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In this paper we investigate the large time behavior of solutions to the Cauchy problem
on R for a one-dimensional thermoelastic system with dissipation. When the initial data
is suitably small, (S. Zheng, Chin. Ann. Math. 8B (1987), 142-155)established the global
existence and the decay properties of the solution. Our aim is to improve the results and
to obtain the sharper decay properties, which seems to be optimal. The proof is given by
the energy method and the Green function method.
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1 INTRODUCTION

In this paper we investigate the large time behavior of solutions to the
Cauchy problem for a one-dimensional thermoelastic system with dissi-
pation on R x (0,

Wtt a(Wx, O)Wxx + b(wx, O)Ox -+- OWt O,
(Wx, O)Ot -" b(Wx, O)Wxt d(0, Ox)Oxx O,

w(x, O) wo(x), wt(x, O) Wl (x), O(x, O) tgo(x),
(1.1)

* Corresponding author.
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where a is a positive constant, and smooth functions a, b, c and d satisfy

b 0, and a, c, d > 60 > 0 under considerations. (1.2)

For the derivation ofthis system refer to [1,9]. In [9] Slemrod also showed
the global existence theorem for the system (1.1) with a 0 on the inter-
val [0, 1]. Damping mechanism was discussed in [1]. Nevertheless, for
lack of the Poincar6 type inequality our problem (1.1) is not necessarily
clear. Instead of this system, by introducing new unknown functions

Wx= V, wt=u, 0=0, (1.3)

Zheng [10] considered the corresponding system

Vt /’/x O,

ut a(v, O)Vx + b(v, O)Ox + au O,

(Y, O)Ot + b(1), O)Ux d(O, Ox)Oxx 0

with

(1.4)

(v, u, 0) I,=0 (v0, u0, (1.5)

In [10] he established the global existence of the solution of (1.4) and
(1.5) together with its decay order, when the initial data (v0, Uo, 00) in
H3(R) are suitably small.
Our main purpose is to observe the large time behavior ofthe solution

of(1.1). However, instead oftreating (1.1) directly, we first consider (1.4)
and (1.5) using L2-energy method, which improves the result in [10].
Faster decay estimates of (xk,tut obtained here play an important role in
the next process. That is, regarding ut in (1.4) as an inhomogeneous term,
we have a parabolic system of (v, 0) and hence the "explicit" formula of
(v, 0) using the Green functions Gl(x, t), G2(x, t), which will give sharper
estimates of (v, u, 0) if (v0, u0, 0o) E LI(R). This method has been devel-
oped by the first author [5,6]. See also [7]. Finally, define a solution
(w, O)(x, t) of(1.1) by w(x, t) fx_ v(y, t) dy, where (v, u, 0) is a solution
of (1.4) with its initial data

10 WOx, U0 W1, 00 00. (1.6)

Thus we obtain a solution to the original Cauchy problem (1.. 1). Below,
we sketch this procedure and state theorems.
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First, linearize (1.2) around (v, u, 0) (0, 0, 0):

Yt Ux O
ut Vx + boOx + u g,

Ot + bou Ox
(1.7)

where we have normalized as

: , (o, o) a(o, o) , b(0, 0) bo (.8)

and set

g2 (a(v, O) 1)Vx (b(v, O) bo)Ox,
(1.9)

((bo b(v,O))ux + (d(O, Ox) 1)0xx).g3
C(V, O)

By denoting the Lebesgue space (resp. the Sobolev space) by Lp

LP(R) with its norm I1" I[ (resp. Hm=Hm(R) with its norm I1" [[m),
especially I1" I1-- I1" Iio "-I1" I1, our first theorem based on the L-energy method is the following:

TI-IORM Suppose that (Vo, Uo, 0o) H4(R) is suitably small. Then, the
Cauchy problem (1.4) and (1.5) has a unique global solution (v, u, O)
C([0, cx:]; H4(R)), which satisfies

E(t; v, u, 0)

:= (t; , u, 0) + (-; v, u, 0) d-

II(v,O)(t)l[ 2 / (1 / t)ll(vx, u,O)(t)l[
-+-(1 + t)2llOx(Vx, U, Ox),Ot(v,O)(t)ll 2

/ (1 / t)311o2(v,u,O),Ot(v,u, Ox)(t)ll
/ (1 / t)4llO3x(Vx, U, Ox) OxU, OtOx(yx4 u, Ox),Otuxx, OtZ(v,u,O)(t)l] z

