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A domain in the complex plane which is star-like with respect to a boundary point can be
approximated by domains which are star-like with respect to interior points. This
approximation process can be viewed dynamically as an evolution of the null points of
the underlying holomorphic functions from the interior of the open unit disk towards a
boundary point. We trace these dynamics analytically in terms of the Alexander-
Nevanlinna and Robertson inequalities by using the framework of complex dynamical
systems and hyperbolic monotonicity.
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The following two inequalities are well-known in geometric function
theory:

Re f(z) >0, zeA, (1)

zf’(z) l+z}>0, zEA (2)Re 2f(z) +l-z

* e-mail: elin mark@hotmail.com
Correspond]’ng author, e-mail: sreich@tx.technion.ac.il
e-mail: davs@tx.technion.ac.il

651



652 M. ELIN et al.

where A c C is the open unit disk in the complex plane and f." A C is
a univalent holomorphic function.
The first inequality is due to Nevanlinna [6] and Alexander [1].

It characterizes those univalent holomorphic functions which are
star-like with respect to f(0)=0. The second one was suggested by
Robertson [9] as a characterization of those univalent holomorphic
f." A C with f(0)= such that f(A) is star-like with respect to the
boundary point f(1):= limr_l-f(r)=0 and lies in the right half-
plane. This characterization was partially proved by Robertson
himself while his full conjecture was established by Lyzzaik [5]. A gen-
eralization of these results was later given by Silverman and Silvia [10].
A domain which is star-like with respect to a boundary point can be

approximated by domains which are star-like with respect to interior
points. This approximation process can be viewed dynamically as an
evolution ofthe null points ofthe underlying functions from the interior
towards a boundary point. So a natural question is how to trace these
dynamics analytically in terms of the inequalities (1) and (2). In the
present paper we answer this question in the framework of complex
dynamical systems and hyperbolic monotonicity.
We begin by recalling two classical definitions.

DEFINITION A set f C C is called star-shaped if given any a; E f, the
point t belongs to f for every E (0, 1].

DEFINITION 2 A univalent holomorphic function f." A C is said to
be star-like iff(A) is a star-shaped set. In addition, if 0 Ef(A), thenfis
called star-like with respect to the interior point f(a)=0, for some
a A. If 0 E 0f(A), the boundary off(A), thenfis called star-like with
respect to the boundary point 0.

Using Proposition 2.14 and Corollary 2.17 in [7], we see that if j2
A C is star-like with respect to the boundary point 0 E 0f(A), then
there is a unique point 7- E OA such that limrl-f(rr) O. Therefore in
the sequel we will sometimes write thatfis star-like with respect to the
boundary point f(-) :- limrl-f(r-) -O. We will also denote the set
of all holomorphic functions fi A C by Hol(A, C).

THEOREM 3 Let f’. A-- C be a univalent holomorphic function on A.
Then f is star-like if and only if it satisfies the following equation:

f(z) f(z) (z 7-)(1 z)p(z), z A, (3)
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where 7- E A andp: A C is holomorphic with Re p(z) >_ 0 for all z A.
Thus, if 7- A, thenf is star-like with respect tof(7-) O, and if 7" tgA,
then f is star-like with respect to the boundary pointf(7")= O.

Remark 1 Equation (3) can be rewritten in the form

Ref’(z)(z 7")(1 z)
f(z)

>_0, zszX. (3’)

In addition, if 7" A, then differentiating (3) at z 7" we get p(r)=
(1/(1- [r[2))> 0 which means that inequality (Y) is actually strict.

Moreover, setting 7"=0, we obtain Nevanlinna’s condition for the
star-likeness of f with respect to f(O)=O ((condition (1)). If r A,
r# 0, one can derive the condition obtained by Wald [11]. In Theorem
7 below we will show that for r 1 Eq. (3) (hence inequality (3’)) is
equivalent to a generalized form of Robertson’s inequality (2).
As a matter of fact, we will show in the sequel that Theorem 3 is a

consequence of the following connections between geometric function
theory, complex evolution equations, and the concept of hyperbolic
monotonicity for holomorphic functions.
To explain our approach we recall that a mapping f: D - C, D c C,

is said to be monotone if for each pair of points z, w D we have

Re[(f(z) -f(w))(- )l > 0.

