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1. INTRODUCTION

An investigation of initial value problems (IVPs) of differential
equations where the initial time differs with each solution is initiated
recently in [3,4,7]. When we deal with the real world phenomena, it is
impossible not to make errors in the starting time and therefore it is
important to study the variance in initial time. When we do consider such
a change of initial time for each solution, then we are faced with the
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problem of comparing any two solutions which differ in the initial
starting time. There may be several ways of comparing and to each choice
of measuring the difference of two solutions, we may obtain a different
result. In [3,4,7], an attempt was made to discuss such situations in one
direction. In this paper, we shall consider another approach of com-
paring so that we can utilize the existing results.

2. PRELIMINARIES

Consider the differential equation

¥ =f(t’x)’ X(O) = X0, (21)
where f€ C[I X R, R], I=[0,T]. Let us list the following results for our
later use.
THEOREM 2.1 Let

(i) 0, Bo€ C'[I, R],f€C[Ix R, Rland ) < f(t, o), By > f(t, Bo) on I;
(@) () < Bo(f) on I and ap(0) < xo < Bo(0);
(lll) f(t’ x) _f(t’y) Z - M(x _y)a aO(t) SJ’ S -XS ,BO(t)’ tel

Then there exist monotone sequences {a,(1)}, {3.(¢)} such that
ay(t) — p(1), Bn(t) = r(t) asn— oo,

uniformly on I,(p,r) are the minimal and maximal solutions of (2.1)
satisfying oo(f) < p(t) <r(t) < Bo(?) on L.

For a proof, see [5]. We need the following lemma, to prove a cor-
responding result of Theorem 2.1 for terminal value problems (TVPs).

LEMMA 2.1 Let pe C'[I, R and p'(t) < — Mp(t), M >0 with p(T) > 0.
Then p(t)>0on 1.

The proof is immediate since p(¢) > p(T)e™? ~? and p(T') > 0.
We also need the following existence resuit.

THEOREM 2.2 Assume that condition (i) of Theorem 2.1 holds. Suppose
that ag(0) < Bo(0). Then there exists a solution x(t) of IVP (2.1) satisfying

m(t) < x(t) < M(2) on I,
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provided 0y(0) < xq < Bo(0), where m(f) =min[o(?), Bo(?)] and M(t)=
max[QO(t)’ /B(t)]: tel

This result is proved in [6] under the setting of Caratheodory con-
dition. Note that the usual condition ay(f) < By(¢) on I is not assumed
in Theorem 2.2. See [5,6] for details.

We can now indicate the proof of the following result on TVP

Y =fty), ¥(T)=yo, (2.2)

which corresponds to Theorem 2.1.

THEOREM 2.3  Let condition (i) of Theorem 2.1 hold. Suppose further

(@) Bo(T) < yo < ao(T') and Bo(t) < ag(t) on I
@) f(t, x) = fit,y) > — M(x— ), Bo() <y <x < (), t €1, M > 0.

Then there exist monotone sequences {a, ()}, {8.(t)} such that
ay(t) — p(1), Bn(t) = r(t) asn— oo,

uniformly and y(t) = p(t) =r(?) is the unique solution of (2.2) satisfying
Bo(H) < y(t) < ap(D), L€ L
Proof We shall merely indicate the proof. Consider the linear
differential equations with TVPs given by

a; =f(ta an—l) - M(an - an—l), an(T) = Yo,

B, =t Bn-1) = M(Bn— Bn-1),  Ba(T) = yo.
It is easy to see that for each n, o, 3, are the unique solutions of the

TVPs on 1. Also, using Lemma 2.1 and following the proof of Theorem
2.11n [5], one can show that

Bo<B < -<Bfap<--Lar L, tel

which yields using standard argument that o, — p, 8,—r as n— oo
uniformly on I, (p, r) are solutions of TVP (2.2) and

Bo(t) < r(t) < p(t) < ao(t), te€L

Since condition (i) is left uniqueness condition, it follows that r(¢) =
(1) = y(¢) is the unique solution of TVP (2.2) and the proofis complete.
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3. MAIN RESULTS

Let us begin with the basic results on differential inequalities.

