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The notions of lower and upper functions of the second order differential equations take
their beginningfrom the classicalworkbyC. Scorza-Dragoni andhavebeeninvestigated till
now because they play an important role in the theory ofnonlinear boundary value prob-
lems. Most of them define lower and upper functions as solutions of the corresponding
second order differential inequalities. The aim ofthis paper is to compare two more general
approaches. One is due to Rachflnkov/t and Tvrd (Nonlinear systems of differential
inequalities and solvability of certain boundary value problems (J. oflnequal. & Appl. (to
appear))) who defined the lower and upper functions ofthe given equation as solutions of
associated systems of two differential inequalities with solutions possibly not absolutely
continuous. The second belongs to Fabry and Habets (Nonlinear Analysis, TMA 10 (1986),
985-1007) and requires the monotonicity of certain integro-differential expressions.
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Themethod oflower and upper functions is an effective tool in the theory
of nonlinear boundary value problems for the second order differential
equation

u"-f(t,u,u’). (1)

* E-mail: vrkoc@matsrv.math.cas.cz.

191



192 I. VRKO(2

Let us note that the terminology is not uniform and some authors
use the term lower and upper solutions. Until now, a lot of definitions of
these notions, less or more general, have been introduced. In [3], the
authors made use of the following definition of lower and upper func-
tions of (1) where f fulfils the Carathodory conditions on [a, b] 2,
i.e. fhas the following properties: (i) for each x and y the func-
tion f(., x, y) is measurable on [a, b]; (ii) for almost every t [a, b] the
functionf(t, .,. is continuous on 2; (iii) for each compact set KC2
the function mr(t) sup,y)r If(t, x, Y)I is Lebesgue integrable on [a, b].
By Car([a, b] 2) we denote the set of functions which satisfy the
Carathodory conditions on [a, b] 2.

DEFINITION Functions (or, p) are called lower (upper) functions of(1)
(on [a, b])/for is absolutely continuous on [a, b] andphasa boundedvariation
on [a, b], the singular part psing of p is nondecreasing (nonincreasing) on

[a, b] and they verify thefollowing system ofdifferential inequalities:

a’ t) p( t) a.e. on [a, b],
p’(t) >_ f(t,a(t),p(t)) (p’(t) <_f(t, cr(t),p(t))) a.e. on [a,b]. (2)

On the other hand, the authors of [1] introduce somewhat different
definition of lower and upper functions of (1) withfcontinuous.

DEFINITION 2 A lower (upper) function of (1) is a continuous function
a on [a, b] which possessesfor all E [a, b) the right derivative a+ (t) and

P_ (t) is right-continuousfor all (a, b] the left derivative a (t) such that a+
on [a, b),

aP_(t) < a+(t) (a_(t) > a+(t)) for all (a,b)

and

a(s), a+ (s)) dsa+(t) f(s, -a+ (t) + f(s, a(s), a+ (s) ds

is nondecreasing on [a, b).

At one glance the relationship ofDefinitions and 2 is not clear. Their
comparison will be given by the following two theorems.
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THEOREM 1 LetfE Car([a, b] x ]I2). Then, ifa is a lower (upper)function
of(l) in the sense ofDefinition 2, thefunctions (a, p), where

o-(t) on [a, b] and

p(t)
(t) /f [a, b),

lims--,b- a+ (s) /f b,
(3)

are lower (upper)functions of(1) with respect to Definition 1.

THEOREM 2 Let thefunctions (a, p) be lower (upper) functions of(1) in
the sense ofDefinition 1. Then thefunction a defined by

a( t) or( t) for E [a, b]

is a lower (upper)function of(l) in the sense ofDefinition 2.

Let us start with the proof of Theorem 1. To this aim the following
three lemmas are helpful.

LEMMA
and assume

Let afunction g be definedandcontinuous on the interval [a, b)

(i) g (t) existsfor all [a, b),
(ii) g t) is right-continuous on [a, b) and
(iii) there exists afunction h continuous on [a, b) andsuch thatg (t) h(t)

is nondecreasing on [a, b).

Then the function g is absolutely continuous on every interval [a, c],
c(a,b).

Proof Choose c (a, b). Condition (iii) implies

g+(t)- h(t) < g+(c)- h(c) for t [a, c]

so that

g (t) < g(c) + h(t) h(c) <_ g_ (c) + max[h(t) h(c)].
tE[a,c]

Similarly, for E [a, c] we have

g+(t) >_ g_(a) + h(t) h(a) > g+(a) + min [h(t) h(a)],
tE[a,c]
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i.e. g’+(t) is bounded. Define

(t) g+(s) ds for E [a,b).

Due to (ii) (continuity from the right of g_(t)), for any E[a,b) the
-!derivative

_
(t) is defined and g+ (t) g+ (t).

Now, the proof of the lemma will be completed by the proof of the
following relation:

g(t) ,(t) =_ g(a) (a) on [a, b).

Denote A(t)--g(t)-(t). Then A(t) is continuous on [a,b) and

A_ (t) 0 for any [a, b). Assume that there is a point s (a, b) such
that A(s) > A(a) and define

p(t) [A(s) A(a) + A(s)- A(a) (t- a)]- (A(t)- A(a)).
s--a

(4)

Certainly, p(a)> 0 and p(s)< 0. Let t* be the greatest point in (a,s)
fulfilling p(t*) 0. Equality (4) yields

1A(s) A(a) > 0,p+ (t*)
s a

Since p(t) < 0 for > t*, we have

p(t) -p(t*)
t*

<0

and hence p+ (t*) _< 0, a contradiction with (5). The case A(s) < A(a) is

symmetric.

