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one.
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1. INTRODUCTION

The well known fact that the derivative and the integral are inverse
each other has a lot of interesting consequences, one of them being
the duality between convexity and monotonicity. The purpose of
the present paper is to relate on this basis two basic inequalities in
Classical Analysis, precisely those due to Jensen and Chebyshev.
Both refer to mean values of integrable functions. Restricting

ourselves to the case of finite measure spaces (X, , #), let us recall

* Partially supported by MEN Grant 39683/1998.
e-mail: tempus@oltenia.ro

451



452 C.P. NICULESCU

that the mean value of any #-integrable function f:X can be
defined as

M(f) #(X) fd#.

A useful remark is that the mean value of an integrable function
belongs to any interval that includes its image; see [5], page 202.

In the particular case of an interval [a,b], endowed with the
Lebesgue measure, the two aforementioned inequalities reads as
follows:

JENSEN’S INEQUALITY Suppose that f: [a,b]--, is an integrable func-
tion and 99 is a convex function defined on an interval containing the
image off, such that o of is integrable too. Then

p(M(f)) <_ M(p of).

CHEBYSHEV’S INEQUALITY Ifg, h" [a, b] R are two nondecreasingfunc-
tions then

M(g)M(h) <_ M(gh).

Our goal is to show that Jensen’s Inequality and an extension of
Chebyshev’s Inequality complement one another, so that they both
can be formulated in a pairing form, including a second inequality,
that provides an estimate for the classical one.

2. PRELIMINARIES

Before entering the details we shall need some preparation on the
smoothness properties of the two type of functions involved: the
convex and the nondecreasing ones.

Suppose that I is an interval (with interior Int I) and f: I---. is a
convex function. Thenfis continuous on lnt I and has finite left and
right derivatives at each point of Int L Moreover,

x < y in Int/=: D-f(x) < D+f(x) <
< D-f(y) < D+f(y)
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which shows that both D-f and D+f are nondecreasing on Int L It
is not difficult to prove that f must be differentiable except for at
most countably many points. See [5], pp. 271-272. On the other
hand, simple examples show that at the endpoints of I could appear
problems even with the continuity. Notice that every discontinuous
convex functionf: [a, b] --, comes from a continuous convex function

f0: [a, b]--, , whose values at a and/or b were enlarged. In fact, any
convex function f defined on an interval I is either monotonic or
admits a point c such that f is nonincreasing on (-oo, c]f3I and
nondccrcasing on [c, oo) U I.

In the case of convex functions, the role of derivative is played by
the subdifferential, a mathematical object which for a functionf: I
is defined as the set Of of all functions o:I--, [-oo, o0] such that
o(Int I) c and

f(x) >f(a)+ (x- a)o(a), (V) x, a E I.

Geometrically, the subdifferential gives us the slopes of supporting
lines for the graph off.
The well known fact that a differentiable function is convex if (and

only if) its derivative is nondecreasing has the following generalization
in terms of subdifferential:

LEMMA 1 Let I be an interval. The subdifferential ofafunctionf:
is non-empty if and only iff is convex. Moreover, if qo Of, then

D-f(x) < qo(x) <_ D+f(x)

for every x Int L Particularly, go is a nondecreasing function.

Proof Necessity Suppose first that f is a convex function defined on
an open interval L We shall prove that D+f Of. For, let x, a /,
with x > a. Then

f((1 t)a + tx) f(a)
<_f(x) f(a)

t

for each (0, 1], which yields

f(x) >f(a) + D+f(a) (x a).
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If x<a, then a similar argument leads us to f(x)>f(a)+
D-f(a) (x- a); or, D-f (a) (x- a) > D+f (a) (x- a), because
x-a<O.

Analogously, we can argue that D-f Of. Then from (,) we infer
that any o Of is necessarily nondecreasing.

If I is not open, say I= [a, oo), we can complete the definition of o
by letting o(a)=-oo.

Sufficiency Let x, y E L x :# y, and let E (0, 1). Then

f(x) >_f(( t)x + ty)+

+ t(x y). o((1 t)x + ty)

f(r) >_f(( t)x + ty)-

(1 t)(x y). o((1 t)x + ty).

By multiplying the first inequality by 1- t, the second by and then
adding them side by side, we get

(1 t)f(x) + tf(x) _>f((1 t)x + ty)

i.e., f is convex. []

Let us consider now the case of nondecreasing functions. It is well
known that each nondecreasing function o:I has at most
countably many discontinuities (each of the first kind); less known is
that qo admits primitives (also called antiderivatives). According to
Dieudonn6 [2], a primitive of o means any function " I which is
continuous on/, differentiable at each point of continuity of o, and
such that ,= o at all those points. An example of a primitive of o is

x

,(x) o(t)dt, x ,
a being arbitrarily fixed in L

Because o is nondecreasing, an easy computation shows that I, is a
convex function. In fact, is continuous, so it suttices to show that

# (x,,+2 3’7) <- #(x) +(y)2 for all x, y I;
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or, the last inequality is equivalent to

(x+y)/2

99(t)dt < 99(t)dt,
Jx +y)/2

for all x, yEI, x < y

the later being clear because o is nondecreasing.
On the other hand, by Denjoy-Bourbaki Theorem (The General-

ized Mean Value Theorem) any two primitives of 99 differ by a
constant. See [2], 8.7.1. Consequently, all primitives of 99 must be
convex too!

