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We give an alternate proof of weighted dyadic Carleson’s inequalities which are
essentially proved by Sawyer and Wheeden. We use the Bellman function approach of
Nazarov and Treil. As an application we give an alternate proof ofweighted inequalities
for dyadic fractional maximal operators. A result on weighted inequalities for fractional
integral operators is given.
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1. MAIN RESULTS

In this paper we study weighted dyadic Carleson’s inequalities. The
result in this paper is essentially contained in the results by Sawyer
and Wheeden [5]. We give an alternate proof of it. In the proof of
our theorem we will use the Bellman function approach which was
invented by Nazarov and Treil [2]. Our interest is in applications of
Nazarov and Treil’s methods.
As an application of our weighted norm inequalities we will give an

alternate proof of weighted norm inequalities for dyadic fractional
maximal functions which is studied by Genebashvili, Gogatishvili,
Kokilashvili and Krbec under more general setting [1]. A result on
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weighted norm inequalities for fractional integral operators will be
given.

Let D be the set of all dyadic cubes in Rn. By a dyadic cube we mean
a cube of the form [2/k,2(k + 1))x x [2kn, 2i(kn+ 1)) for some
integers j, k,..., k. For ! E 79 and a locally integrable function a on
Rn we set

1 f a(x)dx,

where IAI denotes the Lebesgue measure of a measurable set A.
Next we introduce the dyadic reverse doubling condition on

weights. We say a nonnegative measurable function w satisfies the
dyadic reverse doubling condition if w is locally integrable and there is
a constant d > such that

d f, w(x)dx <_ J w(x)dx

for all/, I’ D where/’ is contained in I and has the half side length of
L

Let p be the positive number such that p- +p’- 1.

THEOREM 1.1 Let <p< q < o and w be a nonnegative locally
integrable function on Rn. We assume that w -1/0’-1) satisfies the
dyadic reverse doubling condition. Let {#t}t ev be nonnegative numbers.
Then the following two statements are equivalent.

(i) There is a positive constant C such that

l,(o)qt < C o(x)w(x)dx (2)

for all nonnegative locally integrable functions o.
(ii) There is a positive constant C such that

#I <- CPlllq ( fI w(x)-l/(p-l)dx)
-q/p’

for all l lZ
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Remark 1.1 If w-1/(-1) satisfies the dyadic reverse doubling con-
dition, then we can prove that there is a positive constant c such
that

I/w-1/(p-1)dx)
q/p

for all dyadic cubes Q. By this inequality and Lemma 2.10 in [5] we can
prove (5) in the proof of Theorem 1.1 in Section 2. Hence Theorem 1.1
is a corollary of Sawyer and Wheeden’s result.

Let <p < o. We say a nonnegative measurable function w is a
dyadic A, weight if there is a positive constant C such that

_<C (3)

for all I E ).

If w is a dyadic A, weight, then w- 1/(,- 1) satisfies the dyadic reverse
doubling condition. The proof of this fact will be given in the proof of
the following corollary.

COROLLARY 1.1 Let <p < q < oo and w be a dyadic A, weight. Let
{#}i e be nonnegative numbers. Then thefollowing two statements are
equivalent.

(i) There is a positive constant C such that

< c (4)

for all nonnegative locally integrable functions
(ii) There is a positive constant C such that

I Ct(I w(x)dx)
q/p

for all I D.
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2. PROOFS OF THEOREM 1.1 AND COROLLARY 1.1

Proof of Theorem 1.1 First we show that (i) implies (ii). We fix a
I E. In the inequality in (i) we set o(x) w(x)- /’- )Xz(x). Then we
have

Hence we get

# < CIliq ( f w(x)-l/-l)dx)
-q/p’

Next we shall prove that (ii) implies (i). This is a consequence of the
inequality

Hence we shall prove (5). We fix a I D. It is suffice to show

IJlq(f w(x)-l/(p-1)dx)-q/P’()<_ C(fl (x)Pw(x)dx)
JcI,J E

(6)

for all nonnegative locally integrable functions o where C is a constant
which does not depend on L In fact, we can prove (5) by the following
argument. Let m be a positive integer and Km,, Km,2,..., Km,2, be dya-
dic cubes which are obtained by dividing the cube [-2m, 2m) x... x
[-2m, 2m) in R into 2 equal parts.

If we apply (6) to I Km,, 1,..., 2n, and if we let m---,oo, then we
have

2n where Kifori 1,...,
inequalities, m _>

Km,i. (5) is a consequence of these
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We shall prove (6). Now the following lemma holds.

