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In this paper we obtain some estimates in [—1, 1] for orthogonal polynomials with respect
to an inner product of Sobolev-type

1 1
(fig) = /lfgdﬂo + /If’g’ djn
where

due = I'2a +2)
Ho = 3G T2 (o + 1)

dpr = N[6(x+ 1) +6(x—1)], M,N>0 and o> —1

(1= xH)*dx + M[5(x + 1) + 8(x — 1)]

Finally, the asymptotic behavior of such polynomials in [—1, 1] is analyzed.
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402 A.F. MORENO et al.
1. INTRODUCTION

In [3], Bavinck and Meijer introduced a nonstandard inner product
involving derivatives

1
(fig) = / Fedpa + M{D(1) +A-Deg(~1)]
+ N (D' (1) + (= 1)g'(~1)] (L1)
where M >0, N> 0 and

I'(2a +2)

2\«
m(l—x) dx, a>—1

dpo(x) =

is the probability measure corresponding to the Gegenbauer (or ultra-
spherical) polynomials.

Such inner products are called Sobolev-type inner products. Notice
that (1.1) represents a particular case of the symmetric case analyzed
in [2].

In [3], the authors studied the representation of polynomials ortho-
gonal with respect to (1.1) in terms of the ultraspherical polynomials,
their expression as hypergeometric functions 4F3 as well as they obtained
a second order linear differential equation that such polynomials
satisfy.

In a second paper [4], they proved that the zeros are real and simple.
For N >0 and the degree of the polynomial large enough, there exists
exactly one pair of real zeros +p, outside (—1, 1). Furthermore, a five-
term recurrence relation for these polynomials is obtained. Notice
that in the case M =N=0, the zeros are real and simple, they are
located in (—1, 1) and the polynomials satisfy a three-term recurrence
relation.

The aim of our contribution is to obtain estimates for such non-
standard orthogonal polynomials through their pointwise behavior
as well as for the uniform norm. Thus, we generalize some previous
work of us relative to the Legendre—Sobolev type inner product
(a=0), [6). In Section 2, we summarize some results about ultra-
spherical polynomials that we will need later on, as well as some
basic properties for polynomials orthogonal with respect to (1.1).
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In Section 3, we obtain the estimate of the norm of the orthonormalized
polynomials {1?,(,0‘)},,>0 with respect to (1.1). In Section 4, we find
estimates for such pBlynomials in (—1,1), an estimate for their uni-
form norm as well as their behavior at the ends of the interval. We also
find an estimate for the uniform behavior in compact subsets of the
domain C\[-1,1].

2. GEGENBAUER POLYNOMIALS: BASIC PROPERTIES

If the nth ultraspherical polynomial is given by the Rodrigues formula

R;(f)(x) — é;l_‘l()nl;‘(z—: 11)) (1 _ x2)—aDn((1 _ x2)n+a)

o> —1, then it is very well known that
1
/ RY(X)RY(x)(1 = x})*dx =0 for m #n.
-1

Furthermore R (1) = 1.
On the other hand, for k=0,1,...,

k

kpe) () — (D (n+ 20+ 1), (=) path)
D*R;¥ (x) o+ 1), R, (x). (2.1)
Here (a), is the shifted factorial defined by

I'(a+n)
I(a)

(@), =ala+1)---(a+n-1)= forn> 1.

Taking into account the representation of the Gegenbauer poly-
nomials

1—
Rf,a)(X) =k (—n,n +20+1; 0+ 1;_2.._)f)
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as an hypergeometric function, we deduce that the leading coefficient
kn(c) of R is

(n+2a+1), TQ2n+2a+ I (a+1)

knle) =0t ), 2Tn+oa+t)T(n+2a+1)

(2.2)

This means that the squared norm of R,(,a) in the space Lfl_xz)a is

2204112 (o + 1)n!
2n+2a+1DI'(n+2a+1)

IR@) |2 / IR@ ()[2(1 = x2)% dx =

(2.3)
(see [8, formula (4.7.15) in p. 81]).
Hence,
IR} et
and, as a consequence, for k> 1
I Rna;ik)”iﬁk o - (ortakt1) (2.4)

This kind of estimates will be very useful in the next section. Notice that
these polynomials satisfy a three-term recurrence relation

xR (x) = B R, (x) + AR, ()
where

,B(a) n+2a+1
n

2n+20+1°
VG R
n 2n+2a+1

We also use (see [8, formula (8.21.10) in p. 196])

n'T(a+ 1)