THEOREM 3.1 Assume that
() o,B€C'[R,,R),f€C[R.xR,R]and
o <flt,ta) alt) <xo, 2120,
B 2ft,B), Blr)2x, 2720

(”) f(t,X) —f(t’y) < L(x _y)a X2y, t2>To;
(iii) 1o > 1o and [}? f(s, o(s)) ds < 0.

Then a(t) < B(2), t > To.
Proof We have, using (i) and (iii),
a(m) < alto) + / ® s, als)) ds < af10),

which implies a(7g) < x¢ < 8(7¢). The standard result [2,5] now yields the
conclusion. Based on (2.2), the following existence result can be proved
immediately.

THEOREM 3.2 Assume that

() o,B€CR,,R], fEC[R.xR,R] and o/ < ft,0), to<t<To+
T.8'> fit, B), To<t <79+ T, ty, 70 > 0, and oftp) < xo < B(70);
(i) to<Toand [ f(s,a(s))ds < 0.

Then there exists a solution x(t) of IVP
X =f(t,x), x(r0) = xo, (3.1)

satisfying
m(t) <x(t) <M(), m<t<m+T, (3.2)

where m and M are the functions as defined in Theorem 2.2.

Proof Asin Theorem 3.1, we get
a(m) < a(ty) < xo < B(0).

We then apply Theorem 2.2 to get the desired result.
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We shall next discuss monotone iterative technique in the present
framework.

THEOREM 3.3  Assume that conditions (i) and (ii) of Theorem 3.2 hold.
Suppose further that

f(t’x) _f(t’y) 2 —'M(x_y)’ X Zy’ M >0. (33)

Then there exist maximal and minimal solutions (r, p) of IVP (3.1) on
To <t <710+ T such that

m(t) <pt) <r(t) <M@E), n<t<7n+T,

where m, M are the same functions defined in Theorem 2.2.

Proof We note that conditions (i) and (ii) of Theorem 3.2 show that
o < fit, o), B> fit, B) for 7o <t <7+ T and (7o) < xo < B(70). Let

A=[teJ: a(t) <B(),
B=[teJ: B(t) <a(t)] and C=J\AUB,

where J =7, 7o+ T]. The sets 4 and B are countable union of disjoint
open intervals in J, namely,

oo o0
A= U(d,’, b,'), B= U(ﬁj, b])
i=1 j=1
As an application of Theorem 2.1, we get for each i, there exist minimal
and maximal solutions (p;, r;) of IVP
x; = f(t,x:), x(a;) = m(a;) if a; # 75, x(70) = X0,

such that

a(t) < pi(t) < ri(t) < B(¢) in [a;, by].
Similarly, applying Theorem 2.3, there exist, for each j, a unique solu-
tion y;(¢) of TVP

y;' =f(t:yj)a yj(b—f) = m(l;J)
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such that
B(t) < yi(t) < aft), for t € [a, by

We now define ( p, r) on J by

pi(t) in [a,-,b,-], ri(t) in [ai, bi],
p(t) = yj(t) in [di’l;jL r(t) = J’j(l) in [dj’l;f]’
m(t) otherwise, m(t) otherwise,

from which it is easy to see that o' =f{t, p), ¥ =z, r), t € AU B. Since for
any 4 € C, d/(t1), B'(t1), m'(t,), M'(¢) exist and o/(¢;) = B/(¢1), it follows
that o/(¢t)) = 8'(t,) =m'(¢;) = M'(¢,). Moreover, we have

m(t) —m(t) _ p(1) —p(t1) _ M(1) — M(11)
- t— 4 - t— 1

for ¢t > 1,

and asa result, we obtain g/, (1;) = o/, (#;). Similarly, for z < #;, we can get
(1) =’ (1) and therefore, p'(f)=d/(t) =f(t, a()) =f(2, p(r)) for
t € C. Similar proof holds for r(). We thus have

m(t) < p(t) <r(t) < M(1), tel,

and the proof'is complete.