LEMMA 2.1 Let n be a positive integer, 1 <p < q < oo, and 0 < b < 2".
Let

D {(F,f, v)" 0 <_ F, 0 < v, 0 <_f <_ Fl/evl/P’}.
Then there is a positive constant c such that

2vt,/t;
>_ c.+ 2nq/p .=

Fi 2f/t,,
q/t,

for all (F, f, v), (Fi, f, vi) E D, i= 1,..., 2n, such that

F FI +... 4r- F2n fl 4c-... 4r-f2 Vl d-"" d- v2,

2n f: 2n
v=

2n

and

vi<_bv, i=1,...,2n. (7)

The proof of Lemma 2.1 will be given in Section 3.
Let D be the domain in Lemma 2.1. For (F, f, v)E D we set

B(F,f v) - F 2v’/’

where c is the constant in Lemma 2.1. Let o be a nonnegative
measurable function such that

<

We use the notation

fa  P(X)PW(x)dx’ fa (x)dx
and

1 w(x)_i/(p_)dxva= 
for a measurable set A in I such that IA[ # O.
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Then we have (F;,f, vt) D. In fact, by Hflder’s inequality, we have

Hence we get

Let 1, 12,... ,I2 be dyadic cubes which are obtained by dividing I
into 2n equal parts. Then we have

(Fh,A, vI,) D,
S, + + S,,

F= 2n
v +... +

vt 2n

21i- 1,,,,,

5 ’+’"+J"
2/1

and

vt,<_bvt, i=1,...,2n,
by the dyadic reverse doubling condition for w -/(t’-), where b=
2rid and d is the constant in the dyadic reverse doubling condition
for w-/(r-). Since d> 1, we have b < 2".

Hence, by Lemma 2.1, we have

Therefore the inequality

2/I

Illq/B(S,f, v) > IIIqg’v-q/’ff + IIIq/B(F,,A, vt,)
i=1

holds.
We apply this inequality to I, 1,..., 2, in place of L Repeating

this argument, we have, for k e N,

IIlq/’B(F,f, v) >_
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Since B(F, fj, v)> O, we get

Jcld ,lJI >_ 2-’a’ltl

Letting k oo, we have

JCI,J l)
[J[q(fj w(x)-l/(p-l)dx) -q/p’

(o) <_ Illq/’B(Fl,f, v)

IZlq/ I (F )
q/P

c 2/t

Ct(fii (X)PW(x)dx) q/p"

Hence we proved (6).

Proof of Corollary 1.1 First we shall show that if w is a dyadic A,
weight, then w-1/0,-l) satisfies the dyadic reverse doubling condition.

Let I be any dyadic cube in Rn. Let ll,..., 12n be dyadic sub-cubes
of I which are obtained by dividing I into 2n equal parts. We use the
notation

1 f w(x)dxUA

and

fA w(x)-l/(p-1)dxVA

for a measurable set A C I such that IAI # 0. Then we have

nlt +... -- u12 vi +... -- v12
UI "ll2n 2n

We remark that ut, < 2nut for all 1,..., 2n by the first equality.
Since w is a dyadic A, weight, we have

1 <, 1/, lip’ < K
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and

1 < u/’v1/t’ < K, for all 2n,I h "’
where K is a positive constant which does not depend on L
Now we have, for 1,..., 2,

Since

we conclude

d w(x)-l/(p-1)dx <_ fll W(X)-l/(p-1)dx

for some d > 1. Hence w-1/0,-1) satisfies the dyadic reverse doubling
condition.

Since w is a dyadic Ap weight, we have

< Klll ( ft W(X)-I/-I)dx) -1/#

for all I E D. The corollary is easily proved by this inequality and
Theorem 1.1. Q.E.D.

3. PROOF OF LEMMA 2.1

We shall prove Lemma 2.1. In the proof we use the following two
lemmas.
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LEMMA 3.1 Let a > 1. Then there is a 7 > 0 such that

(x + y) _> 7 min {xa,y} + x + ya

for all x, y >_O.

LEMMA 3.2 Let 1 < p < o and 0 <_ a, 0 <_ , a+ 1. Then

for all 0 <_f, f+, f 0 < v, v+, v_ such that

f af+ + f_, v o,v+ + fly_.

Lemma 3.2 is a consequence of the convexity of the functionff/v/#
on the domain {(f, v)]O <_f, 0 < v}. We can prove Lemmas 3.1 and 3.2
by easy calculations.