3. THE MAIN RESULTS

We can now state our first result, the complete form of Jensen’s
Inequality:

THEOREM A Let (X, , lz) be a finite measure space and let g X-,

be a #-integrablefunction. Iffis a convexfunction given on an interval I
that includes the image ofg and go Of is afunction such that qo o g and
g.(qo o g) are integrable, then the following inequalities hold:

0 <_ M(f o g) -f(M(g)) <_ M(g. (qo o g)) M(g)M(qo o g).

Proof The first inequality is that of Jensen, for which we give the
following simple argument: If M(g) Int/, then

f(g(x)) >_f(M(g)) + (g(x) M(g)) qo(M(g)) for all x X

and the Jensen’s inequality follows by integrating both sides over X.
The case where M(g) is an endpoint of I is straightforward because in
that case g M(g)# a.e.
The second inequality can be obtained from

f(M(g)) >_f(g(x)) + (M(g) g(x)) qo(g(x)) for all xX

by integrating both sides over X.
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COROLLARY (See [3], for the case where f is a smooth convex func-
tion) Letfbe a convex function defined on an open interval I and let

Of Then

0 <_ Okf(Xk) --f OkXk <_
k=l k=l

k=l k=l k=l

for every xl,. .,xn E Iandevery al,. .,an [0, 1], with nk= ak 1.

Corollary 1 above allows us to say something more even in the case
of most familiar inequalities. Here are three examples, all involving
concave functions; Theorem A and Corollary 1 both work in that case,
simply by reversing the inequality signs. The first example concerns
the sine function and improves on a well known inequality from
Trigonometry: If A,B, C are the angles of a triangle (expressed in
radians) then

2 sinA -A co

2 -A cosA< sinA< 2

To get a feeling of the lower estimate for sin A, just test the case
of the triangle with angles A (r/2), B (r/3) and C (r/6)!
Our second example concerns the function In and improves on the

AM-GM Inequality:

/x x <_ x + + x <_
n

The exponent in the right hand side can be further evaluated
via a classical inequality due to Schweitzer [7] (as strengthened by
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Cirtoaje [1]), so we can state the AM-GM Inequality as follows: /f
0 < m <_ x,...,x <_ M, then

X -J-’..-J-Xn exp [1 (M + m)2

+ [1 + (-1)#-I](M m)2

] <4Mm 8Mmn2

< /x... x < xi +... + x.
n

Stirling’s Formula suggests the possibility of further improvement,
a subject which will be considered elsewhere.
Theorem A also allows us to estimate tricky integrals such as

4 f./4I In(1 + tanx)dx In 2 0.34657...
’d0

By Jensen’s Inequality,

ln(1 + tanx)dx <_ In (1 + tanx)dx
?I’d0

which yields a pretty good upper bound for I because the difference
between the two sides is (approximately) 1.8952 x 10 -2. Notice that
an easy computation shows that

r/4
(1 + tanx)dx r + ln2,

Theorem A allows us to indicate a valuable lower bound for /,
precisely,

I_> In (4fo"/4-
r

(1 + tanx)dx +

+1 4for/4
(1 + tanx)dx

4 ./4

r - (1 + tanx)-l dx.

In fact, Maple V4 shows that I exceeds the left hand side by
1.9679 x 10- 2.
Using the aforementioned duality between the convex functions and

the nondecreasing ones, we can infer from Theorem A the following
result:
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THEOREM B (The extension of Chebyshev’s Inequality) Let (X, , #)
be afinite measure space, let g:X be a #-integrablefunction and let
o be a nondecreasing function given on an interval that includes the
image of g and such that oog and g. ( o g) are integrable functions.
Thenfor every primitive ofo such that o g is integrable thefollowing
inequalities hold true:

0 <_ M( o g) (M(g)) <_ M(g. (qo o g)) M(g)M(qo o g).

