
graph and hence is USC. Now by Fan-Glicksberg fixed point
theorem, there exists X such that S(), i.e., infg(., , w) < 0
for all w EX. This shows that W so that the set W is non-
empty. Moreover, by (iii) and Lemma 2.2, the set W is closed in X and
is hence compact.

So far, we have established some existence theorems of solutions
for implicit variational inequalities and quasi-variational inequalities
as applications of Fan-Glicksberg fixed point theorem. However, we
can also study variational inequalities as applications of existence
theorems of equilibria for generalized games (resp., abstract econo-
mics). Some results in this direction have been given by Tarafdar and
Yuan [18]. In what follows, we shall use that method to prove an implicit
quasi-variational inequality (Theorem 4.2 below). We need the
following result which is a special case of Theorem 5 of Tulcea [19]
(See also Yuan [20]):

LEMMA 4.1 Let E be locally convex, X be a non-empty compact con-
vex subset ofE, A XKC(X) be USC andP X 2xt_J {} be such that

(i) For each y X, the set p-l(y) :__ {x X: y P(x)} is open in X.
(ii) For each x X, x

_
coP(x).

(iii) The set {x X: A(x) fq P(x) } is open m X.

Then there exists Yc X such that Yc A(Yc) and A(Yc) fq P(Yc) .
We shall now apply Lemma 4.1 to prove the following implicit quasi-

variational inequality:

THEOrtEM 4.2 Let E be locally convex, X be a non-empty compact
convex subset of E, S X--- KC(X) be continuous (i.e., S is both LSC
and USC on X) andf: X X 2 be lower demicontinuous such that

(i) For each x X, inff(x, x) <_ 0.
(ii) For each x X, y Hf(x, y) is concave.
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Then there exists u E X such that

u S(u),
inff(u, w) _< 0 for all w S(u).

Proof Define P"X2xtO {!3} by

P(x) {y X: inff(x, y) > 0}

for each x X. We then have:

(1) For each yX, the set p-l(y) is open in X by Lemma 2.2 as
x Hf(x, y) is lower demicontinuous.

(2) For each x X, x co P(x). Indeed, suppose there exists Xo E X
such that Xo E co P(xo). Let Yl,..., Yn P(Xo), A1,..., An > 0 with

n ni= Ai be such that x0 i= Ai Yi. As y Hf(xo, y) is concave,
for each u 6 f(xo, xo)-f(xo, Ein=l /iYi), there exist ui6f(xo, Yi)
for i= 1,..., n such that u >_ in__ Aiui >_ i= Ai inff(x0, Yi). Then
inff(xo, x0) >_ in=l /i inff(x0,Yi) > 0, which contradicts (i).
Hence x co P(x) for all x X.

(3) The set {x X: S(x) fq P(x) - } is open in X. Indeed, suppose
S(xo) fq P(xo) ). Let Yo S(xo) f3 P(xo). Then Yo S(xo) and
inff(xo, Yo) > 0. Let s E I be such that inff(xo, Yo) > s > 0 and
U’- (s, ). Sincefis lower demicontinuous andf(xo, yo) c U, there
exist open neighborhoods N of Xo in X and V of yo in X such that
f(x, y) C U for all (x, y) N1 V. Since V fq S(xo) (b and S is LSC,
there exists an open neighborhood N2 of Xo in X such that
Vfq S(x) q) for all x E N2. Let N’-N fq N2. Then N is an open
neighborhood of Xo in X. Suppose x E N is given. As V S(x) ,
we may take any y E VfqS(x); then f(x,y)c U so that
inff(x, y) _> s > 0 and hence y P(x) fq S(x). Thus S(x) P(x)
for all x N. Therefore the set {x X: S(x) fq P(x) (} is open in X.

Now by Lemma 4.1, there exists 33X such that )3ES() and
S()) C P()3) t3, i.e.,

p s(p),
inff(33, w) < 0 for all w S03).
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LEMMA 4.2 Let X be a non-empty and bounded subset of E and T:
X K(E*) be USC, where E’is equipped with the strong topology. Define
f:Xx X-+ 2 by

f(x, y) {Re(u,x- y): u E Tx} for all x, y X.

Thenfis USC.