ProofofLemma 2.1 Let 6 be a sufficiently small positive number. We
may assume thatf <f _< <f.

First we consider the case > 6fi Let

+... + + +G
2n-

g
2n- 1

and

U
v2 +... + v2,

2n- 1

Since

l/p, l/p’ vl/p, 1/l]
g<-2 -2 +"" +’2.

2n- 1

< (F2 +... + F2,)I/P(v2 +... v2,) lip’
< G1/pul/p,

2n- 1

we have (G, g, u) D.
For simplicity we set

1
al--’’ and /3

2n- 1
2n
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Then we get

F aFz + flO, f atfi +
v ov + flu, v <_ by, u <_ by,

and

where we used the condition (7) in the estimates of r and u.
Then, by Lemma 3.2, the inequality

F- fl’ >
2vP/g )

q/p

{al (FI f ) + 3, (G gV

2/v’ 2uP/e’ ) }
q/t,

holds. By Lemma 3.1 we have

Since (F, f, v), (G, g, u)E D, we have

Sl f f 2-1b-pB; fP
vvl

and

where we used (8) and (9).
Furthermore, since

(9)

(11)

(12)
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by Lemma 3.2, we have

2uP#" )
ql’

Hence, by (10), (11), (12) and (13), we conclude that

2vt,/t" > c-+ 2--q/e
.=

F 2f’t’/,,
q/l,

Next we consider the case fv < 6f and fv+l > 6f for some N such
that 1 < N < 2-2. If n 1, then this case does not occur. Let

F1 +... + F+1 Fv+2 +"" + F2nGI G2N+ 1 2n-N 1
fl +"" +f/V+l fN+2 +’’" +f2n

gl g2N+ 1 2n-N 1

and

vl +... + vN+ vv+2 +... + v2,
[/1 /,/2

N+ 1 2n -N- 1

Then we have (G1, g, u), (G2, g2, u2)E D.
For simplicity we set

N+ 1 2"-N- 1
c= and /2

2n 2n

Then we get

F c2G1 + f12G2, f a2gl + f12g2,
v a2Ul + f12u2, Ul <_ by, u2 < bv, (14)

and

gl >_ ,f, g2>_6f
iv+

(15)

Then, by Lemma 3.2, the inequality

2/’
q//,
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holds. By Lemma 3.1 we have

q/P
/p

q/P

_>min{/( 2/-’) , (G-2g,) }
+cr./P(GI 21g1/1) q/l

2/P(G2 2t22g2/t,,-) (16)

Now we have

GI

and

Furthermore, since

G1

and

by Lemma 3.1, we have

(G1 2gl/t,,) q/t’ 1 N+I

>--
(N + l)q/t’=l (Fi-2/#

and

(2n-N- 1)q/Pi= 2

(17)

(18)

(19)

(20)
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Hence, by (16), (17), (18), (19) and (20), we conclude that

2vV/
>_ c-+ 2nq./p .=

Fi 2f/,,
Next we consider the case f2,- < 8f and f2, _> 8f. Let

G’ F +... + F2.- g, =fl +"" +f2.-
2n- 2n- 1

and

Vl q- "- V2n-I

2n- 1

Then we have (G’, g’, u’)E D.
For simplicity we set

O3
2n- 1

and
2n

Then we get

F a3G + 3F2,, f a3g’ + 3f2,, v a3u + 3v2,

and

d < bv, v2, <_ bv.

Since

the inequality

holds.

(21)
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By Lmma 3.1 we have

2vV/ )
q/v

>7min{(c3G,+/33 f, fv )q/v2/ 2/

By (21) we have the inequality

/ :’ : > {(-3)/t; vV/- (/3b)V-
Since b < 2n, we get

Hence, for sufficiently small 6, we have

(1 aa6y’
(3b)p-l

-1>0.

Hence we have

by (22) and

3’ + 2 : >f’
o, P/p’ 2vP/ vP/

f" > 2-16b-V/P f
v/t; vV/V’

(22)
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Furthermore, by Lemma 3.2, we have

Hence we get

F f
2vt"/t" )

q/t"
>cifq_-d- a/P(G 2ue/t"

’ge )
, p/p’

Since

G 2uq’/t" 2n 1
i=l

we have

G’ gt" > 1 (Fi fit’
2ut’/t" )

q/t" 2n-1

2n --1)q/t" iY,.1 2v/t"
q

Hence we conclude

2vt’/
> ct fiP q/P

-Jr- 2nq/p
"=

Fi 2,Pi/p’

Finally we remark that the case f2n < 6f does not occur for sufficiently
small 6. Q.E.D.

