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In this note, we give a short proof to the best possibility for the grand Furuta in-
equality: for given p, s > 1, E [0, 1], r > and a > 1, there exist positive invertible opera-
tors S and T such that S > Tand

S (1-t+r) [sr/2(S-t/2TPS-t/2)ssr/2]((l-t+r)/((P-t)s+r)).
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1. INTRODUCTION

Throughout this note, an operator Tmeans a bounded linear operator
acting on a Hilbert space H. An operator A is positive, denoted by A > 0,
if (Ax, x) > 0 for all x E H, and we denote A > 0 ifA > 0 is invertible.
One of the most important inequalities is the L6wner-Heinz

inequality:

A>B>0 implies As>B foraE[0,1]. (1)
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Furthermore it is known that [0, 1] is the best possible for (1). That is,
for a > there exist A, B > 0 such that

A >_B>_O and A _B. (2)

In 1987, Furuta established the following historical extension of (1),
which is called the Furuta inequality now:

FURUTA INEQUALITY [11 /fA >_ B >_ 0, thenfor each r >_ 0

A(p+r)/q >_ (Ar/2BPAr/2) 1/q (3)

holdsfor allp > 0 and q > such that

(1 + r)q > p + r. (,)

The condition (,) is expressed as in this figure.

(0.-r)

(1 -t- r)q p +

See [12] for a one-page proof and also [4,21]. Recently the best
possibility of the Furuta inequality was discussed by Tanahashi [22].
He proved that the condition (,) is complete. More precisely,

THEOREM A Let p > 0 and r >_ 0 be given. If either 0 < q < 1 or

(1 + r)q <p + r, then there exist A andB such that A >_ B > 0 and

A(p+r)/q (Ar/2BpAr/2) 1/q.
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In the case ofp > 1, Theorem A is rephrased as follows:

THEOREM A Let p > and r > 0 be given. For a > 1, there exist A and
B such that A > B > 0 and

A(l+r)c (Ar/2BPAr/2) ((l+r)/(p+r))a.

2. GRAND FURUTA INEQUALITY

In 1995, Furuta [14] extended his inequality to an interpolational form
combining with the Ando-Hiai inequality [2], which is called the grand
Furuta inequality in [10]:

GRAND FURUTA INEQUALITY
tE[0, 1]

If S > T> 0 and S > 0, then for each

S 1-t+r [sr/2(S-t/2TPS-t/2)ssr/2](1-t+r)/((P-t)s+r) (4)

holdsfor allp, s > 1 and r > t.

It was given a mean theoretic proof in [10] and very recently an
elementary one-page proof in [15]. See also [16-20]. Now Tanahashi
[23] considered the best possibility for the grand Furuta inequality:

THEOREM B Letp, s > 1, [0, 1], r > t. Thenfor each a > there exist
S, T> 0 such that S > Tand

S (1-t+r)a [sr/2(S-t/2rPS-t/2)ssr/2]((1-t+r)/((P-t)s+r))a. (5)

His discussion is analogous to Theorem A by himself and so more
complicated. Very recently Yamazaki [24] presents a simplified proofto
Theorem B, which is based on the Furuta inequality, Theorem A and
Yanagida’s recent result [26] on the best possibility for a Furuta’s type
operator inequality equivalent to the chaotic order log A > log B for
A, B > 0, cited below:

THEOREM C Letp > 0 andr > 0 be given. For a > 1, there exist A, B > 0
such that log A > log B and

Ara

_
(Ar/2BPAr/2) (r/(p+r))a.
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We note that Theorem C says the best possibility for the following
characterization of the chaotic order, see [1,3,5-9,13,25]" for A,B> O,
log A > log B if and only if

A >_ (Ar/2BPAr/2)r/(p+r)

holds for all p, r > 0.
Yamazaki’s simplified proofin [24] was surprising to us because both

Theorems A’ and C were used very well. To prove Theorem B, he divides
into two cases; 0 < < and 1. The former needs TheoremA and the
latter does Theorem C. This striking contrast is the motivation of this
note. We present a short proofto Theorem B with no use ofTheorem C,
in this note. Though our basic idea is essentially similar to Yamazaki’s
one, we use Theorem A’ only, where (2) is regarded as the special case
p- 1 and r 0 in Theorem A’.

3. THE BEST POSSIBILITY OF GRAND FURUTA INEQUALITY

In this section, we give a straightforward proof to Theorem B.

Proof of Theorem B Assume thatp > 1, s >_ 1, r > t, E (0, 1] and a >
are given. Incidentally, the case 0 is just Theorem A’ and so it can be
omitted.

First of all, under the assumption p > t, we take /3= 1/(1- t) if
0 < < and/3 is sufficiently large if 1. Next we put

t/3
r r, -, pl (p- t)s and al

1-t+r
l+rl

(6)

Then we have rl, 6_>0, Pl _> and al > 1. Hence it follows from
Theorem A’ that there exist A, B > 0 such that A > B > 0 and

A(l+r’)a (Arl/2Bplhrl/2)((l+r)/(pl+rl))a’. (7)

We here put

S A and T-- (AeBpl/SA6)I/P;
we have an example for Theorem B. As a matter offact, S > Tis ensured
by the Furuta inequality (3) because p > 1, pl/s > 0, 6 > 0 and
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(1 + 26)p >pl/s + 26. On the other hand, it is easily checked that (5) is
just the same as (7) by the set of (6).

Finally we give a counterexample for the case p (and r > 1,
s > 1, a > 1). For this, we apply (2), that is, there exist A, B > 0 such that
A _> B and A B. And we put

and
S A1/r

T S1/2(s-r/2BS-r/2)I/ss1/2 A1/2r(A-1/2BA-1/2)I/SA1/2r’,
in other words,

fll S and B-- sr/2(S-1/2TS-1/2)ssr/2,
then S and T are as desired. Actually S > T is shown as follows:

S >_ T = >_ (S-1/2TS-1/2)
=:= S >_ sr/2(S-1/2TS-1/2)ssr/2
= A > B.

Furthermore AB is an equivalent expression of (5) in this case
p 1. So the proof is complete.
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