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1. INTRODUCTION

An investigation of initial value problems (IVPs) of differential
equations where the initial time differs with each solution is initiated
recently in [3,4,7]. When we deal with the real world phenomena, it is
impossible not to make errors in the starting time and therefore it is
important to study the variance in initial time. Whenwe do consider such
a change of initial time for each solution, then we are faced with the
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problem of comparing any two solutions which differ in the initial
starting time. Theremay be several ways ofcomparing and to each choice
of measuring the difference of two solutions, we may obtain a different
result. In [3,4,7], an attempt was made to discuss such situations in one
direction. In this paper, we shall consider another approach of com-
paring so that we can utilize the existing results.

2. PRELIMINARIES

Consider the differential equation

x’ f(t,x), x(O) xo, (2.1)

wherefE C[I x R, R], I= [0,T]. Let us list the following results for our
later use.

THEOREM 2.1 Let

(i) ao,/3o E CI[I,R],f C[Ix R,R]andao <_f(t, ao), o _> f(t,/3o) on I;
(ii) ao(t) < o(t) on I and ao(O) _< Xo </30(0);
(iii) f(t, x) f(t, y) >_ M(x y), ao(t) < y <_ x <_/30(0, I.

Then there exist monotone sequences {a,(t)}, {/3,,(t)} such that

an(t) p(t), /3n(t) r(t) as n o,

uniformly on L (p, r) are the minimal and maximal solutions of (2.1)
satisfying ao(t) <_ p(t) <_ r(t) <_/3o(t) on I.

For a proof, see [5]. We need the following lemma, to prove a cor-
responding result ofTheorem 2.1 for terminal value problems (TVPs).

LEMMA 2.1 Letp cl[/ R] andp’(t) < Mp(t), M> 0 with p(T) > O.
Then p(t) > 0 on I.

The proof is immediate since p(t) >p(T)et(r- t) and p(T) > O.
We also need the following existence result.

THEOREM 2.2 Assume that condition (i) of Theorem 2.1 holds. Suppose
that a0(0) </30(0). Then there exists a solution x(t) oflVP (2.1) satisfying

m(t) < x(t) < M(t) on I,



CHANGES IN THE INITIAL TIME FOR SOLUTIONS 165

provided a0(0) < x0 </30(0), where m(t) min[a0(t),/30(0] and M(t)
max[a0(t),/3(t)], E L

This result is proved in [6] under the setting of Caratheodory con-
dition. Note that the usual condition ao(t)</30(0 on I is not assumed
in Theorem 2.2. See [5,6] for details.
We can now indicate the proof of the following result on TVP

y’ f(t,y), y(T) Yo, (2.2)

which corresponds to Theorem 2.1.

THEOREM 2.3 Let condition (i) of Theorem 2.1 hold. Supposefurther
(ii)* to(T) < Yo < ao(T) and 3o(t) < ao(t) on I;

(iii)* f(t, x) -fit, y) > M(x y), to(t) < y < x < ao(t), 1, M >_ O.

Then there exist monotone sequences {an(t)}, {/3n(t)} such that

an(t) -- p(t), fin(t) -- r(t) as n --
uniformly and y(t)--p(t)--r(t) is the unique solution of (2.2) satisfying
3o(t) <_ y(t) <_ ao(t), I.

Proof We shall merely indicate the proof. Consider the linear
differential equations with TVPs given by

o:. =/(t,
Yn

an(T) Yo,

 n(V)

It is easy to see that for each n, an,/3n are the unique solutions of the
TVPs on I. Also, using Lemma 2.1 and following the proof of Theorem
2.1 in [5], one can show that

which yields using standard argument that an p,/3n r as n c

uniformly on/, (p, r) are solutions ofTYP (2.2) and

o(t) <_ r(t) <_ p(t) <_ ao(t), I.

Since condition (ii)* is left uniqueness condition, it follows that r(t)=
p(t) y(t) is the unique solution ofTVP (2.2) and the proof is complete.
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3. MAIN RESULTS

Let us begin with the basic results on differential inequalities.

THEOREM 3.1 Assume that

(i) a,E CI[R+,R],fE C[R+x R,R]and

a’ < f(t, a) a(to) < xo,

’ > f(t,), (ro) > xo,

(ii) f(t, x) -fit, y) < L(x y), x > y, > 7"0;

S(iii) 7"0 > to and ff f( a(s)) ds < O.