It is easy to see that this inequality is equivalent to the following
condition:

I + ,f(z) (w + ,f(w))l >_ I- wl

for all r > 0 and z, w D. This condition motivates our next definition.

DEFINITION 4 Let f be a mapping from A into the complex plane C
and let p be the Poincar6 metric on A. The mapping f is called p-
monotone (i.e., monotone with respect to the metric p) if for each pair
of points z, w E A,

p(z + f(z), w + f(w)) >_ p(, w)

for all r > 0 such that the points z+ rf(z) and w+ rf(w) belong to A.
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The notion of p-monotonicity (in Hilbert space) was introduced in
Section 2 of [8]. The following proposition is a special case of the
results and proofs there.

PROPOS:ION 5 Let g: A C be a holomorphic function on A. The
following are equivalent:

(i) g is p-monotone;
(ii) for each r > O, the function Jr (I+ rg)-1 is well-defined on A and

is a holomorphic, hence p-nonexpansive, self-mapping of A, i.e.,

<_ p(z, w)

for all z, w E A;
(iii) for each z A, the Cauchy problem

(Ou(t,z)/Ot) -k- g(u(t,z)) 0
u(O, z) z (4)

has a unique solution {u(t,z)} c A for all t> 0 and the family
{S(t) :--u(t, .)}, t> O, consists of holomorphic (hence p-nonexpan-
sive) self-mappings of A;

(iv) for each pair ofpoints z, w A. the following inequality holds:

Re[ lg(z)------Izl2
+ lg(w)]_Iwl2 >_ Re g(w)+wg(z)lw

Remark 2 It can be shown by using (ii) and Banach’s fixed point
theorem that if G: A A is a p-nonexpansive self-mapping, then I-G
is p-monotone.

Remark 3 Condition (iv) implies that the set (A) of all p-monotone
functions on A is a closed real cone with respect to the topology of
pointwise convergence on A.

Now we are able to formulate a key result.

THEOREM 6 Letfbe a holomorphic univalentfunction on A. Thenf(A)
is star-shaped if and only if ( f’)- If is p-monotone.

Proof Suppose f(A) is star-shaped. Then for each t[O, 1), the
function Gt=f-l[(1-t)f] is a well-defined holomorphic (hence
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p-nonexpansive) self-mapping of A. It follows by Remarks 2 and 3
that

is p-monotone for each E (0, 1). Consequently,

lim gt tf-1 [(1 t)f]
t-,O+ t=0+

(:,)-,:

is also p-monotone.

Conversely, let g =f/f’ be p-monotone and let u(t,.) be the solution
of the Cauehy problem defined in Proposition 5 (iii). Then the family
of functions {(t, .)} defined by the formula

(t,w) --f(u(t,f-l(w))), >_ O,

consists of holomorphic self-mappings of the domain 9t =f(A). At the
same time, direct calculations show that I,(., .) is the solution of the
Cauchy problem

O(t, w)/Ot) + (t, w) 0
(0, w)

Hence (t, w) e- tw . ’ for all _> 0 and each w ft.

Proof of Theorem 3 Let f be a univalent star-like function on A.
Define the holomorphic function g on A by

g(z) [f’(z)]-f(z), z A. (5)

Since f is univalent it follows that g has at most one null point in A.
Suppose first that f is star-like with respect to an interior point, i.e.,
there is r A such that f(r)= 0. Then we get by Theorem 6 that g is
a p-monotone function with g(r)-0 and g(r)= 1. Setting r= w in
condition (iv) of Proposition 5 we get

Re[ g(z) ]>Re g(z)

-Izl
zA. (6)
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Calculations show that (6) combined with (5) is equivalent to (3’).
Hence f satisfies Eq. (3).
Now iff is a univalent star-like function with no null point in

then g defined by (5) also has no null point in A. In this case, fix e > 0
and consider the mapping g E Hol(A, C) defined by

+
It is clear that g belongs to the cone (A), i.e., g is a p-monotone
function. Also, it follows by Proposition 5 (condition (ii)) that for each
r > 0 and w E A the equation

z + rg(z) w

has a unique solution z Zr(W) A. Setting w "--0 and r (I/e) we get
that - := z</)(O) is the unique null point of g, i.e., g(7") 0. Since g
has no null point in A, we can apply Corollary 1.4 in [8] and conclude
that there is a unimodular point 7- 0A such that for each w A the
net {z(w)} converges to 7- when r tends to infinity. In particular, we
have that {7-} tends to - when e 0 +.