4. VARIATION OF PARAMETERS

Consider the differential systems
¥y = F(t,y), 4.1)

X = f(t,x), (4.2)

wheref, Fe C[R, x R", R"]and F(z,0) = 0. If we assume that OF/9y(t, y)
exists and is continuous on R X R", then we know [2] that Qy/d¢,
(2, to, xo) and Ay/Ox(t, o, Xp) are the solutions of the variational system

7= Fy(t,)’(t, lo, JC()))Z, (43)
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satisfying the initial conditions

0 o) . . .
—y(zo, to, x0) = —F(ty, x0), A (2o, t0, Xo) = identity matrix
oty Oxg

and the identity
a o)
——}i (t, to, xo) + -—Z- (t, to, X())F(t(), xo) =0, for (t, to, xo), (4.4)
Oty Oxg

holds, where y(z, to, xo) is the solution of IVP (4.1) existing on [z, 00).
Then the relation between the solutions x(z, ¢y, xo) of (4.2) and y(¢, 9, xo)
of (4.1), which start at the same initial date (¢, x¢), can be obtained by the
method of variation of parameters. For, setting p(s) = y(t, s, x(s)), x(s) =
x(s, Lo, X0), to < s < t, we have

d_fg - g_tyo (1,5, %(5)) + %u, 5,%(5)) £ (5,(s)) = g(t,5,x(s)). (4.5)

Integrating (4.5) from ¢ to ¢y, we get

t
x(t, 1o, %0) = (£ o, X0) + / gts,x(s)ds, t>n.  (46)

4}

If f(t, x) = F(t, x) + R(t, x), then using (4.4) one obtains the well known
Alekseev’s formula [2]

t
x(t, to, x0) = y(t, 2o, Xo) +/ (%—)-(t, 5, x(8))R(s, x(s)) ds, t > tp. (4.7)
to 0

The foregoing method does not work when the solutions of (4.1) and
(4.2) start with different initial data. We need a different strategy.

Let x(2,79, xo) and y(t, to, zo) be the solutions of (4.2) and (4.1) through
(10, X0) and (2o, zo) respectively existing on [, 00), [, 00), and 79 > to. To
obtain a variation of parameters formula connecting these two solutions,
we proceed as follows. Let y(z, t, yo) be the solution of (4.1) through
(to, yo) existing on [tg,00). Set g(s) =y(, to, yo5), 0<s<1, 1r<t<7p.
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Then

dg(s) _ Oy
dS - axc (ts tO’yOS)yO,

which on integration yields

1
0
¥(t,t0,30) = ¥(1, to,0)+/ __6y (¢, to, yos) ds yo.
0o OXo

Letting
2o = (70, 10, Y0),
we have, in view of uniqueness of solutions of (4.1),
y(t,70,20) = y(t, to, 30), 1= To.

Since y(t, £y, 0) =0, (4.8) reduce to

1
0
y(t, to, o) =/ a—y(t,to,yos)J’odS-
0 OXp

(4.8)

4.9)

(4.10)

(4.11)

Employing the same argument as before, to the function p(s)=

(8,70, Xo8 + (1 — 5)zg), it follows that

1
0
y(¢,70,x0) = y(t, 70, 20) +/0 a—i%(t, 7o, %08 + (1 — 8)20) (%0 — zp) ds.

(4.12)

As a result, we obtain from (4.6), (4.10), (4.11) and (4.12) the desired
relation between x(z,7¢, xo) of (4.2) and y(z, ty, yo) of (4.1), namely,

1
0
x(2, 10, x0) = (2, to, Yo) +/0 6_;:) (2, 70, X058 + (1 — 8)z9) (%0 — 29) ds

t
+/g(t,s,x(s,7'o,x0)ds, t> 7.

T

(4.13)
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This reduces to

1
3]
x(2, 10, %0) = y(t, 80, y0) + /0 a—jo(t, 70, X08 + (1 — 5)20) (%0 — zo) ds

t
+ / 6—y(t,s,x(S))R(s,x(s,ro,xo))ds, 1>, (4.14)
 0%0

if f{t, x) = F(t, x) + R(t, x), in view of (4.4), which is analogous to (4.7) in
the present setup.

Remark The interesting special case is when (7, yo) are such that
Xo = y(To, to,yo). (4.15)

In this case, (4.13) and (4.14) reduce to (4.6) and (4.7) which are the
usual relations.

5. STABILITY CRITERIA

We shall discuss a typical result concerning the stability behavior of
solutions of (4.2) in our present framework. We need the following
lemma [2].

