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1 INTRODUCTION

Consider a vibrating string having density function p(x) with fixed
points. Its characteristic frequencies of vibration are determined by the
eigenvalues A A(p) of the system

y" + Ap(x)y=O, y(O) y(l) =O, O < x < l, (1)

being a positive real number. There will be an infinite sequence of
positive eigenvalues AI(p) < A2(p) < which increase without limit.
M.G. Krein [4] has solved the following problem: Let E(0, H, M) denote
the class of all integrable functions p on (0, l) such that fd p(x) dx M
and 0 < p(x)< H a.e. x E (0,1), where here and below H and M are
given constants satisfying HI > M. Then for all p E E(0, H, M) and each
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integer n he obtained

4n2H_ /M’ nTr2H
X[-,] _< An(p)_< (2)M2\r/

where X(t) is the smallest positive root of the equation X1/2tgX1/2=
t(1 t)- 1. Estimates (2) are sharp for all n. For n 1, the upper bound
is attained only at the step function Po defined as

H if x e [0,M/(2H)],
po(x) 0 if x e (M/(2H),I- M/(2H)),

g if x e[l- M/(2H), l].
(3)

Inequalities (2) are recently extented to some classes of differential
equations [2]. Let for example An(q, p) denote the nth eigenvalue of the
boundary-value problem

y" q(x)y + Ap(x)y O, y(O) y(l) O,

where q(x) e LI(O, l) is nonnegative. Put M f q(x) dx. Then

An(q, p) < M2 + + n2HTr2

In [1] and [3] the authors have studied the problem of determining the
shape of the column hinged at its both extremities and having the
smallest (largest) buckling load among all columns of length and
volume V. This problem is equivalent to that of finding a nonnegative
function (cross-sectional area) A(x) which minimizes (maximizes) the
first eigenvalue of the following problem:

+ o, (4)

y(O) (AZy")(O) O,

under the condition that

y(l) (AZy")(l) O,

tA(x) dx V, (6)
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where V> 0 and/3 is a nonzero real number. It is proven that the
infimum of A(A) over condition (6) is zero if/3 is outside the interval
[- 1,0). For each/3 [- 1,0) the inequality

), (A) _> r-2-ve (7)

holds for all A satisfying (6). F is a constant given by

if fl E (-1,0) and F_ --4. Here B is Euler’s Beta function. In addition,
there exists an optimal shape J such that )1 (z) FI-E-v. For
fl > 0 and fl < -2 they found that

AI(A) _< C3I-2-3V (8)

for all A satisfying (6), and there exists a best shape A such that

A1 (t) Ffl-:-aV. In (8), C is also a constant depending only on ft.
Notice that if V is fixed and 0 then A1 (J) o. For other works
concerning extremal problems for eigenvalues see [2] and the references
quoted there.

2 SHARP INEQUALITIES

Suppose a number of strings (and perhaps some rods as well) are all
vibrating together and that they each have density function pi(x), length
li and eigenvalues An(Pi). The fundamental frequencies of vibration A
and the total mass of the system are determined by

A min(A1 (pi)}, M i" pi(x) dx.

One might maximize A subject to a given mass constraint. In a similar
way, consider a single large load, being supported by several columns
of length li and total volume V. The critical buckling load of each
column is determined by an eigenvalue problem similar to (4) and (5).
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To minimize the load-carrying capacity of the structure, one would
want to minimize the sum of all the first eigenvalues for each of the
systems. To solve the first problem we shall use two lemmas. The first
one is based on the convexity of the functional xH xp.

LEMMA LetXl,...,XkbepositivenumberssuchthatXl + +Xk= 1.

Ifp > orp < O, then the inequality

P > kl-pxf -[-...--[- xk

LEMMA 2
we have

holds. IfO <p < 1, then

P <kl-p.x +... + xk

PisMoreover, in each case the extremum of the function x +... + xk
attained only at the point x Xk 1/k ifp 1.

A system of k strings {Pi}ik=l is said to be admissible if each
member Pi E L1(0, li), li < l, 0 < pi(x) <_ H a.e. x (0, li) and -i li 1 and

Ei fi 19 dx M.