+ {ll(,u, Ox)(,-)ll+(1+

+ (1 + r)2llOx(Vx, u, Ox), O,(vx, u, Ox)(r)[[ 2

+ (1 + r)3llO3x(Vx, U, Ox),OxOt(Vx, U, Ox),Ot2(v,O)(r)ll 2

+(1 + r)4{[O4xu, Ot2(Vx, U, Ox),OxOtZ(v,u,O),OtO3x (v,O),OSxO(r)[[ } dr
_< cII vo, uo, 0o II]. (1.10)
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In the next step we first obtain "explicit" formula of (v, 0). From the
decay orders obtained in Theorem 1, the term ut in the left-hand side of
(1.7)2 (the second equation of (1.7)) decays faster than the other terms.
Hence, differentiating (1.7)2 once in x and using (1.7)1, we regard (1.7) as
a parabolic system of (v, u):

lt lxx + boOxx -Uxt + g2x,

bo vt + Ot Oxx g3,
(1.11)

or

(v)A
0 -B(V)o xx= k,(-Uxt +g2X)g3 =.17, (1.12)

where

(,0)A=
bo 1’

B=
0 1 (1.13)

Setting

v V(0) =P(o) (1.14)

for a regular constant matrix P, we have

V V) p_IA_IF. (1.15)P-1A-BP
0 xx

The eigenvalues kl, k2 ofA-1B
-b0

0<kl=

)b /
are

bo2 + 2- v/(b / 2)2 -4
2

hg + 2 + V
/ bo2 + 2)2 -4

(1.16)
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and corresponding unit vectors are

( )_:V/bo2+(k-l) k-I \p

/b0 + (k2 1)2 k2 \P22

(1.17)

Hence, a matrix

gives the diagonalized system

V
0 k2 0 xx

(1.18)

and hence the "explicit" formula is

V

-+’for( GIO
where ( V ) =P-l( v0 )Oo Oo

)0
t),

G2
("

Oo
0 ) p-1
G2

(-,t-’r), AF(.,z)d’r (1.19)

ai(x,t)--1( Xkit)v/47rkit
exp 1,2 (1.20)

and means the convolution in x. Note that, since A-1B is a real sym-
metric matrix, P and P are orthogonal matrices and

2 2

E2pll E#i--- j- 2,
i=1 i=1

2 2

EPijPik EPjiPk 0, j # k.
i= i=

(1.21)
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By (1.19),

gives

0 0

0 )p-1G2
vo

fOt ( G+ P
0 O) (-uxt+g2x)dT."p-1, .4-1

G2 g3

From (1.17) and (1.21)

(1.22)

)e-_ ( P2’G1+p22G2
G2 Pl lP21GI -+- P12P22G2

( (1 a)G + aG2

PlP21G + P12P22G2
+ p 2a2

7(G1 G2) ) (1.23)
/3G + (1 -/3)G2

with 0 < a,/3, I’Y[ < 1. Thus, we have an "explicit" formula of (v, 0):

v
(x, t)

(1 a)G1 + aG2 "),(G G2)
(., t)

0 ")’(G G2) /3G 4- (1 -/3)G2 0o

’t((1-a)G,+aG2 7(G,-G2) )/
"y(G1 G2) /3G1 / (1 -/3)G2

(.,t- -r)

( lUxt + g2x ) (., 7-) dT-, (1.24)
bo(uxt g2x) + g3

which is "explicit" in the sense that several kinds of information about
Uxt, g2, g3 are already known. From (1.7)2, u has the form

u(x, t) Vx boOx ut -- g2. (1.25)

From (1.24) and (1.25), (vx, u, Ox) instead of(vx, ux, 0) have same decay
order if ut and g2 decay faster. From this point ofview the decay orders
obtained in Theorem seem to be reasonable. Compare this to the result
of Zheng [10]. See also [2,4].
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Further, if the initial data (Vo, 0o) is in LI(R), then these decay orders
are improved. In fact, we have the following second main theorem:

THEOREM 2 In addition to the assumptions in Theorem 1, suppose that
(Vo, 0o) is in L1(R). Then, the solution (v, u, O) of(1.4) and (1.5) satisfies the
decay estimates

(1 / t)l/4ll(v,O)(t)l / (1 + t)/2ll(v,O)(t)ll
/ (1 + t)3/all(vx, U, Ox)(t)l / (1 / t)ll(Vx, U,O)(t)[l
/ (1 / t)5/al[(Vxx, ux, Oxx)(t)] / (1 / t)3/2l](vxx, ux, Oxx)(t)l[L

c(l[vo, uo, 00114 + Ilvo, Oo I1,,). (1.26)

Remark 1 In this stage the assumption Uo E L is not necessary.