Then a(t) < (t), > 7"0.

t>_to>_O,
t_> 7-o _> 0;

satisfying

THEOREM 3.2 Assume that

(i) a,/3CI[R+,R], fC[R+R,R] and a’< f(t,a), to<_t<_7"o+
T,fl’ > f(t, fl), 7"0 < < 7"0 + T, to, 7"0 > O, and c(to) < Xo < (7"o);

S(ii) to < 7"0 and f( a(s) ds < O.

Then there exists a solution x(t oflVP

x’ f(t,x), x(ro) xo, (3.1)

m(t) <x(t) < M(t), 7-o< <_7-o+ T,

where m andMare thefunctions as defined in Theorem 2.2.

(3.2)

Proof As in Theorem 3.1, we get

_<  (t0) _< xo _<

We then apply Theorem 2.2 to get the desired result.

Proof We have, using (/) and (iii),
TM

a(7"o) < a(to) + f(s, a(s)) ds < a(to),

which implies a(7"o) < Xo < (7"o). The standard result [2,5] now yields the
conclusion. Based on (2.2), the following existence result can be proved
immediately.
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We shall next discuss monotone iterative technique in the present
framework.

THEOREM 3.3 Assume that conditions (i) and (ii) of Theorem 3.2 hold.
Supposefurther that

f(t,x) f(t,y) >_ -M(x y), x > y, M > O. (3.3)

Then there exist maximal and minimal solutions (r, p) of IVP (3.1) on

7"0 < < 7"0 + Tsuch that

m(t) < p(t) <_ r(t) <_ M(t), 7"0 <_ <_ 70 + T,

where m, M are the samefunctions defined in Theorem 2.2.

Proof We note that conditions (i) and (ii) of Theorem 3.2 show that
c’ < f(t, c),/’ > f(t, 1) for 7-0 < < 7-0 / Tand c(7-o) < x0 < 1(7-0). Let

,4 [t e J: c(t) </(t)],
B=[tEJ: /(t)<c(t)] and C=JAUB,

where J [7-o, 7-o + T]. The sets A and B are countable union of disjoint
open intervals in J, namely,

A U(a,, b), B U(aj, ).
i=1 j=l

As an application ofTheorem 2.1, we get for each i, there exist minimal
and maximal solutions (Pi, ri) of IVP

X f(t, xi), x(ai) m(ai) if ai 7 7-0, x(7-o) xo,

such that

a(t) < pi(t) < ri(t) < (t) in [ai, bi].

Similarly, applying Theorem 2.3, there exist, for each j, a unique solu-
tion yj(t) ofTVP

y} f(t, yj), yj(bj) m(bj)
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such that

fl(t) <_ yj(t) <_ c(t), for E [tj, bj].

We now define (p, r) on J by

[pi(t) in [ai, bi],
p(t) yj(t) in [j,/],

Lm(t) otherwise,

ri(t) in [ai, bi],
r( t) yj(t) in [j, bj],

m(t) otherwise,

from which it is easy to see that p’ =fit, p), r’ =fit, r), E A t_J B. Since for
any tl C, cg(tl), ’(tl),m’(tl),M’(t) exist and c’(tl)--/’(tl), it follows
that c’(tl) --/’(tl) m’(tl) M’(tl). Moreover, we have

re(t) m(tl) < p(t) p(tl) < M(t) M(tl)
t-tl t-tl t- tl

fort> tl,

(tl). Similarly, for < t,wecangetand as a result, we obtain p+ (tl)
p’_(tl)=a’_(tl) and therefore, p’(t)=a’(t)=f(t,c(t))=f(t,p(t)) for

C. Similar proof holds for r(t). We thus have

m(t)<p(t)<r(t) <M(t), tJ,

and the proof is complete.