() _— o\
R)*(cos ) AT+ 1)

k(6) cos(nf + ) + O(n~@+3/2))

(2.5)
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where

1

6 o\
= 712 sin~ hd
k@)= (sm 3 €08 2)

n=n+oa+i
y=—(a+Yn/2 0<b<m

The bound for the error term holds uniformly in the interval [e, 7 — €].
Finally, because of the normalization for the sequence {Rﬁ,a)}n20 it
follows that

max (1 - 2) |D2kR "‘)( )| < Cc 2. (2.6)

—-1<x<1

Interms of the ultraspherical polynomials { Rn )}n>0, Bavinck and Meljer
found the following representations for the polynomials {Bn |
orthogonal with respect to (1.1)

LemMma 1
(@) (x) = (anX*D? + byxD + ¢,) R (x) (2.7)
(9  q_,22ps 22 ()
(4(a+2)(a+3)(1 x°)°D" +dy(1 — x°)D —l—en)Rn (x)
(2.8)
where
a4 = MN 42 +3),2a+3),, 22ac+3),_ (29)

(a+ 1)(a+2)nl(n—2)! (a+D)(n— 1)

42a +3),(2a + 3),_,(n* + (2a + 1)n — 3o — 3)

by = —MN (e + 1)(a+2)(a+3)nl(n—2)!
220+ 2),_ 2a+3), 4 + 2a+ )n—do - 4)
-M ) l_N 1(a+1)(n—1)! ’

(2.10)
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(2o +3),,12a+3),,
(n—1D(n=3)(a+ 1) (a+2)*(a+3)
2Q2a+3),, N(2a +3),_1(n—2)(n+2a + 3)

=1+ MN

M=) o+ Dat2)@t3)n-1)
x ((a+2)n* + (e +2)2a + Dn+ 20+ 2), (2.11)

_ NQa+3), (n—=2)(n+2a+3) (2a+3),
h==7 (a+11)(oz+3)(n—1)! M @)
en=BO(1)=1-% Qo+ 3),., L@

2 (a+ D)(a+2)(a+3)(n-3)

As a straightforward consequence of the above representations, they
deduced that the leading coefficient of Bﬁ,a) is

(n—=1)(n—-2)(n-13)
4(a+2)(a+3)

uy (@) = kn(a) " ay —n(n—1)d, + ey,|.

In the next sections we will denote f{r) = g(n) when there exists universal
constants C, D € R™ such that Cf(n) < g(n) < Df(n) for nlarge enough.

3. ESTIMATES FOR THE NORM OF THE
GEGENBAUER-SOBOLEV TYPE POLYNOMIALS

If we denote {1?3}n>0 the sequence of polynomials orthonormal with
respect to the inner product (1.1), i.e.,

_ I'(2a+2) !
+ M[By(1)B3,(1) + B3 (—1) By (-1)]
+N[{BY (N{By} (1) + {ByY (-D{B5} (-1)]

bam B () By (x)(1 - x)° dx

then

B3 (x) = MBI (x)
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where

3= ?gﬁ_(%%_) / (B (1 - )@ dx
+ 2M[Bff‘)(1)] +2N[{BY (1) ?

First we will compute the integral. In fact, because of (2.8)

/_ 11 [Bga>(x)]2(1 —x)%dx

_ /1 a ( 2) [D4R(a)()€)] a _xz)adx
_ 16(

a4 2)%(a+3)?

/ d>(1 - D2R(°‘)( )] (1 - x})*dx
+3[4n[R$(xﬂ (1 - ) dx
+4‘(a——f;"(a”—+3)/ (1= )" D* R (x) DRI (x)(1 — )" dx

2a,e,

_ “Gnbn __x24(a)x (@) _x2ax
t i [ (1P ROWRI - )

+ 2dnen/ (1 = x2)D*R@ (x) R (x)(1 — x?)* dx
-1
=h+L+6L+14i+ 15+ Ig. (31)

Taking into account (2.1)

aﬁ(~n)i(n+2oz+ 1)421 (a+4 2\a+4 x
_163(a+2)2(a+3)2(a+1)3/_ [R50 )] (1 - 2)a

— aﬁ(_n)z(n +2a + 1)421 “ a+4 H2
163 (a+2) (o + 3)2(a + 1)2 " ot
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In a similar way, using (2.1)