Finally, consider the Cauchy problem to the original system (1.1).
Taking (1.3) and the first component of (1.24) (denote by (1.24)1) into
consideration, we assume Wox Vo with Wo E HS(R)fq LI(R), and set

w(x,t) v(y,t)dy.

By (1.7)1, wt(x, t) fX_x vt(y, t) dy fx ux(y, t) dy u(x, t). Hence,
(w, 0) satisfies (1.1). Estimating (1.24)2 and (1.27) with (1.24)1, we have
the following theorem:

THEOREM 3 Suppose that (Wo, wl, 0o) HS(R) x Ha(R) x H4(R) is suit-

ably small and Wo, Wox, wl, Oo are in L(R), and that (v, u, O) is a solution of
(1.4) with (v, u, 0)l/_o--(Wox, wl, 0o) obtained in Theorem 2. Then (w, O)
defined by (1.27) and (1.24)2 is a solution of(1.1), which satisfies

(1 + t)-/411w(t)l + IIw(t)ll,

-t-(1 + t)/4ll(Wx, O)(t)l + (1 + t)l/ll(w,O)(t)}l
/ (1 / t)3/4ll(Wxx wt, Ox)(t)l / (1 / t)ll(Wxx, wt, Ox)l[

/ (1 / t)5/4ll(Wxxx, Wtx, Or, Oxx)(t)ll

+ (1 + t)3/211(Wxxx, Wtx, Oxx)(t)[l
c(IIwoll5 / IlWl, 00114 / Ilwo, Wox, wa, 0011,.,).
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2 L2-ENERGY ESTIMATES

In this section we prove Theorem employing the L2-energy method.
Our present concern is the Cauchy problem to the system of equations
(1.4) with the initial data (1.5).
The global existence of the solution is given by the combination of

the local existence (Proposition 2.1) and the a priori estimates (Propo-
sition 2.2). This observation immediately gives the proof of Theorem 1.
By multiplying (1.4)1 by a(v, 0), the resultant system becomes the sym-

metric hyperbolic-parabolic system. Thus, the local existence theorem
below immediately follows from the general theory constructed in
Kawashima [3]. The readers are referred to [8], too.

PROPOSITION 2.1 (Local Existence) Let s >_ 3 be an integer. Suppose that
(v0, Uo, 00)E HS(R). Then, there exists a positive constant To, depending
only on (vo, uo, 00)ll , such that the initial valueproblem (1.4) and(1.5) has
a unique solution (v, u, O) satisfying that

(u, v) E CO ([0, To]; HS(R)) f3 C ([0, To]; Hs-I (R)),
0 C([0, To];HS(R)) fq C ([0, To];HS-2(R))

fq L2([0, To]; Hs+ (R)).

Our theory concerning the asymptotic states requires the solutions
(v, u, 0) to be in the space Ha(R) in the spatial variable x. Thus, we fix
s- 4 hereafter. Then, we introduce the solution space

x(0, T):= <

Also, we use the supremum of E(t; v, u, 0) E t; v, u, 0) +
fg v, u, 0)

N(T) N(T; v,u,O)2 sup E(t; v,u,O).
0<t<T

Apparently, it holds that

I[(v,u,O)(t)[[4 E(t;v,u,O).

Thus, we can combine the following a priori estimates with the local
existence theorem.
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PROPOSITION 2.2 (A Priori Estimates) Let (v, u, 0) E X(0, T) be a

solution of (1.7), (1.5) satisfying N(T) <_ 1. Then, there exists a positive
constant e2 such that if IlVo, uo, 00114 < e, then (v, u, O) satisfies (1.10) for
0<t<T.

Wenow devote ourselves to the proofofProposition 2.2, which will be
done in several steps.