4. APPLICATIONS

In this section we shall study the weighted norm inequalities for dyadic
fractional maximal operators. The result is a corollary of Theorem
4.2.2. in [1, p. 161]. We give an alternate proof of it.
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Let 0 < a < n. For a locally integrable function o we define the
dyadic fractional maximal function Maao by

sup I(y)ldy (xSR).

THEOREM 4.1 Let 1 <p < q < oo and 0 < < n. Let w be a nonnega-
tire locally integrablefunction on Rn. We assume that w- l/t,- 1) satisfies
the dyadic reverse doubling condition. Let a be a nonnegative locally inte-
grablefunction on Rn. Then thefollowing two statements are equivalent.

(i) There is a positive constant C such that

(f Mo(x)qa(x)dx) < C
\
[ o(x)rw(x)dx) 1/1,

(23)

for all nonnegative locally integrable functions
(ii) There is a positive constant K> 0 such that

,lll/q-1/P+/" (i ft cr(x)dx)
l/q

( l[ w(x)-l/(t’-’)dx) < K (24)

for all I

Proof First we shall show that (i) implies (ii). Let I be any dyadic
cube in Rn. In the inequality in (i) we set

Then we get

For x E I we have

1 f -/(-)dy.w(y)

Hence we get

a(x)dx)
1/q

,ll,_/, f w(x)-i/O’-l)dx( f <_ C(f w(x)-l/O’-)dx)
This inequality is equivalent to (24).
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Next we shall show that (ii) implies (i). The proof is similar to the
arguments in Nazarov and Treil [2, p. 817]. Let o be a nonnegative
locally integrable function on R. For every x ER", we choose a
l(x) such that

Mayo(x) <
2 S( o(y)dy. (25)

IZ(x)l

For each I E D set

Then we have

and

Et {xEI I(x) I}.

EI C I,
Et E = for all I, J , I # J,

By (25) we have

Since

we get

IIICq/n-q fx o’(x)dx(S w(x)-l/(t’-l)dx)
q/t"

1 cr(x)dx)
1/q

(fl w(x)_(t,_)dx < Kq
1

IIl’q/n fx a(x)dx <_ Kqlllq (S w(x)-/(t’-)dx)-q/t"

(26)
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Hence (26) is bounded by

2,Kq E II[’ ( S W(X)-I/(t’-I)dx) -q/#

by Theorem 1.1. Q.E.D.

Next we shall give a result on fractional integral operators. The
result is a corollary of Theorem 4.2.2 in [1]. We give it here because
it is not mentioned in [1].

Let 0 < a < n and I,, be the fractional integral operator, that is,

Ix- rl
ay (x Rn).

Let a be anA weight on Rn, that is, r satisfies the following property:
there are constants c, 6 > 0 so that, for each cube Q

for all measurable set E in Q, where o’(E) fE o’(x)dx.
As P6rez pointed out in [3, p. 34], we have

dx

for 0 < q < c. Hence we have the following result.

COROLLARY 4.1 Let <p < q < o and 0 < t < n. Let w be a non-
negative locally integrable function on Rn. We assume that w-1/(1-1)
satisfies the dyadic reverse doubling condition. Let tr be an Aoo weight on
Rn. Then the following two statements are equivalent.

(i) There is a positive constant C such that

( fRn Ia(x)q’(x)dx)
1]q 1/1,

(27)

for all nonnegative locally integrable functions
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(ii) There is a positive constant K> 0 such that

Ill/q-/P+/n ( a(x)dx)
/q

( S w(x)-/(P-)dx) /P’
<K

for all I E ).

Remark 4.1 In [3, p. 34] P6rez proved (27) assuming that w- l/(p- 1) is
a dyadic Aoo weight. If w-l/(p-1) is a dyadic Aoo weight, then we can
prove that w-1/<,-1) satisfies the dyadic reverse doubling condition.
Hence this corollary includes P6rez’s result.

Remark 4.2 In [4, Theorem 1] Sawyer and Wheeden proved that (27)
holds if a and w-/0,-1) satisfy the reverse doubling condition and
(ii). Our Corollary 4.1 is not a direct consequence of Sawyer and
Wheeden’s result because we assumed that w-/0"-) satisfies the
"dyadic" reverse doubling condition.

Remark 4.3 By Theorem 4.1 and the argument in [3, p. 39], we can
get a result on weighted norm inequalities for ordinary fractional
maximal operators. It is a corollary of Theorem 4.2.2 of [1].
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