_dX(=n)(n+20+ 1) ! (2+2) _ L 2ya2
ST /_1[ (x)] (1 - )2 dx
( ) (n+2a+1)2” Ot+2 ”
16(a + 1)3 ot
L= e[| RV|2,
andn(_n)z(n +2a + 1)2
8(a+2),(a+ 1),
x / (1) [ R ()| RSP () (1 = %)+ dx
. n n—2
and, n(n—1)(n—2)(n—3)(-n),(n+2a+1),
“2(a+2), 4(a+1),
kn(a) (o
X m” +2 ||
andnnz(n _ 1)2(n — 2)(” _ 3)(" + 20+ )2 “R a+2)“
32(a +2),(a+1)3

Iy =

a+2

a+2

2a,e, 1 . 2 .
Is=mn(n— 1)(n—2)(n-—3) [l{Rg)(x)] (1_x2)
2a,e,

=——FF——nn—-1)(n-2)(n- )| 2
- T — D=2 = DR,
Is = —2d,e,n(n — l)llRﬁla)Hi.

As a conclusion, (3.1) can be expressed

_ =1’ (n=2)*(n =3’ (n+ 20+ 1); IREE)2
" 163(a +2)*(a +3)*(a+ 1)2

N dan*(n — 1)*(n+ 20 + 1)? q - (n—=2)(n—- 3)a,,] “R(Oﬁ.z 2
16(c + 1)5 ! 2(a+2), o2

o+4

+eylen—2n(n—1)d, +

n(n—1)(n=2)(n=3) 1 o2
2(a+2)(a +3) ”] 1Rl
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={n(n~1)(n—2)(n—3) (n+2a+1), 2

16 (a+2)2(a+3)2 n*
tealen = 2t = D+ M S O
On the other hand
B;(f)(l) = én, (3_2)

{BY (1) = 24, {R}" (1) + en{ R} (1)

_ a)y/ (2a+3)n
= RO+ G D)=
_nmn+2a+1) @i (2a+3),
T2 a+l R (1)+(a+1)(a—|—2)(n—2)!
_n(n+2a+1) (2a+3),
T2 a+l (a+1)(a+2)(n-2)!

M

M. (3.3)

Thus

2
)‘;2=2Me3+2N<n(n+2a+l) (2a+3), )'M>

2(a+1) (a+ D(a+2)(n-2
I'2a + 2)n!
Tt 2a+ D+ 2a+ 1)
o {n(n—l)(n—2)(n—3) (n+2a+1), 2
16 (a+2)*(a+3)7* "

+n(n—1)(n+2a + 1),d>

_n(n—1)(n—2)(n-3)
2(a+2),

(n+2a+1),a,d,

+é2— 2n(n — 1)e,d, +n(n —D—2)(n-3) anen}.

2(a+ 2)(a + 3)
(3.4)
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In order to estimate A, 2, we will distinguish the following three cases:

1. M>0, N>0, then

nn—-1) 2a+n+2 , n

=4 N 2N——— ns
an = 4M (oz+1)(a+2)2a+n+la”+ at1”
d, ——En(n—_z)(n+2a+3)a —2M—1—a
" 2(a+1)(a+3) " 2a+n+1""
. _I_En(n—1)(n—2)(n+2oz+3)(n+2a+2)a
T2 (a+1)(a+2)(a+3) §

where
I'Ca+n+2)
ap =

T TQRa+3)I(n+1)

But, according to the asymptotic behavior of the gamma function
(see [7, formula 8.16 in p. 88])

27(
~e X —_
D(x) ~e™*x*

then
o & not (3.5)
and
ay ~ ot (3.6)
dn S n20¢+4’ (37)

en = n*t6, (3.8)
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Thus

~1 2
M= aMe + 2N(n(n+2a+ 1) (n+2a+2)n(n )Ma,,)

Na+l) T (@t 1),

1 n+2a+11 (n—3)4(n—+—2az+1)4a2
2004+ 22n+ 20+ 1 16 (a+2)3 "

+n(n—1)(n+ 20+ 1),d? —L)i(n + 20+ 1),a,d,

2(a+2),
( 3) ~ a+
+e - 211(]1 — l)end +manen} ~ pbat1s, (39)

2. M=0, N>0, then

2Nn

@+
d——ﬁ n(n—2)
" 2(a+D)(a+3)
N(n— )(n+20¢+2)2
2 (a+1),

an =
(n+2a+3)ay,

e, =1-—

Thus

ap ~ n*et?, (3.10)

d, ~ n*+4, (3.11)

en ~ n¥ts, (3.12)

and

A2 pPetll (3.13)
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3. M>0, N=0, then

Thus

As a conclusion

PROPOSITION 1

a, =0,

q = 2Ma,
"7 2a+n+1’
e, =1.