Since g satisfies inequality (6) with - replaced by - and {g}
converges to g as e tends to 0 +, we see that g also satisfies this
inequality with 7- lim_0+

Conversely, let f be a univalent holomorphic function on A which
satisfies Eq. (3) with some - A and p E HoI(A, C) such that Re p > 0
everywhere. Again we first assume that 7- A. Consider the function

fl(z) =f(Mr(z))

where M(z) ((-- z)/(1 -z)) is a M6bius transformation of the
unit disk. It is sufficient, of course, to show that f(z) is star-shaped.

Since

f’(Mr(z)) f(z) [Mr (z)]-substituting Mr(z) instead of z in Eq. (3) we get by calculations

f (z)

where p(z)=(1-lrl2)p(Mr(z)) has a positive real part for all z A

(see Remark 1). Hence fl is star-like by Nevanlinna’s theorem
(condition (1)).
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Let now f satisfy Eq. (3) with some r 0A. Then it is sufficient to
prove that the function g defined by (5),

f(z) (z 7")(1 z)p(z)g(z)
f’(z)

is p-monotone. To this end, we take a sequence {rn} C A such that

rn " as n---, x. Since the functions gn defined by

gn(z) := (z- rn)(1 Zn)p(z)

are p-monotone and the sequence {gn} C 7(A) converges to g as
n o, we conclude that g also belongs to (A).
The proof of Theorem 3 is complete.

Finally, we will concentrate on star-like functions with respect to
a boundary point and show that conditions derived from the above
assertions are equivalent to a generalized form of Robertson’s in-
equality (2). In addition, we will relate these conditions to some
geometric considerations in the spirit of Silverman and Silvia [10].

Recall that a holomorphic function s: A C is said to be star-like of
order A E [0, 1) if s(0) 0, s’(0) and Re(zd(z)/s(z)) > A for all z E A.

THEOREM 7 Let f’. A C be holomorphic and/et A E [0, 1). Iff is not a
constant andf(O)= 1, then the following conditions are equivalent.

(i) Re [(1/(1 A)) (zf’ (z)/f(z)) + ((1 + z)/(1 z))] > 0 for all z A.
(ii) There exists a star-like function s: A C of order A such that

zf(z) (1 z)9-2s(z), z A.

(iii) The function f is univalent and f(A) is star-like with respect to

f(1) 0 and lies in a wedge of angle 2r(1 ,).
(iv) The function f is univalent, the mapping g: A--, C defined by

g(z) :=f(z)/f (z), z A, is p-monotone,

Slim
g(z)

=. g’(1)
z-lz-

when z approaches in any wedge of the form
(1-Re z)) < If}, and Re gO(l) >_ (1/(2-2)0).

Proof We first establish the equivalence of (a) and (b).
(a)=(b). Assuming (a) holds, we define s: A-,C by s(z):=

z(1 -z)Ea-Ef(z).
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It is easy to see that s(0)= 0 and s’(0)= 1. Moreover,

s(z) l+z}zf’(z)+-A= (l-A)1 A f(z) 1-z

and therefore

for all z A,

as claimed.
(b) = (a). If (b) holds, then f(z) (s(z)/z)(1 z)2 2a, and

l+z (zs’(z) )zf’(z) --A
A f(z) z A s(z)

Before we continue, we note the following facts. The first fact follows
from the Riesz-Herglotz representation of functions belonging to the
class of Carath6odory.
We denote by G the class of non-vanishing holomorphic functions

f: A C with f(O)= which satisfy condition (a).