In order to show how Theorem B yields Chebyshev’s Inequality we
have to consider two cases. The first one concerns the situation where
g: [a, b] [ is increasing and h: [a, b] is nondecreasing. In that
case we apply Theorem B to g and h o g-. When both g and h
are nondecreasing, we shall consider increasing perturbations of g,
e.g., g+ex for > 0. By the previous case,

+  ,Oh) < +
for each e > 0 and it remains to take the limit as e - 0+.
The following two inequalities are consequences of Theorem B:

f0 (sin) (sinl + cos sin-lx)dX- (f0 sin

(sin12"(fO (sin-lx+cssinl)dx)>x fo ( \ .,/

1) (/0 1 )sin- dx sin sin-dx > O;
x x

+ sin sin ,x-1 )dx
(1)

jo eSinx/Xdx ( fo sin-dx)(fo eSinx/Xdx) >

01 (sinx) (folsinx)> exp dx exp dXx > O. (2)

The first one corresponds to the case where g(x)= sin (I/x) and
o(x)=x+cosx, while the second one to g(x)=((sin x)/x) and
(x) eX; the fact that the inequalities above are strict is straightfor-
ward. In both cases, the integrals involved cannot be computed exactly
(i.e., via elementary functions).
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Using MAPLE V4, we can estimate the different integrals and
obtain that (1) looks like

0.37673 > 0.16179 > 0

while (2) looks like 5.7577 x 10-3 > 2.8917 x 10 -3 > 0.

4. ANOTHER ESTIMATE OF JENSEN’S INEQUALITY

The following result complements Theorem A and yields a valuable
upper estimate of Jensen’s Inequality:

TIEOREM C Let f [a,b] be a continuous convex function, and
let [ml, M],...,[mn, M,] be compact subintervals of [a,b]. Given
a,.. CnE [0, 1] with n=a 1, the function

E(Xl, ,Xn) g(Xk) f kXk
k=l k=l

attains its supremum on =[m,M] x x [mn, Mn] at a boundary
point (i.e., at a point ofO {m,M} x x {mn, Mn}).

Moreover, the conclusion remains valid for every compact convex
domain in [a, b]n.
The proof of Theorem C depends upon the following refinement of

Lagrange Mean eorem:
LA 2 Let h: [a, b] be a continuousfunction. Then there exists
a point c (a, b) such that

h(c) < h(b) h(a) < h(c).

Here the lower and respectively the upper derivative of h at c are
defined by

h(c) lim inf h(x) h(c) and h(c) lim sup h(x) h(c).
xc X C xc X C

Proof As in the smooth case, we consider the function

H(x) h(x) h(b) h(a) (x a)b-a
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Clearly, H is continuous and H(a) H(b). IfH attains its supremum
at c (a, b), then D__H(c) <_ 0 < H(c) and the conclusion of Lemma 2
is immediate. The same is true when H attains its infimum at an
interior point of [a, b]. If both extrema are attained at the endpoints,
then H is constant and the conclusion of Lemma 2 works for every
c in (a, b).

Proof of Theorem C It suffices to show that

E(x,...,xt,... ,xn) < sup{E(x,... ,mk,... ,Xn),E(Xl,... ,Mtc,..., Xn)}

for every xk [ink, Mk], k { 1,..., n}.
By reduetio ad absurdum, we may assume that

E(x x, Xn) > sup{E(ml xz, Xn), E(M xz, xn) }.

for some x, xz,..., x, with xk [ink, Mk] for each k {1,... ,n}.
Letting fixed xk [mk, Mk] with k{1,...,n}, we consider the

function

h" [m,M] -- , h(x) E(x, x2,..., Xn).

According to Lemma 2, there exists a (ml,x0 such that
h(x)-h(m) <(x-m)h(). As h(xO>h(m), it follows that
h() > 0, equivalently,

f() > f(cl + 2X2 +"" + OnXn).

Or, f is a nondeereasing function on (a,b) (actually r D+f),
which leads to > a+ax+ +anXn, i.e., to

c2x2 + + O.nXn>
2 +"" + n

A new appeal to Lemma 2 (applied this time to h l[x, Md), yields
an (x,M) such that

02X2 +’" + O.nXn
c2 +... + cn

Or, the later contradicts the fact that < r/.

The following application of Theorem C is due to Khanin [6]: Let
p > 1, Xl,...,Xn [O,M] and a,.. .,tn [0, 1], with ’k=ln Ok 1.
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Then

OtkXPk <_ OtkXk
k=l k=l

+ (p 1)pP/(-P)Mp.

Particularly,

<
n n 4’

which represents an additive converse to Cauchy-Schwarz Inequality.
In fact, according to Theorem C, the function

E(Xl, Xn) OkXPk OtkXk
k=l k=l

attains its supremum on [0,M] at a boundary point i.e., at a point
whose coordinates are either 0 or M. Therefore

supE(Xl,... ,xn) <_ Me. sup{s- sP;sC [0, 11}
(p 1)pe/O-e)Me.

Another immediate consequence of Theorem C is the following
fact, which improves on a special case of a classical inequality due to
Hardy, Littlewood and Polya (cf. [4], p. 89): Let f’. [a,b]---, be a

continuous convex function. Then

f(a) +f(b) _f(a+b) > f(c)
2 2 _f(c+d)2

for every a < c <_ d < b; in [4], one restricts to the case where
a/b c+d. The problem of extending this statement for longer
families of numbers is left open.
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