4. VARIATION OF PARAMETERS

Consider the differential systems

y’=F(t,y), (4.1)

x’ f(t,x), (4.2)
wheref, F C[R+ Rn, R"] and F(t, 0) 0. Ifwe assume that OF/Oy(t, y)
exists and is continuous on R+ R", then we know [2] that Oy/Oto
(t, to, x0) and Oy/Oxo(t, to, Xo) are the solutions of the variational system

z’ Fy(t, y(t, to, xo))z, (4.3)
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satisfying the initial conditions

Oy
(to, to, xo -F(to, xo),Oto

to, to, x0) identity matrix

and the identity

Oy
(t, to, x0) + Oy

(t, to, x0)F(t0 x0) 0,
Oto -8xo for (t, to, xo), (4.4)

holds, where y(t, to, Xo) is the solution of IVP (4.1) existing on [to, o).
Then the relation between the solutions x(t, to, Xo) of (4.2) and y(t, to, Xo)
of(4.1), which start at the same initial date (to, Xo), can be obtained by the
method ofvariation ofparameters. For, settingp(s) y(t, s, x(s)), x(s)
x(s, to, Xo), to < s < t, we have

dp()
ds

Oy
(t,s,x(s)) + Oy

x(s))f(s,x(s)) =_ g(t,s,x(s)) (4.5)ot--; xo (t’’

Integrating (4.5) from to to, we get

x(t, to, xo) y(t, to,xo) + g(t,s,x(s)) ds, > to. (4.6)

Iff(t, x)= F(t, x)/ R(t, x), then using (4.4) one obtains the well known
Alekseev’s formula [2]

Oy
(l, S, X(s))R(s, X(S)) ds, > O.x(t, to, xo) y(t, to, xo) + (4.7)

The foregoing method does not work when the solutions of (4.1) and
(4.2) start with different initial data. We need a different strategy.

Let x(t,ro, Xo) and y(t, to, Zo) be the solutions of(4.2) and (4.1) through
(to, Xo) and (to, Zo) respectively existing on [ro, o), [to, o), and ro > to. To
obtain a variation ofparameters formulaconnecting these two solutions,
we proceed as follows. Let y(t, to, Yo) be the solution of (4.1) through
(to, Yo) existing on [to,a). Set q(s) y(t, to, yoS), 0 < s < 1, to < < to.
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Then

dq(s) Oy
(t, to, yos)yo,

ds Oxo

which on integration yields

0y
t, to, yos) dsyo.y(t, to,Yo) y(t, to, O) + (4.8)

Letting

zo y(’ro, to, Yo), (4.9)

we have, in view of uniqueness of solutions of (4.1),

y(t, 7-o,zo) y(t, to,Yo), > 7"0. (4.10)

Since y(t, to, 0) 0, (4.8) reduce to

oy
y(t, to, YO) (t, to, yoS)yO ds. (4.11)

Employing the same argument as before, to the function p(s)=
y(t,7-o, XoS + (1 S)Zo), it follows that

(t, xos + (1 s)zo)(xo zo)
Oy

y(t, 7"o, xo) y(t, 7-o, zo) / 7"0, ds.

(4.12)

As a result, we obtain from (4.6), (4.10), (4.11) and (4.12) the desired
relation between x(t,7-o, Xo) of (4.2) and y(t, to, yo) of (4.1), namely,

Oy
x(t, 7-o, xo) y(t, to, Yo) + (t, 7"0, xos / (1 s)zo)(Xo zo) ds

+ g(t,s,x(s, 7-o,xo)ds, >_ 7"0. (4.13)
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This reduces to

x( t, 7"0, xo y(t, to, Yo + t, ’o, xos + (1 s)zo (xo zo ds

’
Oy

(t,s,x(s))g(s,x(s, 7"o, xo)) ds, > (4.14)’o,

iff(t, x) F(t, x) / R(t, x), in view of (4.4), which is analogous to (4.7) in
the present setup.

Remark The interesting special case is when (’o, Yo) are such that

xo y(7o, to,Yo). (4.15)

In this case, (4.13) and (4.14) reduce to (4.6) and (4.7) which are the
usual relations.

5. STABILITY CRITERIA

We shall discuss a typical result concerning the stability behavior of
solutions of (4.2) in our present framework. We need the following
lemma [2].

LEMMA 5.1 Let fE C [R + x Rn, Rn] and G(t, r) maxlx_xol<_r
for some Xo and r. Suppose that r*(t, to, Wo) is the maximal solution of

w’ G(t, w), w(to) Wo

_
O. (5.1)

Let x(t, to, Yo) be the solution of(4.2) through (to, yo). Then

Ix(t, to,Yo) xol < r*(t, to, Ixo- Yol), to <_ <_ "to.

