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Let N>1 and p> 1. Let Q be a domain of R, In this article we shall establish Kato’s
inequalities for p-harmonic operators L,. Here L, is defined as L,u = div(|Vu|’ ~2u) for
u€ K, (), where K,(Q) is an admissible class. If p=2 for example, then we have
Ky (Q) = {u € L}, (Q): du,0%u € Li,(Q) for jk=1,2,...,N}. Then we shall prove
that L,|u| > (sgnu) L,u and z,,uJ’ > (sgntu)? “‘L,,u in D'(2) with u € K,(£2). These inequal-
ities are called Kato’s inequalities provided that p=2.
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1 INTRODUCTION

Let N> 1. Let Q be a domain of R”. Define
M(x, 0x) = Oy (aj(x)0x,), (1.1)
where aj(x) € C'(Q) is positive definite in the following sense.
N
Z aj(x)&iék > Cl¢), for any £ € RM\{0} and x € Q. (1.2)
=1

Here C is a positive number independent if each x and £. First we recall
well-known Kato’s inequalities. (For the proof, see [1]).

THEOREM 1.1  For uand M(x,8,)u € L} _(2), we have
M(x,0,)|u| > (M(x,0c)u)sgnu  in D' (), (1.3)
M(x,0:)us. > (M(x, 0y)u)sgn* u in D'(Q). (1.4)
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Here

u(x)
sgnu(x) = {|u( o Joru#

0, foru=20,

1, Jor u>0, (1.5)
sgntu(x) =14 1/2, foru=0,

0, for u< 0,

andu, =max[u(x), 0]. By D'(Q) we denote the set of all distributions on Q.
In this paper we shall consider the operators defined by

Lyu = div(|Vul’>Vu),

= |Vuf 2 Au+ (p — 2)|Vuff~ Zauakuazku, (1.6)
Jk=1

wherep > 1 and ju = du/0x;, 8u = 8*u/(0x;0x;) forj,k=1,2,...,N.
Then we shall generalize Theorem 1.1 for the operators L, in place of
linear elliptic operators represented by the Laplacian.

This paper is organized in the following way. In Section 2 we prepare
basic inequalities including the p-harmonic operators L. In Section 3 we
shall state our main result, and the proof is also given there.

2 PRELIMINARY

We shall establish some fundamental inequalities for smooth functions u,
which are useful to prove our main result.

LEMMA 2.1  Assume that u € C*(0). Then it holds that

Lp|u| > (sgn u)L,,u in D' (Q), 2.1
Lyuy > (sgnu)P'Loyu in D'(). '

Here by D'(Q) we denote the set of all distributions on Q.

Proof For any € > 0 we set

ue = (i + €)' (2.2)
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Then we see

BOju; = — B, (2.3)

2
81.2u€ = uiafu +;1; (l - (;u_) )(8]14)2 > u%(?jzu. (2.4)

€
Here 8*u = 8*u/0x},j = 1,2,..., N. Using these we have
u

: p—2(5;Lpu+(p—l);1;<l ~ (;,%)ZIWV’))

€

Lyu. =

-2
ul’

Ue

u
u—eLpu. (25)

>

In a similar way we have

L, (u-;ue) _ (1 + (2u/ue)>l"1 (L,,u t(p l)u% (1 _ u%) |Vu|”)

> (1—*'—(25/—“52>p_1L,,u. (2.6)

Since 2u, = u+ |u| holds, letting £ — 0 we have the desired inequalities.
In the next we shall consider the operators L, ,, for n > 0 defined by

Lygu = div((n? + |[Vu[?)P~2?vu). 2.7)
y2ul

Then we see

2
2 2\(p-2)/2 u\" Oudud;xu
TV, Aut _2(_)_.._-
(0" +[Vue|") ( (P=2){; e+ [Vucf

2
L1 (1 - (—) )mz Ve 2) D2
€

u
Ly u. =—
1] ”

Ue

2 2
u |V
x (1 +(p-2) (;;) VP IVueI2>

u _
> — (712 + IvuelZ)(P 2)/2
€

N
x (Au +(p-2) (1)2 Ljt @“a""@‘"") . (2.8)

Ue n?+ ]Vuelz
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Similarly we can compute L, ,((# + u.)/2) to obtain the following:

b5

= we(n? + w2 |Vu?) =D/ (Au +(p-2

) szk—l a kua uaku
n? + w2|Vul*

_ V|
+ (Vwe - V) (n? + wH|Vu) P22 1 4 PSRN |7
(2.9)

Here

i)

(2.10)
VWE-Vu_K( —l>|Vu|
Ue Ue

Therefore we have

LEMMA 2.2 Foru e C*(Q) it holds that

Lyottz > ui(n"’ + |V [2) (P72
€

(Au +(p— 2)( ) X o1 90, "“), 2.11)

n*+ |Vue|

U+ uy —
Lpn(“55) 2 weln® + w2|Vap) 7202

SN 1 8 xududiu
x | Au+ (p —2)w? =L ’ ) 2.12
( (P ) € n2+w§|Vu|2 ( )

Letting £ — 0, we have for u € C*(Q)

LEMMA 2.3 For ue C*(Q) it holds that in D' (Q)

n? + |Vul?
= (sgnu)Lyyu, (2.13)

N
N1 OjuOku0; ju
mel“lZ(Sgnu)(ﬂ2+IVulz)(p_Z)/z(Au+(P—2)E]’k_lj k Lk)
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Lyyus > (sgn*u)(n® + (sgn*u)’|Vul?) P2/

N
N 8 udud
x [ Au+ (p - 2)(sgntu) AL IETIE ) (014
N2 + (sgntu)”|Vu|

3 MAIN RESULT

We introduce an admissible class K,(€2) for the operators L,,.

