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For a fixed integer rn > 0 and < k < n, let Ak,2m,n(T 37) denote the kth fundamental
polynomial for (0, 2m) Hermite-Fejdr interpolation on the Chebyshev nodes
{Xj,n=COS[(2j 1)Tr/(2n)]: < j < n}. (So Ak,2m,n(T 37) is the unique polynomial of degree
at most (2m + 1)n which satisfies Ak,2m,n (T, Xj,n) Skj, and whose first 2m derivatives
vanish at each Xj,n.) In this paper it is established that

[Ztk,2m,n(T,x)[ ./ll,2m,n(Z 1), k n, <_ x <_ 1.

It is also shown that A 1,2m,n(Z, 1) is an increasing function ofn, and the best possible bound
Cm so that IAk,2m,,(T, x)l < Cm for all k, n and x E [- 1, 1] is obtained. The results generalise
those for Lagrange interpolation, obtained by P. Erdbs and G. Griinwald in 1938.
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1 INTRODUCTION

Supposefis a continuous real-valued function defined on the interval
[- 1, 1], and let

X= {xk,n" k- 1,2,...,n; n- 1,2,3,...}

be an infinite triangular matrix such that for all n,

> Xl,n > X2,n >’’" > Xn,n

_
--1.

Then for each integer m>_0 there exists a unique polynomial
nm,n()[ f, x) of degree at most (m + 1)n-1 which satisfies

n(r) (X,f Xk,n) 50,rf(Xk,n), < k < n, 0 < r < m.rn,n

nm,n(X,f,x) is known as as the (0, 1,...,m) Hermite-Fej6r (HF)
interpolation polynomial off(x), and it can be expressed as

n

nm,n(,; x) f(Xk,n)Ak,m,n(, X),
k=l

where Ak,m,n(X,x) is the unique polynomial of degree at most

(m + 1)n- such that

(r) (X, Xj,n) O,r k, < k, j < n, 0 < r < m.kmn

The Ak,m,n(X X) are referred to as the fundamental polynomials for
(0, 1,..., m) HF interpolation on X, and the quantities

,m,n(X, X) -[Ag,m,,(X, x)
k=l

and

Am n(X) max /m n(X’, X),
-l<x<l

which are known as the Lebesgue function and Lebesgue constant,
respectively, for (0, 1,..., m) HF interpolation on X, play a crucial role
in determining the convergence behaviour of Hm,n(X,f, x) to f(x) as
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Ifm 0, we obtain the familiar Lagrange interpolation process. Here
it is known (cf. [10, Section 1.3]) that there is a positive constant c so that

2
A0,n(X) > -logn + c (1)

for any X. This leads to the classic result [5] that for any X there exists

fE C[- 1, 1] so that Ho,n(X, f, x) does not converge uniformly tofix) on
[-1, 1] as n. On the other hand, if T denotes the matrix of
Chebyshev nodes

T= cos
2n

7r k--1,2,...,n;n=l,2,3,...

then

A0,n(T)_<-21ogn+l, n=1,2,3,...

(See [10, Theorem 1.2].) Further, Ho,n(X,f, x) converges uniformly to
f(x) on [-1, 1] iffsatisfies the relatively mild Dini-Lipschitz condition
f(1/n)logn 0 as n . (See, for example, [9, Section 4.1].) Here

ofdenotes the modulus of continuity off, defined by

coy(6) max{If(s -f(t)l: (s,t} c [-1, 1], Is- _< 6}.

Thus, in terms of the magnitude of Lebesgue constants, and conver-
gence properties ofthe interpolation polynomials, the Chebyshev nodes
are close to optimal for Lagrange interpolation.
The fundamental polynomials Ak,o,(T,x) and Lebesgue function

A0,,(T,x) have been studied extensively. For example, Erd6s and
Grinwald [4] obtained the following result.

THEOREM For n-- 1, 2, 3,...,

71-
max max IAko,n(T,x)l cot4--.l<k<n -l<x<l

The maximum is attained if and only if k and x or k n and
x 1. Furthermore, since the right-hand side is monotonic increasing to
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4/7r as n o, itfollows thatfor all k and n,

4

and the constant on the right-hand side is best possible.

With regard to the Lebesgue constant, Ehlich and Zeller [3]
demonstrated that for n 1,2, 3,...,

A0,n(T)-- A0,n(T, +1). (2)

A proof of this result is also developed in Rivlin [10, Section 1.3], and
closely related results are presented in Brutman [1] and Gfinttner [6].
For higher-order HF interpolation, there are many similarities

between the Lagrange and (0, 1,..., m) HF processes for even values
ofm. For instance, Szabados [12] extended (1) by showing that there are

positive constants Cm so that for any X,

A2m,n(X)

_
Cm logn, n 1,2, 3,...