Step We first multiply (1.7)1-(1.7)3 by v, u, 0, respectively, to have

(f v2dx) + f uvxdx:O

u2 dx) + f(-UVx + bouOx + u2) dx fg u dx

(f O2dx) q-/(-bouOx-t-O2x)dx=/g3.0dx.
Here and hereafter, the integrand R is often abbreviated. Adding three
equations, we have

ld
2 dt

II(v’u’O)(t)ll2 f (g2" u + g3" 0) dx

F0) (t; g).

Integrating (2.1)o over [0, t], < T, we have first lemma.

LEMMA 2.1 For some constant C independent of it holds that

II(v,u,O)(t)ll 2 / II(u, Ox)(r)ll 2 dT"

_< c Ilvo, uo, Ooll -4- F) (7"; g) dT"

Step 2
we have

(2.1)0

(2.2)

Multiplying (1.7)1-(1.7)3 by -Ov,-02u,-02xO, respectively,

d Ox)(t)ll2
2 dt II(vx, Ux, + (u, Ox)(t) II 2

f(o g2.0xU+Oxg3.0xO)dx--: F(l)(t;g). (2.1),
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We also multiply (1.7)2 and (1.7)3 by ut, Ot, respectively, and add the
resultant equations to have

d---t [l(U’Ox)(t)[I + (boOx- Vx)Udx

f 2 Otux)dx f(g2u,+gaO,)ax.+ (u2t +O2t-Ux +2bo (2.3)

Calculating (2.1)1 + (2.3) x A for a small positive constant A, we have

d [1 2 I+A A
dt -ll(vx, ux)(t)ll /

2
IIx(t)ll2 /llu(t)ll

//,X(boOx Vx)udx / (1 ;)llux(t)ll / ,Xll (u, Ot)(t)l[

/ IlOxx(t)ll / .f 2,Xboux. Odx

f(Oxg2 OxU + Oxg2 ut + Oxg3 OxO + g3 Ot) dx =" F(l) (t; g).

(2.4)1

and hence

II(Vx, U, Ux, Ox)(t)ll 2 + II(ux, u,Ot, Oxx)(-)ll 2 d.r

( /o< C [Iv0, u0, 0oll + F2(1) (-; g) dr (2.5)

Moreover, differentiating (1.7)2 with respect to x and using (1.7)1,
we have

Vt Vxx ql_ Utx + boOxx g2x,

and, by multiplying this by v,

2 dt
IIv(t)ll2 + [[Vx(t)ll2 (ut + boOx)vxdx

vxdx=: F’)(t;g).
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By (2.2), (2.5) and the Schwarz inequality

IIv(t)ll 2 + Ilv()ll2dr

( /0 )< c Ilvo, uo, Ooll )+F+ (F() + F ))(r;g)dr (2.7)

We now have had the integrability of [Ivx(r)ll z on [0, t]. Hence we turn
back to (2.4)1 and multiply (2.4)1 by (1 + t) to obtain

(1 + t)ll(vx, u,u,Ox)(t)ll 2 + (1 -+- r)[l(Vx, U,,Ot, Oxx)(r)ll 2 dr

<_ C(IIvo, uo, 0o’[ +foiF()(r;g)+ (1 + r)F1) (r; g) + Fl) (r; g))dr)
C Ilvo, uo, Ooll + Hl(r;g)dr (2.8)

Combining (2.8) and (2.7) we have the second lemma.

LEMMA 2.2 It holds that

(1 + t)ll(Vx, U, Ux, Ox)(t)l[ 2

/ (llvx()ll 2 + (1 -+- 7")ll(Ux, Ut, Ot, Oxx)(’)ll2)d7

( /o’ )<_ c Ilvo, uo, Ooll / Hl(r;gldr (2.9)

Step 3 Estimates of higher order derivatives corresponding to (2.1)1,
(2.4)1 and (2.6)1, respectively, become

d 2

2 dt I[Ox(V’ u, O)(t)l + I[0x(u, Ox)(t)ll 2

J k F(k)(t;g),(Oxg2.0kxu+Oxg3.0xO)dx :=
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d [1 2 I+A 2 21d-- -[lO(v,u)(t)[I /
2

I[Ox(t)[[ +- I[Ox-u(t)ll

+ f A(boOkx 0 Okxv)Ox-udx + (1 A)llOxu(t)ll

+ X[10x-’ (u, Ot)(t)ll 9 OxOx(t)ll + f 2AboOx u" Ox -10t dx

Ox"+ x .OxOxg. AO-.. k- k
ut + 0x g3 Ox O)

k- k--q- AOx g3 Ox Ot dx (t;g),

and

ld f2 dt
IlOkx-lV(t)ll= + IlOkxv(t)ll=-- (0xk-1

/ Okx -1g2" Oxvdx :: Fk)(t;g)

Ut .qt_ boOkxo)okxl dx

(2.6)k

for k 2, 3, 4. Same method as that of obtaining Lemmas 2.1-2.2
yields the third lemma.