Proof Let Xo, Yo X and Uc IR be open such that

{Re(u, xo- yo): u Txo} f(xo,Yo) C U.

Note that the mapping (u,z) H (u,z) is (jointly) continuous on
(X-X) x E*. Thus for each u Txo, there exist a strongly open
neighborhood Vu of u and an open neighborhood Mu of x0 in X and
an open neighborhood Nu of Y0 in X such that

{Re(v,w-z): v Vu, w Mu, z Nu) C U.

Since Txo C wxo Vui and Txo is strongly compact, there exist
u,..., un Txo such that Txo c i: Vui. Since T is USC, there exists
an open neighborhood M of x0 in X such that Tx C i: Vu for all
x M. Let Mxo :-- M N 7=1 Mi and Ny ["li=l Ni. Then Mxo and
Ny are open neighborhoods ofx0 and Yo in X, respectively. Now suppose
x Mxo, y Nyo, and u Tx are given. Let i0 { 1,..., n} be such that
u V%. As x M q Mio and y Nu,o, Re(u, x- y) U. It follows
thatf(x,y)c U for all x Mxo and y Ny0. Thereforefis USC.

By combining both Theorem 4.2 and Lemma 4.2, we have the
following result which is Theorem 4 of Shih and Tan [14]:

COROLLARY 4.1 Let E be locally convex, X be a non-empty compact
convex subset of E, S X---+ KC(X) be continuous and T: X--+ K(E*) be
USC, where E* is equipped with the strong topology. Then exists X
such that

5,
infw> Re(w,- x <_ 0 for all x S().

Proof Definef:X X 2 by

f(x,y) {Re(u,x- y): u Tx}
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for each x, y E X. By Lemma 4.2, fis USC. Now the conclusion follows
from Theorem 4.2.

Finally, we have the following implicit quasi-variational inequality"

THEOREM 4.3 Let E be locally convex, X be a non-empty compact
convex subset orE, S: X- KC(X) be continuous and g: X X X-- 2
be such that

(i) For each u, x X, infg(u, x, x) < 0.
(ii) For each u, y X, the mapping wH g(u, y, w) is concave.

(iii) g is lower demicontinuous on X X X.
(iv) For each (u, w) X x X, the mapping yH infg(u, y, w) is convex.

Then (a) there exists X such that

s(?),
infg()?, 29, w) < o for all w S( f;)

and (b) the set

{ y X: y S(y){and inf g(y, y, w) < 0 for all w S(y)}

is a (non-empty) compact subset ofX.

Proof Define F X-, KC(X) by

F(u) { y S(u): infg(u,y, w) < 0 for all w S(u))

for each u E X. By Theorem 2.2, F is non-empty valued. Now we shall
show that F has a closed graph. Indeed, let ((x, Y))er be a net in
X x X, (x0, Y0) X x X such that (x, y) ---, (Xo, Yo) and y S(x) for
each c E I’. Then Yo S(xo) since S is USC. Now fix an arbitrary
Wo S(xo). Since S is LSC, there is a net (w) e r in Xwithw S(x) for
all c F such that w w0. Note that infg(x, y, w) < 0 for all c I’.
By (iii) and Lemma 2.2, infg is jointly lower semicontinuous. It follows
that infg(x0, Y0, w0)< 0. As Wo S(xo) is arbitrary, Yo F(xo). Thus F
has a closed graph. It follows that for each u X, F(u) is closed in X and
is therefore compact, and is also convex by (iv). Therefore F is well-
defined. Moreover, as Xis compact and Fhas a closed graph, Fis USC.
By Fan-Glicksberg fixed point theorem again, there exists 9 X such
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that )3 E F(33); i.e.,

) s()),
infg(33, 33, w) < 0 for all w E S(33).

Thus the proof is completed.

Before we conclude this section, we would like to note that the results
established in this paper can be applied to study many nonlinear
problems such as nonlinear operators, nonlinear optimization, com-
plementarity problems and so on by using those ideas which have been
illustrated by Aubin and Ekeland [1], Baiocchi and Capelo [2], Granas
[7], Harker and Pang [8], Husain and Tarafdar [9], Karamolegos and
Kravvaritis [11], Kravvaritis [12], Mosco [13] and references therein.
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