Thus, for any node system X, there exists fEC[-1,1] so that
Hzm,n(X, f, x) does not converge uniformly to f(x) on [- 1, 1] as n ec.

With regard to Lebesgue constants for the Chebyshev nodes, Byrne
et al. [2] generalized (2) by showing that

A2m,n(T) /2m,n(T, +l)
2 (2m)’ logn+O(1)
rr 22m (m!)2 as n --+ oo.

The aim of this paper is to study the fundamental polynomials for
(0, 1,..., 2m) HF interpolation on the Chebyshev nodes. We obtain the
following generalization of Theorem 1.

THEOREM 2 Ifm >_ 0 isfixed, and n 1,2, 3,..., then

max max [Ak,2m,n(T,x)[
l<k<n -l<x<l

is attained ifand only ifk andx or k n andx 1. Furthermore,

IA1,2m,n(T, 1)[ is an increasingfunction ofn, andfor all k and n,

m()2m+l-2r[Ak,2m,n(T,x)l <. 2Z ar,m < x < 1, (3)
r---O
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where the ar,m are the coefficients & the Laurent expansion

sin2m+lz z2m+ ar,mZ2r, 0 < [Z[ < 7r. (4)
r=0

The constant on the right-hand side of(3) is best possible.

Thus, for example, for all k, n and x [-1, 1],

4/7r if rn 0,
IA,2m,n(T, x) < 2/7r + 16/7r if rn 1,

3/(27r) + 40/(37r3) + 64/7r if rn 2,

and the constants on the right-hand side are best possible.
Note that the corresponding problem to that considered in Theorem 2

for odd-order HF interpolation on the Chebyshev nodes is answered
by a result of Smith [11] which states that the Ak,Zm + 1,n(T, X) are non-
negative for --1 _<x <_ 1. Thus, since= Ak,2m+l,n(T,x) for all x,
it follows that

max max ]Ak2m+l,n(Z,x)[--1
l<k<n -l<x<l

and for each k the maximum is attained if and only if x=
cos[(2k 1)7r/(2n)].
The proof of Theorem 2 will be presented in Section 2. For the proof

of Theorem 1, Erd6s and Grtinwald used Riesz’s lemma [8], which
provides a lower bound for the separation of the maximum point for
the absolute value of a trigonometric polynomial and the zeros of the
polynomial, and explicit formulas for the fundamental polynomials
Alc, l,n(T, x) for (0, 1) HF interpolation on T. Because the formulas for
the Ak,m,n(T x) become increasingly more complicated with increasing
m, our method for proving Theorem 2 relies as much as possible on
zero-counting techniques and adaptations of Riesz’s method to tri-
gonometric polynomials with multiple roots. Specific formulas for the
fundamental polynomials are used only for the final part of the proof.

2 PROOF OF THEOREM 2

For fixed m and < k < n, define the cosine polynomial tk,2m,n(O) by

tk,2m,n(O) Ak,2m,n(Z cos 0),



272 S.J. SMITH

and for given j put

Oj Oj,n 2j--1) 2"--.
Then tk,2m,n(O) is the unique trigonometric polynomial of degree at
most (2m + 1)n- which satisfies

t(km,n(Oj) O,r kd, < k, j < n, 0 < r < 2m. (5)

In the following sequence of lemmas the problem of finding
max0< 0< [tk,2m,n(O)[ is studied. Since this problem is equivalent to that
of finding max_l <x<llAk,2m,n(Z,x)l, the lemmas provide a proof of
Theorem 2.

(0) has zeros oforder 2m at 01, 02, On,LEMMA For <_ k < n, tk,2m,n
and oforder at 0 and 7r. Ifk- 1, tk,2m,n’ (0) also has a single zero in each
interval (Oj, Oj+ 1)for 2 <_j <_ n-l; ifk n, then tk,2m,n(O has a single zero
in each interval (0, O+ 1) for < j < n-2;/f 2 < k < n- 1, then tk,2m,nt (0)
has a single zero in each interval (0, Oj + 1) for .<_j < n- 1, j k 1, k,
and has a zero in (Ok-l, Ok + 1) that is additional to the 2m zeros at Ok. In
all cases, tk,2m,n(O) has no other zeros in [0, 7r]. Further, tk,2m,n(O) has no
zeros in [0, 7r] apartfrom those given by (5), and changes sign at each ofits
zeros. (Hence tk,2m,n(O) > 0 on (0k-l,0k + 1).)