Proof Setting m(t) Ix(t, to, Yo) Xol, we see that

D+m(t) < If(t,x(t, to,Y0))l, m(to) Ixo

It then follows that D+m(t)< maxlx_xol<_m(t [f(t,x)l--G(t,m(t)) for
to < < to. The conclusion is immediate from the Comparison Theorem
1.4.1 in [2].

We need the following definitions of stability.
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DEFINITION The given solution Xo(t, to, Yo) of (4.2) is said to uniformly
stable, ifgiven e > O, to, 70 E R +, 7"0 > to, there exist 61, 62 > 0 such that

Ixo- Yol < tl, Ito- 7"01 < 62 implies

Ix(t, 7"0, xo) xo(t, to,Yo)[ < e, >_ 7"0.

As a typical result, we prove the following result on stability criteria.

THEOREM 5.1 Assume that

(i) VE C[R+x Rn, R+], V(t,x) is locally Lipschitzian in x and

D+ V(t, x y)

lim sup
ho+ -[V(t + h,x y + h(f(t,x) f(t,y))) V(t,x y)]

<_ g(t, V(t,x y)),

where g C[R2+, R];
(ii) b([x[) _< V(t, x) <_ a(lx[), (t, x) R+x R"and a, b K.

Then the stability properties ofthe trivial solution of
w’ g(t, w), w(7"o) wo >_ O, (5.2)

imply the corresponding stability properties of the solution Xo(t, to, Xo)
of(5.).

Proof We shall only prove stability. Let e > 0, to, 7"0 R+ be given.
Assume that the trivial solution of (5.2) is uniformly stable. Then given
b(e) > 0, 7"0 > 0, there exists a 61 > 0 such that

wo < 6, implies w(t, 7"0, wo) < b(e), > 7"0,

where w(t,7"o, Wo) is any solution of (5.2). Choose 62=a-1(61). From
Lemma 5.1, we have for 7"0,

Ixo(7"0, to, Yo) xol < r* (7"0, to, Ixo yol).

By uniqueness of solutions of (5.1), we see that

xo(t, to, Yo) xo(t, 7"o, zo),

r*where Zo Xo(7"0, to, Yo). Since llm.oto,yo__,x (7"0, to, [xo Yo[) 0, it
follows that given 62>0 there exist 6,60>0 such that
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IXo(7-o, to, Yo) Xol < t2; whenever to 7"ol < 6o and IXo Yol < 6. We
claim that IXo- Yo[ < 6 and [to- ’ol < 6o implies Ix(t, -o, Xo)
Xo(t, to, Yo)l < e, > 7"0. If not, there would exist a tl > 7-0 and a solu-
tion x(t,-o, Xo) with IXo Yol < and Ito ol < satisfying

[X(tl,7-O, XO) XO(tl,tO,YO)l e and Ix(t,’o, xo) xo(t, to,Yo)l <_ e

for 7"0 < < tl. Hence using (/) and (ii), we get, with Wo a(Ixo zol), and
applying standard arguments [2],

b(e) b(Ix(tl, o, xo)-x(t, to,yo)l)
<_ V(tl,X(tl, 7-o, xo) xo(tl, to,Yo))
_< r(tl, 7-o, V 7-o xo xo 7-o o Yo
< r(tl, ’o, a(Ixo xo(o, to,Yo)l))

r(tl, 7-0, a(Ixo zo[)
< r(tl,7-o,a(62)) r(t1,7"o,61) < b(e).

This contradiction proves uniform stability of the solution Xo(t, to, Yo)
of (5.1). Other stability results can be proved based on usual stability
results and the foregoing proof [2].

Remark In Theorem 3.1, if conditions (ii) and (iii) are repalced by

(i) fit, x) -fit, y) < L(x y), x > y and > to; and
(ii) to > 7"0 > 0 and ftf(s, (s)) ds > O, then we have

>_ _>

which gives (to) _> (7"o) _> xo >_ o(to) so that one can use the standard
result, as before, to conclude c(t)_<(t), t_> to. This change would
provide the corresponding dual results, which are not discussed to aviod
monotony.
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