LEMMA 2.3 It holds that

(1 + t)9llOx(Vx, u, Ux, Ox)(t)ll

+ [( + )llO2v()ll= + (1 + -)=l[Ox(Ux, Ut, O,,Oxx)O-)ll=]d

_< c vo, uo, Oo I1 / n=0-; g) tiT" (2.10)

(1 + t)31102x(Vx, U, Ux, Ox)(t)ll

+ [(1 + )=llO)v()ll= + (1 + -)3llO(Ux, U, Ot, Oxx)(7-)ll2]dT-

<_ c Ilvo, no, Oo11 / Ha(r; g) dr (2.11)
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and

(1 + t)41103x(Vx, U, Ux, Ox)(t)ll 2

+ [(1 + 7-)3110x4v(7-)ll 2 +(1 +7-)4ll03x(Ux, U, Ot, Oxx)(7-)ll2]d7

(<_ c Ilvo, uo, O0114 / H4(7-;g) d- (2.12)

where

rn

Hm(7";g) E {(1 + -)k-F(-’)(-;g) + (1 + ’)F2(k> (-;g)
k=l

+ (1 + -)k-’F)(-;g)}. (2.13)

Step 4 We next estimate the derivatives of (v, u, 0) with respect to t.

Differentiate (1.7) in once to have

(Vt) (U,)x 0,

(Ut)t (Vt)x + bo(Ot)x -- ut g2t, (2.14)
(Ot)t -]- bo(ut)x (Ot)xx g3t.

Since II(v.u,,O31t-oll <_ C(llVo, Uoll / 1100112) and that (1 /)ll(v,-
Ux, Ut, Ot)(’)ll 2 is integrable on [0, t] by Lemma 2.2, same way as in
Lemma 2.3 yields the following lemma:

LEMMA 2.4 It holds that

(1 + t)=llO(v,u,O)(t)ll 2 + (1 + -)2110t(u,O)(-)l12 d’r

_< c Ilvo, uoll + IlOo11 + Hl(7-;g) + (1 + 7)2F()(’r;gt) dT-

(2.15)

(1 + t)3110(Vx, U, Ux, Ox)(t)ll 2 + [(1 + -)211v/(’)ll 2

+ (1 + .r)3llOt(Ux, Ut, Ot, Oxx)(r)ll2]d.r

( /o )_< c Ilvo, uoll / IlOo1[ / [a(;g) / (1 / -)=a(;g,)] d-

(2.16)
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and

(1 + t)4llOxOt(Vx, U, Ux, Ox)(t)ll 2 -t- ((1 + r)311Vtxx(r)ll

/ (1 + )4]lOxOt(Ux, Ut, Ot, Oxx(7)l]=)d

Step 5 Differentiating (2.14) in once more, we have

LEMMA 2.5 It holds that

(1 -t-t)4llot(v,u,O)(t)ll 2 + (1 +r)411Off(u, Ox)(’)ll2dr

Q fO<_ c llvo, uo, Ooll4 / [H(7-zg) + (1 + 7-)Hl(7-zgt)

/ (1 + 7)4F}0) (7"; gtt)] d’r).

(2.17)

Step 6 Adding all inequalities obtained in Lemmas 2.1-2.5, we have

fOE (t; v, u, O) + E2 (-r; v, u, 0) d’r

_< c(llvo, uo, 0011 = / [H4(7"; g) + (1 -+- 7-)2H2(-; gt)

-[- (1 -[- T)4F(O)(T;gtt)] dT. (2.19)

Here we have used F() (t; g) << H (t; g) << H(t; g) << H3 (t; g) <<
Ha(t; g), where F<< Hmeans that all terms ofF are included in H.
The last term of (2.19) has higher orders of (v, u, 0) and estimated as

follows:

LEMMA 2.6 For smallpositive constant u it holds that

fOtC [H4(’r;g) + (1 + "r)2H:(’r’;gt) + (1 + "r)4F)(r;gtt)]d’r

<_ CIIvo, uo, Ool /, E2(r;v,u,O)dr+CN(T)3/.