-2 2043
il .

n352 M0 N>,

A= B3 ~ {n—@—“/2 M=0 N>O0,

COROLLARY |  The leading coefficient v,(c) of BY (x) satisfies

ne32 M>0 N=0.

vn(a) = 2",

Proof The leading coefficient of B (x) is

n(n

—Dn=2)(n-3)

(e

4(a+2)(a+3)

ap —n(n—1)d, + en}.

Thus we will distinguish the following three cases:

1. M>0,N>0

Va(a) Ao p3em15/2m k201 /2 0 1/2dat8  ont2ortl/2,

2. M=0,N>0

vn(@) = n

—a—11/2pn+2a+1/2,—a=1/2, 2046 _ pn+20+1/2

(3.14)

(3.15)

(3.16)

(3.17)
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3. M>0,N=0

vn(a) ~ n-—a—3/22n+20z+1/2n—a—1/2n2a+2 — 2n+2a+1/2'

4. ASYMPTOTICS FOR GEGENBAUER-SOBOLEV TYPE
POLYNOMIALS

Now we are going to deduce a formula similar to (2.5) for the polynomial
B, Using (2.1) and (2.8) it holds

ay (m+2a+1),(

B (x) = at+2)(a+3) 2Ha+t 1)4—’1)4 (1 - x*)*Reti(x)
+ e, Ry (x).

Putting x =cos 6 and taking into account that v'1 — x2 = 2sin § cos §,
we have

o nT(a+1
BSI )(COS 0) = 4P(n(+—a-|-)1)k(0) COS(no + ’)/)
(m+2a+1),  (n+2a+1), 4

a en—T75
“a+2,(n-4)" " (-2 a2

+ ano(n—a+5/2) + dno(n—a+l/2) + e,,O(n“"“3/2).
Now we distinguish the following three cases:
1. M >0, N>0. Using that

(Za + 3),,(2& + 3)n—2

an = AMN o + 2ynl(n = 21

+ 0(n2a+2),

~ plat4
dnwna .

ey~ n2a+6 ,

we get

I‘(a+ l)n3a+15/2
(a+1)(a+2)*(a+ 3)(T(2a + 3))?
x k() cos(nf + ) + O(nP)

B (cos 6) = MN
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where

b

g= 3a+8 a>-1,
a+d —I<a<-

NI—

and N, «y are the same constants as in (2.5). The bound for the error
term holds uniformly in the interval [e, 7 — €].
2. M =0, N> 0. Doing the same kind of calculations it holds

P(Oz+ l)na+11/2
8(a+ 1)(a+ 3)I'(2a + 3)
+ O(na+9/2)

B®(cos 6) =N k() cos(nb + )

and N, v are the same constants as in (2.5). The bound for the error
term holds uniformly in the interval [e, 7 — €].
3. M >0, N=0. In this case we have

[(a+ 1)net3/?

B®(cos 6) = M k(6) cos(nf +v) + O(n?)

I'2a+3)
where
_fa+h ez}
s={0hy ey

and N, v are the same constants as in (2.5). The bound for the error
term holds uniformly in the interval [e, 7 — €].

Since the polynomials {D“Rf,"‘)}n24 are orthogonal with respect
to the weight function (1 — x*)® ™4, using (2.5) we get

(1 _ x2)2‘D4R£la) (x)l S Can—-a+7/2(1 _ x2)—(0¢/2+1/4) (4'1)

where the constant C, is independent of € N and x € (-1, 1). In the
same way

(1= )| D2RE (x)] < Cono™32(1 — x2)~9 (42
where, again, the constant C,>0 is independent of n€N and

xe(=11).
Using (2.8), (4.1) and (4.2), we have the following estimate.
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PROPOSITION 2
BO(x) < Cd — I ,-etT)2
1B ()] < a{(a+2)(a+3)n
+|dn|n—a+3/2 + |en|n—a—1/2}(1 ~x2)_°‘/2“1/4

where the constant C,, > 0 is independent of n € N and x € (—1, 1).