LEMMA 2
the limit

Let a be a lowerfunction of(l) according to Definition 2. Then

’(b-) lim

ex&ts and isfinite.



LOWER AND UPPER FUNCTIONS 195

Proof Let us define the function r [a, b) by the relation

r(t) for [a,b)a+(t) f(s,a(s),a+(s))ds + E (6)

Due to Definition 2, r is nondecreasing and right-continuous on [a, b).
Consequently, the limits

lim a_(s) a+ (t-), E (a, b) (7)

exist and

a_(t-) _< a_ (t) on (a, b). (8)

Now, let

liminf
t-.b-

a+(t) < limsup

Let us fix the numbers c, 2 ( in such a way that

liminfa_(t) < 1 < C2 < limsup

Let tl, t2 G (a, b) be such that

a.’+/-(t) _> c2 and a+(t2) _< cl.

Consider a family 2 of closed intervals I= [r, 7"2] fulfilling

IC [t,t2], a+(n) > c2, a_(7"2)< cl. (9)

Let In be a decreasing sequence of intervals from 2". Its intersection
I NnIn is a nonempty interval I=[c,2 and the existence of the
limits (7) together with the relations (8) and the continuity from the
right of a+ ensure that conditions (9) are fulfilled for/, either, i.e.
I 2". It means that a minimal interval Imi,=[z,z2] exists in the
family 2-. Minimality yields a+(t) (Cl, c2) for E Imi,. We conclude
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(put K= supt[a,b] ]a(t)]) that

This is in contradiction with the Carath6odory property of f since
infinitely many of such disjoint intervals can be constructed. Hence

liminf
tb-

a+(t)= limsup
tb- a+ t) t-b-lim a+ (t).

If

lim
t--b-

0+ c

were valid, then by Lemma we would have

a’_ (b)= limtb_ a(b)b a(t)-
lim-tb- (ln- a()7-

)lim
(s)

ds
t---b- 7"-

a contradiction.
Similarly, if

lim a+ (t) -o
t--b-

held, we would obtain a’_ (b) -o, again a contradiction.

LEMMA 3 Let a be a lowerfunction of(l) according to Definition 2 and
let p be given by (3). Then p has a bounded variation on [a, b].

Proof Lemma 2 yields that the nondecreasing function r given by (6)
has a finite limit r(b-)= limt b_r(t), i.e. it has a bounded variation on
[a, b]. Denoting

h(t) f(s, a(s), p(s) ds,
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we can write

Ip(ti+l) p(ti) h(ti+l) -+- h(ti)l p(b) p(a) h(b) + h(a)

r(b-) r(a).

for an arbitrary partition { ti} of the interval [a, b]. Thus

varba p < var6a h + r(b-) r(a).

Proof of Theorem 1 Let a be a lower function of (1) with respect to
Definition 2 and let the function r be again given by (6). In the proof
of Lemma 3 it has been already shown that the limit r(b-) exists and is
finite. Furthermore, integrating (6) and making use of Lemma we get

a(t) a(a) + f(s,a(s),a+(s))dsdT"

+ r(s)ds on [a, hi,

i.e. a is absolutely continuous on [a, b]. Now, let r and 0 be defined by (3).
Thus, is absolutely continuous on [a, b] and, according to Lemma 3, p
has a bounded variation on [a,b]. Moreover, in virtue of (3) and
Definition 2, the function

p(t) f(s, or(s), p(s) ds

is nondecreasing on [a, b). It means that the couple (or, p) verifies the
inequalities (2) and, moreover, the singular part ofp is also nondecreas-
ing on [a, b) (cf. e.g. [2, Theorem 125] or [4, II.25]), i.e. (or, p) are lower
functions for (1) according to Definition 1, either.

Analogously we would argue in the case of upper functions.

Proof of Theorem 2 Let (tr, p) be lower functions of (1) with respect to
Definition 1. Since the function p has a finite variation and since

+ on bl,

the limits p(t+), p(t-) exist. It follows that the function r has the one-
sided derivatives cr+(t) p(t+) and _(t) p(t-) in each E[a,b) or
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is rightE (a, b] respectively. As p(t+) is right continuous on [a, b), a+
continuous on [a, b) either.
Denote paC and psing the absolute and singular parts of p, respectively.

Since (psing)’(t)= 0 almost everywhere (see [4, II.25]) we have

(paC)t(t) >_f(t,r(t),p(t)) a.e. on [a,b]

and since psing is nondecreasing on [a, b], for a _< tl < t2 _< b we have

p(t2) p(tl) pae(t2) paC(tl) + psing(t2) psing(tl)

>_

instead of p and considering the factSubstituting a instead of cr and a+
that p(t+) : p(t) and hence also a_ (t) : p(t) can happen only in at most
countably many points E [a, b], we get the monotonicity on [a, b) ofthe
function

a+(t)- f(s,a(s),a+(s))ds= p(t)- f(s,a(s),p(s))ds

required by Definition 2. Finally, the relations a

_
(t) <_ a+ (t), E (a, b),

follow from the fact that psing is by Definition nondecreasing on [a, b].
Analogously we would argue in the case of upper functions.
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