For each real 7 > 1/2 and for all admissible system {Pi}g=l,

k
k1_2 (___H)

Equality is attained at every system {Oi}i=l whose each member 0 is of
theform

H if x [O, MI(2Hk)],
pi(x) 0 if X (MI(2Hk), li MI(2Hk)),

H if x Ill M/(2Hk), li].

Proof From (2), it follows that for all pi we have

A1 (Pi) <_ 7rEH pi dx

In view ofthe remark given in theend ofthe last section, we cannotconsider theproblem
ofmaximizing this sum.
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so for each a > 0, we obtain

foli ) 27
Pi dx <_ 7r27HTA1 (pi)-7.

Hence

,,
pidx < 7r2"rH’r /1 (Pi)"r" (9)

If7 > 1/2, then by the first part ofLemma 1, the lefthand side of(9) is greater
than M2"k ’ and therefore

k

M27kl-20’ -< 71"27H’
,1 (Pi)7

which proves the inequality in the lemma. If7 > 1/2, then by Lemma 1, (9)
becomes equality only if fi pi(x) dx M/k, 1,..., k.

THEOREM Let {Pi}ik=l be an arbitrary admissible system. Put
A mini {A (Pi)}" Then we have

k27r2HA<
3//2

andequality is reached only by the optimal systems indicated in Lemma 2.

Proof We have

(M2k-1)
by virtue ofLemma 2 applied for " 1. Consequently, A < 7rZH/(M/k).

Let now {Ai)ik=l denote a system of k columns, each one is of length
li and hinged at both extremities. The system is said to be admissible
if -ili and ,i fro’ Aidx V, where and V are given constants.
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To give answer to the second problem, we shall use the following lemma:

LEMMA 3 Let r, s be nonzero real numbers. Denote by E the set of all
vectors X=(Xl,X2,... ,x,)E (]0, 1[)n satisfying 7=1 xi < and define
thefunction F" E E-R by

--XlY + +...x2Y2 XnYn
+ (1 Xl X2 Xn)(1 Yl Y2 Yn).

Ifrs < 0 and r + s > 1, then thefunction Fattains its minimal value Fmin
(n + 1)1 r+ s when X= Y= (n + 1)-1(1, 1,..., 1). If rs > 0 and 0 <
r + s < 1, then F attains its maximal value Fmax (n + 1)1 r + s) when
X= Y (n + 1)-(1, 1,..., 1). Furthermore, in each case the extremum
point is unique ifr + s 1.

The idea of the proof is to show that F attains its minimal (maximal)
value inside a square [6, 1- 6] [6, 1- 6], where 6 is a small positive
number, and next to establish the standard necessary conditions for
optimality. We mention that if r and s do not satisfy the first (second)
conditions ofthe lemma, then Fis not bounded below (above) i.e. it can
take arbitrary small (large) positive values. Note finally that in general
the extremumpoint in the lemma is not unique ifr + s 1. Indeed, for this
case, one may easily verify that the function F achieves its maximum

Fmax at every couple (X, Y) E E x E satisfying xi Yi for 1,..., n.

THEOREM 2
we have

For each/3 [- 1, O) andfor all admissible system {Ai}ik=l

k kaFVE )1 (Ai) >_ 12+"

Moreover, equality holds only when li= l/k and Ai(x) A/3(kx) for all
x (O,l/k), i= 1,... ,k, where ft/3 is the shape of the weakest column
subjected to condition (6).

Proof Let {A}i be an admissible system of columns. Then (7) reads
for each

l (hi) >_ i/31y 2_/3 (fol )/3Aidx (10)
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Remark that as/3 E [- 1,0), we cannot use the first part of Lemma 3 to
obtain a lower bound for Y]i AI(Ai). We shall then proceed as follows:
Inequality (10) may be written as

)1 (Ai)
< Ai dx

-fl

or

/l (Ai) l/2 Ai dx

By the second part of Lemma 3, we get

F/2 i l+/2 V_/2
)kl(Ai)1/2

(11)

From Lemma and (11), we may deduce that

1/2

> kl+l/2
,l(Ai)l/2 - kl+ /2Flfl/2 Vfl/2

l +fl/2

and hence

Y1 (Ai) k3Ffl V1-2-.
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