DEFINITION 3.1 Letp>1andp*=max(p—1, 1). Let us set
Kp(9) = {u € L} (Q): O, Bu € LE (D),
IVul2|0%u| € Li(Q) for jjk=1,2,...,N}.  (3.1)

Now we are in a position to state our main result.

THEOREM 3.1 Let p> 1. Assume that u € K,(0), then it holds that in
D'(Q)

Lol > (sgni) Ly,
’ (3.2)
Louy > (sgnt u)’ ' Lyu.

Remark 1 (1) If p=2, then K»(Q) = {u € L}, .(Q): 8, dju € L}, (Q),
for j,k=1,2,...,N}.Since L, = Ain this case, it is known that Kato’s
inequalities hold under the assumptions that u, Au € L} (). But if
p# 2, the operator L, is nonlinear. Hence it was needed to introduce the
class K,. If p > 2, we see |Vul’ _2|8j2ku| € L] .(Q) bya Young’sinequality.

(2) We can also establish the same type results for the operators with
variable coefficients.

Proof Without loss of generality, we assume that Q=R". If
ue CYR"), then the assertions follow from Lemma 2.1. Hence we
approximate a locally integrable function u by smooth functions u,
(p>0) as follows: Let us set B,={x €R": |x| <r}. Let ¢ € C(R")
satisfy ¢ >0, [pvo(x)dx=1 and ¢=0 in Bs. Now we set
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©(x) = p~No(x/p) for p> 0 and define
W) =ur o0 = [ ux= () d. (3.3)

Then it is clear from the assumptions on u that as p— 0

u, — u almost everywhere

X 3.4

Ups Oy, Oty — u, Ou, O3u  in LY (RV) respectively. 34)
Moreover we shall show that as p — 0

Lyu, — Lyu in LL (R"). (3.5)

First it follows from the definition of the operator L, that for a smooth
function v

N
1Lyl < (p = 1)V 82%]. (3.6)
Jj=1

Therefore we see Lu € L} (RY).
Now we assume that p > 2. Then from Holder’s inequality it holds that
for any p > 0 and any compact set K

N
[italax< -1 [ Vil el
j=

N ) (p=2)/(p-1)
<= ([ 17w ex)

Jk=1
1/(p-1)
X ( / lajz,kuplp_ldx)
K
< C(K) < +o0. 3.7

Here C(K)is a positive number independent of each p > 0. Hence by (3.4)
and the dominated convergence theorem we have L,u, — Luin L} (R")
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as p— 0. From Lemma 1.1 and the dominated convergence theorem
we see

p—2

u u
L,(uw), > |—5~| —2-Lyu 3.8)
/2 p)e (uﬁ)a (up)g ¥ (
U, p—2 U,
= |——| —&(Lyu,— Lyu
(up), (up)a( i = Lpt)
-2 -2
| (up)e (up)s I (u)e (u)s
r—2
u u
+ || —Lyu
W ().
u Py
s m; (u—)stu, as p — 0. (39)
Since L,(u,). — Lyu in the sense of the distribution, we get
L
Lyu. > |—| —Lu inD/(RY). (3.10)
Ue|  Ue

Then by letting ¢ — 0, we see Lyu, — Ly|u|in the sense of the distribution,
and the right-hand side tends to (sgn #)Luin L} ,(R"). Therefore we get
the desired inequality.

We proceed to the case that 1 < p < 2. In this case we make use of L, ,,
instead. First we see for any compact set K of RV and any >0,

N
/K |Lpquldx < (p—1) /K (n* + [Va) P2 3™ 82 u] dx < oo.

Jk=1
(3.11)

Herewenotethat 1 <p < 2and6j2,ku € LIIOC(RN) forj,k=1,2,...,N.Let
u, be defined by (3.3). Then it follows from Lemma 2.2 that (u,). satisfies

u -
Lpn(uy), > —2—(n* + |V (u,)[*) P2/
(uﬂ)e

25N O, Ou,0;
x Aup+(p—2)< % ) Ljimt Oy Oety 2% ). (a2)
(ul’)e n? + |v(”p)e|
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As p— 0, we see L, ,(u,). — L, ,(u). in the sense of distribution, and the
terms in the right-hand side also converges in L} _(R"). Therefore we get

in D'(R")
u —
Lpgte > - (n* + [Vue') 7272
€

N
x (Au +(p-2) (l>22f~k=1 61'“‘9"“6’"“> . (313)

U n?+ IVu5|2

Letting e — 0 we have in a similar way in D’ (R")

Lyylul > (sgnu)(n? + [Vul?) P~/
e (9’”6"“6""”> . (314

X | Au+(p—2
( (p-2) 772+|Vu|2

Finally by letting n— 0, we have in the sense of distribution L, ,|u| —
L,|ul, and the right-hand side also converges in L} . (R"). After all we get
Lylu| > (sgnu)Lyu in D/(RY). (3.15)

In a similar way we can show

Louy > (sgn* uf™'Lyu in D'(RY), (3.16)

by making use of Lemma 2.2. Therefore the assertions are proved.
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