Fact 1 The set

U Ay=2-2A, ljl:l
n=l y=l Z(j y=l

is dense in Ga in the topology of uniform convergence on compact
subsets of A.

Fact 2 If 0 < A, # < 1, then fE GA if and only if

If(z)] ((-")/(-)) G.
This fact follows from the observation that s ES*(A), the family of
star-like functions of order A, if and only if

s(z) ) ((1-#)/(1-))
Z

Z

Fact 3 lffE GA \ { }, then limzlf(z) 0 when z approaches in any
wedge of the form W {z E A: (llm zl/(1 Re z)) < K}.
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To see this, recall that Cochrane and MacGregor [2] showed that if
s E S*(A) and s(z) z/(1 xz), where Ix[ 1, then

I()1 0(1 -Izl)-1

for some 6 > 0.
IffEG1/2, and f(z)=(1-z)s(z)/z with such an sS*(1/2), then it

follows that If(z)[ (11 z[)O(1 Izl)- as z 1. If z is confined to
a wedge, then (([1-zD/(1- Izl))< A and therefore lim__.f(z)=0, as
claimed.

If s(z) z/(1 xz), then f(z) ((1 z)/(1 xz)), where Ixl , but
x # 1. In this case it is clear that lim_f(z)= 0.

Finally, if fq G with A # 1/2, then we obtain the result by using
Fact 2 with g 1/2.

Fact 4 IffE G \ { }, then the function h(z) := logf(z), logf(0) 0
is univalent and close-to-convex in A.

Since z/(1- z)2 is a star-like function, this fact will be proved once
we show that

z)2f’(z)Re( (1 f----)>0,
To this end, let 0 < p < and define fp: A C by

z )2(l-A)fp(z) := f(pz)
pz

If we use the corresponding function s S*(x), we can write equiva-
lently that

fp(z) ( s(PZ) ) (1)z -g)2(1-A)

This last representation offp shows that it belongs to G. Its definition
shows that fp--.f as p 1- and that f, is continuous on the closed
disk A. Therefore the claimed inequality will follow if we check it for
fp and for z e’ 0A.
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Indeed, for such z we have

as claimed.

Fact 5 IffE Ga \ { }, then -f is close-to-convex, hence univalent.
This is true because the function

h(z) :=
f() s(z)
(l-z)2-(l-z)

is star-like and

Re(-zf’(z))h(z) >0 forallzEA.

We now continue with the proof of Theorem 7.
(a) = (c). By Fact we may assume that f is of the form

(z) II
j= z

where [(j[ 1, (j:/: and -’4=1 Aj 2(1 A). Each function wj(z):=
(1 z)/(1 zfj) maps the open unit disk A onto a half-plane. In other
words, Re(eiJwj(z)) > 0 for some/3j.

Denoting .= Aj/3j by ,3, we have, for each zA, [argeif(z)l
larg ei/3 H;=I w;l Ejn=, Ay(arg e’y) < Ejn__ Aj(r/2) 7r(1 A).
Hence f(A) is contained in a wedge of angle 2zr(1- A). To show that
f(A) is star-shaped, we use Fact 4 to write f(z)=f’ (z)(-(1-z)2p(z)),
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where Re p(z)> 0 for all z E A. Theorem 3 now shows that f(A) is
indeed star-shaped, as claimed.

(c)=(a). Let fo(z)=f(z)1/(1-’). Then f0(0)=l, f0(1)=0, f0 is
univalent and f0(A) is star-shaped with respect to f0(1)= 0. Set

{ 1/Dn --f0(A) ID zE A: Izl <

n 1,2,..., and for each n letfn: ADn be the conformal mapping of
A onto D, such thatf,(0)= and argfn’(0 argf(0). By Carath6od-
ory’s kernel theorem we know that

lim A f0,

uniformly on each compact subset of A. Since each f(A) is star-
shaped, there are star-like functions h with h,(0)= 0 and numbers -,

< 1, such that

fn(Z) hn(z) (z "rn)(1 ’nZ) z.A
z

(cf. [4] and [5]).
Note that fn(0) =-rnhn(O) and that

fn(O) -h(O)/hPn(O) + hPn(0)(1 + I  12)

for all n. If the sequence {h’(0)} were unbounded, then we would
I!reach a contradiction because f’(0) f(0) and ]h,(O)/h,,(O)] < 4.