LEMMA 5.1 Let fe C[R x R",R"] and G(t,r) = maXjx_x< | f(, x)|
Jfor some xq and r. Suppose that r*(t, ty, wy) is the maximal solution of

w = G(t, W), W(t()) =wy > 0. (51)
Let x(t, to, yo) be the solution of (4.2) through (ty, yo). Then

|x(2, 20, y0) — xo| < r*(2, 20, |x0 — Yol), 2o < ¢ < 0.
Proof Setting m(f) = |x(t, to, yo) — Xo|, We see that
D¥m(t) < |f(t, x(, to, y0))|,  m(to) = |x0 — yol-
It then follows that D*m(t) < max)_x\<m@) |/, X)| = G(t,m(t)) for

to <t < 7. The conclusion is immediate from the Comparison Theorem
1.4.1in[2].

We need the following definitions of stability.
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DEFINITION  The given solution x(t, to, Yo) of (4.2) is said to uniformly
stable, if given € > 0, ty, To € R ., To > 1o, there exist 61,6, > 0 such that

|xo — yo| < 61, |to — 70| <62 implies
(2, 70, X0) — x0(2, t0, y0)| <€, > To.
As a typical result, we prove the following result on stability criteria.

THEOREM 5.1  Assume that
(i) VeC[R.x R", R ], V(t,x) is locally Lipschitzian in x and
D V(t,x—y)
. 1
= lim sup V(t+hx—y+h(flt,x) —f(t,y))) — V(t,x — )]

h—0t
S g(t: V(t’x - y))y

where g € C[R2, R];
@) b(|x]) < V(t,x) <a(|x|), (t,x) € R, x R'and a,b e K.
Then the stability properties of the trivial solution of
w =g(t,w), w(m)=wp>0, (5.2)
imply the corresponding stability properties of the solution x(t, to, Xo)

of (5.1).

Proof We shall only prove stability. Let € >0, #y, 79 € R, be given.
Assume that the trivial solution of (5.2) is uniformly stable. Then given
b(€) >0, 79 > 0, there exists a §; > 0 such that

wo < 6, implies w(t, To,W()) < b(e), t > 10,

where w(t,To, wo) is any solution of (5.2). Choose & =a~'(6;). From
Lemma 5.1, we have for 1 =1,

|x0(70, 20, ¥0) — Xo| < 7*(70, 2o, |x0 — o)-
By uniqueness of solutions of (5.1), we see that
xo(2, 20, o) = Xo(t, 70, 20),

where zo=xo(7o, o, Yo). Since limy s yo—x, (70, t0, [Xo — yo|) = 0, it
follows that given 6,>0 there exist 6, >0 such that
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|X()(T0, to, yo) - xol < b, whenever Ito — Tol < 60 and |x0 —yol <é. We
claim that |xo—yo|<& and |to—7o|<6° implies |x(z,To,Xo) —
xo(t, to, yo)| <€, t > 7. If not, there would exist a #; > 7o and a solu-
tion x(¢,7o, Xo) With |xo — yo| < 6 and |ty — 7| < 6° satisfying

|x(#1, 70, X0) — Xo(t1, t0, 0)| = € and  |x(2, 70, Xo) — Xo(Z, 20, Yo)| < €

for 79 < t < t;. Hence using (i) and (i), we get, with wo = a(|xo — z|), and
applying standard arguments [2],

b(e) = b(|x(t1, 70, X0) —x(t1, o, Y0)|)
< V(t1, x(t1, 70, X0) — Xo(11, 0, Y0))
< r(t1,70, V(70, X0 — X0(70, 10, ¥0))
< r(t1,70, a(|xo — x0(70, 20, 30)|))
= r(tl,T(), a(le — Zol)
< r(ty,m0,a(82)) = r(t1,70,61) < b(e).

This contradiction proves uniform stability of the solution x(¢, fo, yo)
of (5.1). Other stability results can be proved based on usual stability
results and the foregoing proof [2].

Remark In Theorem 3.1, if conditions (ii) and (iii) are repalced by

(&) ft,x) = ft, ) < L(x — y), x> y and 1 > to; and
(ii) ty>79>0and f;;’ (s, B(s)) ds > 0, then we have

B80) 2 B + [ 116,606 d5 > (),

which gives 8(¢9) > (7o) > x¢ > a(tp) so that one can use the standard
result, as before, to conclude o(f) < 3(¢), t>1,. This change would
provide the corresponding dual results, which are not discussed to aviod
monotony.
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