Proof Suppose 2 < k < n- 1. By (5), tk,2m,n(O has zeros of order 2m
at 01,02,...,0n in (0,70, and (by Rolle’s theorem) has a zero in
each interval (0, 0j+ 1) for < j_< n- 1, j- k- 1, k. Further, since
tk,2m,n(Ok-1) tk,2m,n(Ok+ 1), tk,2m,n(O) has an odd number of zeros in
(0k-l,0k + 1), and so there is at least one zero of tk,2m,n(O) in (0k-l, 0k + 1)
in addition to those already identified. We have thus located
2mn+n 2zeros of tk,2m,n(O in (0, 70 Since tk,2m,n(O is odd, it also
has zeros at 0 and 7r. Hence, because tk,Zm,nt (0) has degree at most
(2m + 1)n-1, we have identified all zeros of t,Zm,n(O) in [0, 7r]. The
remaining parts of the lemma now follow immediately. The cases k
and k n are handled in a similar (indeed, slightly simpler) fashion.

LEMMA 2 For <_k <_n, the maximum of Itk,:Zm,n(O)] on the interval
0 <_ 0 <_ 7r is achieved at a unique point k k,, where f51 O, 7r, and

fhk E (Ok-l, Ok+ 1)for 2 <_ k <_ n-1. Further, tk,2m,n(qk) > O.
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Proof Fix k so that 2 _< k _< n- 1, and let a E [0, 7r] be such that

max Itk,2m,n(O)[ M-" [tk,2m,n(Ol,)l.
0<0<Tr

Suppose a E (0r, 0r + 1) for some r so that 0 _< r _< n and r -J= k- 1, k. (Note
that if r 0 or n, then a 0 or 7r, respectively.) If sgn (tk,2m,n(O)) e for

0r < 0 < 0r + 1, consider

f(O) tk,2m,n(O) (-- 1)reMcos2m+l nO.

Now,f’(0) has zeros oforder 2m at 01, 02,... On, and by Rolle’s theorem
it has a zero in each interval (0j, 0j+ 1) for _<j _< n-1 and j k-1,k.
Also,

f(Ok-1/2) tk,2m,n(Ok-1/2) (--1)r+k-leM,
f(Ok+l/2) tk,2m,n(Ok+l/2) / (-- 1)r+k-leM,

sof(Ok-1/2)f(Ok + 1/2) 0. Thusfhas a zero in [0k-1/2, 0k + 1/2], and hence
(by Rolle’s theorem),f’ has at least 2 zeros in (0k-l, 0k + 1) in addition to
those already identified at 0k. So we have located 2mn / n- zeros of
f’(O) in [01,

Note that if r 0, thenf(0)= 0, and sol’(0) has an additional zero in
(0, 01). Similarly, if r= n, then f’(O) has an additional zero in (On, rr).
Finally, if < r < n- and r - k- 1, k, then

f(a) M- eM[ cos2m+l na[,
f(Or+l/2) el&,2m,n(Or+l/2)l eM.

Iff(0r + 1/2) 0, thenf’(0) has 2 zeros in (0r, 0r + 1), while iff(Or + 1/2) 0,
thenfhas a zero between a and 0r + 1/2, and so againf’(0) has 2 zeros in

(Or, Or+l). In either case we have found an additional zero off’(0) in
(Or, Or + 1) to that already located. Overall, then, for all choices of r with
0 _< r _< n and r k- 1, k, we have located 2mn + n zeros off’(0) in (0, rr),
and since f’(O) is odd (so has zeros at 0, rr), we have identified 4mn +
2n + 2 zeros off’(0) in (-rr, rr]. This provides a contradiction, sincef’(0)
has degree 2mn + n, and so the assumption that a (Or, Or + 1) for some
r such that 0 <_ r < n and r-J: k- 1, k is incorrect. Therefore a

(0k-l,0k+ 1). Further, since tk,2m,n(O) has only one turning point in
(0k-l, 0k + 1), a is unique.
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The cases k and k n are resolved in a similar manner, and so
the proof of Lemma 2 is complete.

Note that, by symmetry, tn,Zm,n(O)---tl, Zm, n(Tr--O) for all 0. Thus the
following lemma completes the proof of the first part of Theorem 2.

LEMMA 3 For 2 < k < n-1, tl,Zm,n(O > tk,Zm,n()k).

Proof For fixed k so that 2 < k < n-1, consider

g(O) tl,zm,n(O) tk,Zm,n(O %- Ok-l
which is a trigonometric polynomial of degree at most (Zm + 1)n- 1.
Also, let I denote the interval [0-zk + 1, 02n-k+ 1) of width 27r. Note that
g(O) satisfies g(Oo)- 1, g(O-zk + 2)-- 1, and g(Oj)= 0 for -Zk + _<j _<
2n 2k + andj 7 0, -Zk + 2.