Next, we will deduce the uniform estimates for the orthonormalized
polynomials {Bf,a)}nzo. Taking into account the expression of { B Fnz0
in terms of {BS,O‘)},,ZO

B (x)] = Al B ()]

an 22| 194 pla)
< % _
= )\"{4(a+2)(a+3) max (1= X) DR ()]

+ldo] max (1 - %) DR )|

(a)
ol s IR0}

But, from (2.6), we get
|E£ta) (x)| < Ca)\n{ann4 + ldnlnz + |6n|}.

Thus

PROPOSITION 3

A(c) at1/2
max, |B(x)] < Con®t/%, neN.

Proof Asin the above propositions, we must distinguish three cases.
1. M>0, N>0,then

A ~(3a+15/2) f  4a+8 | 20+6\ _ 12
max, |B (x)| < Con=Bat15/2) {plat8 4 platbl — ¢ pot1/2,
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2. M=0, N>0, then

max IB(a (X)| <C, n—(a+11/2)n2a+6 C, na+1/2
—1<x<

3. M>0,N=0, then

max IB(a (x)l < Con (a+3/2) 2042 __ =C, na+1/2
—1<x<

Finally, the comparison of the above two estimates leads to the analysis
of the behavior of | B, (1)| as well as [{B}}'(1)].

PROPOSITION 4
n32 ifM>0N>0, or M> 0, N=0,

|B2(1)| ~
" netl/2 if M =0,N > 0.

o —o=72 i{f M >0,N >0, or M=0, N > 0,
By (D] = { o452 if M > 0,N =.0.
Notice that for a =0 we recover Proposition 3.4 in [6].
Proof Taking into account (3.2), and (3.3),
1By ()] = Me

sy [+ 2a+1) 2a+3),
‘{Bﬁ“}(l)’““[ a+1) +(a+1)(01+2)(”—2)!M]

Thus
(i) fM>0,N>0,then

B2 (1)] e,
B2y (1) ~ ne T
(i) fM=0,N>0,then
B2 (1)] 12,
HB2Y (1)~ nmT
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(iii) If M>0, N=0, then

By ()] = 02,
{ByY (1)] = n*+32,

As a last step we deduce the uniform asymptotic behavior of the
sequence {Bn }i>0 in compact subsets of the domain (C\[ 1, 1].
Setting 1 = R /|| Y|, and dividing (2.7) by [|[R\¥)]|,, we have

o o422
By (x) _ an(n+ 20+ Don(n = 1) IR s 12 )
IR 2(a+1), IR,

a+2)
(n+2a+ 1)1 [R50 s
I\ 19 (x).
2(a+1) ”R(a)” 1 (%) + ealy ¥ (x)

+ by

The following asymptotic formula for {1,5‘”} (see [8, formula (12.1.3)
in p. 297]) is well known

@ (% (z + %)) \/12721 le(z) H+o(l)], |d<1  (43)

where o(1) holds uniformly inside the unit disk and D,, is the so-called
Szego’s function which is defined in the following way:

+m it
Do) = exp{%T / %ii‘i— In(w(cos £)|sin t|)dt}

- ze™H
where

w(x) = (1 —x)*
The Szegd’s function satisfies

(@) D.(z)€ H>.

(b) D(e?)=lim,_,,-D(re”) exists a.e. and |D.(e?)|*=uw(cos())
|sin (0)|.

(¢) D(2)#0, |z| < 1 and D,(0) > 0.
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Now using (4.3) we distinguish the following three cases, and for each of
them the result holds uniformly in compact subsets of the domain
C\[-1,1].

1. M>0,N>0

Bsza) (x) ~ l(a) (x)
e,

or, equivalently,

S
nda+8 R;,a) (x)

2. M>0,N=0

(e)
_ B ~ 19 (x)
2 R,

or, equivalently,

B (x)
n2a+2 Rfl"‘) ( x)

3. M=0,N>0
B (x)

— 1~ 1@(x)
SR,

or, equivalently,

B (x)

W % l~
n2e+6 R (X)
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