(2.18)
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The proof of lemma 2.6 is not difficult, but many and tedious cal-
culations are necessary. So, we only show a few terms. For example,

f H4 (7-; g) d7- includes

.z (bo b(,,, O))u 0 dx d-,-,
(v,O)

J2 := (1 -[-7")4 (a(v,O)- 1)VxxxxUxxxtdxd7-,

the latter ofwhich is in f(1 + 7")4 f 0x3g2 0x Ut dx dr. J1 is estimated as
follows:

0fo f I-(c(vO,0)),(b b(v’ O))U + c(v, 0) b(v, O)xuI dxdT-

f 2 2 2<_ CN(T)/2 (vx + u +Ox)dxdT- <_ CN(T)3/2.

Since
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The other terms are omitted. We now have reached to the inequality

N(T) <_ C(llvo, uo, Oo[124 + N(T)3/2),

and hence

N(T) < CII v0, u0, 00 2
4

provided that [[v0, u0, 00114 is suitably small. Thus, we have completed the
proof of Proposition 2.2.

3 ESTIMATES IN L]-FRAMEWORK

In this section we prove Theorem 2. Assuming (Vo, 0o) E L in addition to
the assumptions in Theorem 1, we remind the "explicit" formula (1.24)
of (v, 0). In order to obtain the estimates of (v, 0), it is enough to esti-
mate I1 "= G v0, 12 :-- G 0o, II := f G Uxt, III := f G g2x dr and
IV := f G, g3 d-r, where G G1 or G2, and g2,g3, G1, G2 are, respec-
tively, given by (1.9) and (1.20).

First, we seek for the L-norm of v, 0. Since IIG(t)l[, <_ O(t-1/2), it is
easily seen that

IIl[ + 112[ < Ct-1/2 (3.1)

(From now on we denote a constant depending on I[l0, u0,00[[4 +
IIv0, 00ILL, simply by C.) Dividing the integrand (0, t) into (0, t/2) U
(t/2, t) and using the Hausdorff-Young inequality, we have

[H[ <_ ft/2 SIlGx(t- )1111ut(’)ll d- + IlG(t- )11 Ilux()ll d"
/0 2

_< C (t- r)-3/4(1 + r)-3/ d- + C (t- r)-/4(1 + r)- dT"
,/0 2

<_ Ct-3/4, (3.2)
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and

(3.4)

Hence, together with II(v,O)(t)llo c, (3.2)-(3.4) and (1.24) give

II(v,O)(t)ll,o <_ C(1 + t)-1/2 ln(2 + t), (3.5)

which will be improved soon after getting the estimates of II(v, 0)(t)[ I.
Next, we seek for II(v, 0)(t)[I in a similar fashion to the above:

IlIll[ q-III=11 IIa(t)ll(llvoll, + I!0011,) Ct-1/4, (3.6)

t/2
IIIIII / IIIIIII <_ (llaxll,., Ilu/ll / Ilaxll IIg=ll,,)d"

2

<_ Ct-1/4, (3.7)
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and

0

"t

<_C +
2

(t-r)

<_ Ct-1/4 ln(2 + t).

-/4ll(v, 0)(-)II (Ux, Oxx)(’)ll dr

(3.8)

Hence

II(v,O)(t)ll C(1 / t)-1/4 ln(2 + t). (3.9)

Applying (3.9), just obtained, to (3.4) and (3.7) we have

IIZVIl C(1 / t) -1/2, IIIV[[ Ct-1/4

from which we obtain the desired estimate

(1 / t)l/211(v,O)(t)ll + (1 / t)l/all(v,O)(t)l C. (3.10)

By (1.24) the estimates of Ilx,..., IVx yield

(1 / t)ll(v,Ox)(t)ll + (1 / t)3/411(Vx, Ox)(t)l C. (3.11)

From (1.25), (3.11) and the Sobolev inequality

Ilu(t)[l C(ll(vx, Ox)(t)ll

+ Ilut(t)ll + II(v, O)(t)llll(vx, Ox)(t)ll

< C(1 / t) -1 (3.12)

and

Ilu(t)ll c(I (,.,-, 0.,-)()1 + Ilu,()ll + II(v,O)(t)llll(vx, Ox)(t)ll)

_< C(1 nt- i)-3/4. (3.13)
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Similarly, we have

II(vx, Ox, Ux)(t)llL C(1 + t)
[[(Vxx, Oxx, Ux)(t)[[ C(1 + t) -5/4. (3.14)

By (1.7)1 and (1.7)3 vt and 0t have same decay orders as (3.14).
Equations (3.10)-(3.14) yield the desired estimate (1.26). Here, we note
that the assumption Uo E L is not necessary till now.