In I, g’(O) has zeros of order 2m at 0j for -Zk + <_ j <_ 2n 2k, and
by Rolle’s theorem g’(O) has a zero in each interval (0,0+) for
-Zk + 3 <_j <_ 2n-Zk, j 1,0. So we have identified (4m + 2)n-4
zeros ofg’(0) in I. Because g(O_k+ 1) g(O-zk + 3), g’ has an odd number
of zeros in (0_k + 1, 0-2k + 3), and so g’ has a zero in (0_k + 1, 0_zk + 3) in
addition to the 2m zeros at 0_k+ that have already been mentioned.
Similarly, gl has an additional zero in (0_ 1, 0), and so all (4m + 2)n 2
zeros of g(O) in I have been located.
By the above discussion, the only zeros ofg(O) on (0_1, 01) are a zero

of order 2m + at 00 or else a zero of order 2m at 00 and a zero of order
at another point in the interval. In either case, g has only one turning
point on (0_1, 0), and since g(O_l)= g(O)=0 and g(Oo)> 0, it follows
that g(0)>0 if 0_1 <0<01. In particular, this gives tl,zm,n(O)>
tk,Zm,n(O %- Ok-1/Z) for 00 < 0 < 01. Since the maximum value of tl,zm,n(O)
in [00, 01] is tl,Zm,n(O), we obtain

tl,Zm,n(O) > tk,Zm,n(O), Ok-1 0 Ok.

(Strict inequality holds at 0k because tl,zm,n(O) > tk,Zm,n(Ok).)
A similar zero-counting argument applied to

h(O) tl,zm,n(O) tk,Zm,n(O %- Ok+l

on the interval [O_zk,OZn_Zk) shows that

tl,Zm,n(O) > tk,Zm,n(O), O < 0 < 0+.
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Thus tl,2m,n(O) > tk,2m,n(O) for Ok-X <_ 0<_ Ok+X, and since bk E
(Ok-l,0k + 1), then tl,2m,n(O) > tk,2m,n(qk).

The following lemma concludes the proof ofTheorem 2 by establish-
ing the monotone increasing property and limiting value of tl,2m,n(O)
as a function of n.

LEMMA 4

ofn, and
For fixed integer m > O, tl,2m,n(O) is an increasing function

m()2m+l-2rlim tl,2m n(O) 2Z ar,m
no

r=0

where the ar,m are given by (4).

Proof By [7, Theorem 1.1], the function

(6)

sin2m+l nO ar,m n2r d2m-2r 0
T2m,n(O) 2n2m+l (2m 2r) d02m-2"’------cOt (7)

r--0

is the unique trigonometric polynomial of the form

(2m+1)n (2m+ )n-

T2m,n (0) Z bk cos kO + Z ek sin kO (8)
k=0 k=l

such that

2r)m,n() (0,rt0d’’ 0<j<2n--1_ 0<r<2m._

Now, from (7) it follows that T2m,n(O is even, and so

S2m,n(O) Z2m,n(O2t--n) f- Z2m,n(O -) (9)

is a cosine polynomial of degree no greater than (2m + 1)n which
satisfies

(r)S2m,n(Oj) tO,r tlj, <_ j <_ n, 0 <_ r <_ 2m.

Furthermore, by (8) and (9), the cos(2m + 1)n0 term in Szm,n(O) vanishes,
and so S2m,n(O) is of degree (2m + 1)n- 1. By uniqueness considerations
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it follows that S2m,n(O) tl,2m,n(O) for all 0, and hence from (7),

tl,2m,n(O) e T2m,n -n n2m+l (2m 2r)! LdO2m-2r
cot

r=0 O=Tr/(2n)

Now, from the well-known Laurent series for cot0 about 0, we obtain

o 02j_cotO 20 2[’BzYl (2j)i’=
where the By are Bernoulli numbers. Consequently, we can write

d2m-2r
dO2m_2 cot] O=/(2n)

2(2m 2r)! Cj,r

j=l
n2j-1

where the cj, are all positive, and so

m

() 2m+l-2r m o ar,m Cj,tl,2m,n(O) 2Z ar,m Z Z (2m 2r)’ n2j+2m-2r"
(10)

r=0 r=0 j=l

By the definition (4) of the at,m, and the expansion

sin 0 +
=

(22,,_ 2) 02J_ o< tot

it follows that the ar,m are all positive. Thus, by (10), tl,2m,n(O) is an
increasing function ofn, with limit as given by the right-hand side of (6).
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