Thus {h’n(0)} is bounded and we can extract a convergent
subsequence of {h}. We can and will assume that the corresponding
subsequence of {r} converges to a point r E A. Denoting the limit
function of the convergent subsequence of {hn} by h, we see that

fo(z) h(z.___) (z -)(1 z),
z

Letting z approach we conclude that 7" 1. Hence

fo(z) ( h(Z)z )(1-Z)2
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and

f(z)= ( h(z)2 (1 Z)2-2’k,

where h" AC is star-like with h(0)=0. Since the function

(z)) -"= z

is star-like of order A, we conclude by the equivalence (b) :, (a) that

fE Ga, as claimed.
(c) = (d). Let the smallest wedge in which f(A) lies be of angle

2zr(1- A). Then A _> A,

z’(zl +z]Re
l-A1 f(z-+l-zj >0, zEA, (7)

and this inequality no longer holds when A is replaced with any
number A < A2 < 1. By the Riesz-Herglotz representation theorem
we can write

zf’(z) +z_fc +z
1- f(z) l-z-- i=11- z d#(), z A, (8)

where # is a probability measure on the unit circle. After some
calculations we get

f(z) (1- z)2(l-) exp (_ 2(l A) f[l= log(1-z) d#()). (9)

Again we note that (9) no longer holds when A1 is replaced with any
number A < A2 < 1. Let 6 denote the Dirac measure at (= 0A.
Decomposing # relative to 6, we can write #=(1-a)v+a6, where
0 _< a <_ 1, and v and 6 are mutually singular probability measures. It
follows that

f(z)=(l-z)2(1-2)exp(-2(1-A2)f log (1- z)du()),]=1

where )2 -(1 A1)(1 -a).
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If a > 0, then we reach a contradiction because A2 > A1. Thus a 0
and # u. Let g =f/f’. Then g is p-monotone by Theorem 6. Using (8)
or (9) we see that

z-1 fieg(z-’- 2(1 A1) du((), z E A. (10)
I=l Z"

Let W be any wedge of the form

W= zEA:l_Rez <K

and let {,,} be any sequence in W which tends to 1. Consider the
functions f,,: 0A--,C, n 1,2,..., defined by

fn(() :-
1- zn(’ ( OA.

The function f. maps the unit circle OA onto the circle I-c.] ]c.],
where

Cn (1 n)/(1 -I.1), n 1,2,

Hence there is a natural number At’, independent of ( OA, such that

+ (Im Zn/(1 Re Zn))2n()l2 < 4lCnl2 4
[1 + Re Zn -(Im Zn) (Im Zn/(1 Re Zn))]2

_< 2(1 + K2)

for all n _> N’. Using (10) and applying Lebesgue’s bounded con-
vergence theorem we now obtain

z-1
lim

zl,zeW g(z) 2(1 A) lim I fn(f)dv()
noo dll=1

2(1 A1) < 2(1 A).

In other words, condition (d) holds.
(d) (c). First we note that by Proposition 5 and [3], g’(1) is real

and therefore

lim
g(z) >

z-l,zeW Z-- 2(1 A)" (11)
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Moreover, g(z)=f(z)/f’(z)=-(1-z)Ep(z), where p: AC is
holomorphic with Re p(z)>_ 0 for all z E A. Theorem 3 now implies
that f is star-like with respect to the boundary point f (1)= 0. Let the
smallest wedge in which f(A) lies be of angle 27r(1-A1), where

A1 E [0, 1). As we saw in the proof of the implication (c) = (d), it
follows that

lim
g(z)

--,1, w z- 2(1 A)"

Comparing the latter equality with (11), we see that A < AI. Thusf(A)
lies in a wedge of angle 27r(1- A), as claimed.

This concludes the proof of Theorem 7.
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