4 THERMOELASTIC SYSTEM OF SECOND ORDER

In the final section we consider the original second order thermoelastic
system (1.1) with dissipation, and prove Theorem 3.
For the solution (v, u, 0) of (1.4) with the initial data (v0, u0, 00)=

(Wox, wl, 00) obtained in Theorems and 2, Eqs. (1.24) and (1.27) give
the solution (w, 0) of (1.1) by

W(X, t) (all * wo)(x, t) -t- (a12 * 00)(, t) dc

+ (Gll + boG2)(’, 7") (-ut + g:z)(’, 7") (x) dr

-t- G12(’,/-7-)*g3(’,7") () d7-d

() + (2)+ (3) + (4) (4.1)

and

O(x, t)= (. Wox)(X, t)+ (cv. Oo)(x, t)

Ztx [G12(’, "r) (-ut + g2x)(’, r) + G22(’, 7")

(bo(-Uxt -+- g2x) -t- g3)(’, 7")] dT", (4.2)

where

Gll aGl + (1
G22 =/3G + (1 -/3)G2.

G12 ’)’(G1 G:)
(4.3)
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First, note that, for anyfE L f"l L2,

Hence,

x

[(G G2) *f]() dc _< Csup In" Go(n, t)l. Ilfll.
R

_< Cllfll,, (4.4)

and

[f][(G1-G2) ,f]()dc Clio. Go(n, t)II f

ctl/a]lfll. (4.5)
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Using (4.4) and (4.5) we estimate each term of (4.1). First two terms
are easily estimated as

I(1)1 < C(1 + t) -1/2, I1(1)11 _< C(1 + t) -1/4 (4.6)

and

1(2)1 _< C, 11(2)11 _< c(1 +/)1/4 (4.7)

if 0o E L1. In this section, only by C denote a constant depending on

Ilwoll / IIw, 0o114 + Ilwo, Wox, w, 0olIL,. For (3) it is enough to estimate

(3)1 f G ut dT- and (3)2 f G g2 dr, where G G1 or G2. By the
integration by parts in

17"=t/2 ft/2(3)1 [G(t 7) u(r)],=o + Gt(t 7-) * u(’r) dT-
d0

-k- G(t 7") * ut(7-) d7-
2

and hence, from Theorems and 2,

(4.8)

and

11(3),11
IIa(t/2)llL, Ilu(t/2)ll + IIa(t)l[ IlwllL,

+ llat(t )IIL’ Ilu()ll d- + 116(t )IlL, ]]ut(’)II d-
.]0 2
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Since

it/2<_ C -3/4 -+- -1/4 -+- (t 7-)-1 (1 + "r) -3/4 dT-
dO

+ (1 + 7") -3/2 dr
2

< Ct-1/4. (4.9)

IIg2(t)ll, CIl(v,O)(t)ll II(vx, Ox)(t)ll c(1-t-t) -1

it holds that

(4.10)

1(3)21 IIa(t- ’)]lLllg2(r)llL’ d"

< C + (t- -)-1/2(1 + r) -1 dr
2

C(1 + t)-/ ln(2 + t), (4.11)

and that

11(3)=11 IIa(t- )11 IIg=(r)ll, d

_< C(1 -k- t) -1/4 ln(2 + t). (4.12)

Estimates of the final term (4) are as follows:

1(4)1 <_ C Ilg3llL, dT

/o_< c (ll(v, o)(’r)ll Ilux(’,-)ll + I1(O, Ox)(’r)ll IlOxxll)d-

/o_< C (1 -+-7") -1/4-5/4 dr _< C (4.13)
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and

11(4)11 _< c (t-’r)/411g3(7)l dT

_< C (t-"r)-l/4(1 + 7") -1/2-5/4 dr < Ct1/4.

Combining (4.6)-(4.14) we obtain

(4.14)

(1 + t)]/4[Iw(t)l + Ilw(t)llo <_ c.

The other terms Wx v, wt u, 0 etc. are same as the orders in Theorem 2.
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