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If § >0 and SK is Hermitian, then |(SKx,x)| < ||K||(Sx,x) holds for all x € H, which is
known as Reid’s inequality and was sharpened by Halmos in which ||K|| was replaced by
r(K), the spectral radius of K. In this article we present generalizations of Reid’s and
Halmos’ inequalities via polar decomposition approach. Conditions on S and SK are
relaxed. Theorem 1 regards Reid-type inequalities, and Theorem 2 contains Halmos-type
inequalities.
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Throughout the paper we use capital letters to denote bounded linear op-
erators on a Hilbert space H. T is positive (written T > O) in case
(Tx,x) > 0 for all x € H. If § and T are Hermitian, we write 7 > S in
case T —S > 0. T =U|T| is the polar decomposition of T with U
the partial isometry such that N(U) = N(T) (N(4) means the null
space of A), and |T| the positive square root of the positive operator
T*T, ie, |T| = (T*T)"%. Also, we have T* = |T|U* and |T*| =
(IT*)'? with N(U*) = N(T*). Recall that if § > O and SK is Hermi-
tian, then the inequality |(SKXx,x)| < ||K||(Sx, x) holds for all x € H.
This is known as Reid’s inequality [7], and was sharpened by Halmos
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[2] in which ||K]|| was replaced by #(K), the spectral radius of K. Re-
cently, the sharpened inequality was extended in [4], and the equiva-
lence relation with the Furuta inequality appeared in [5] in which it is
assumed that S > O and SK is Hermitian in every result.

We shall prove in this paper the inequality by the polar decomposition
approach, which also enables us to relax conditions on S and SK. In
other words, we present generalizations of Reid’s and Halmos’ inequal-
ities. More precisely, Theorem 1 regards Reid-type inequalities, and
Theorem 2 contains Halmos-type inequalities. In the proof we require
the Lowner-Heinz formula, ie., A" > B" holds for r€[0,1] if
A > B > O [3], but the inequality does not hold in general for r > 1.
We also need some basic properties of the polar decomposition, i.e.,
if T =U|T| as in above, then U*U = I, the identity operator, and
|T*|° = U|T|°U* for ¢ > 0. Our basic tool is the next result which is
interesting by itself. In spite of our simple proof by direct replacements,
(ii) in Lemma 1 below was shown without the bound in [1, Theorem 1],
and equality conditions were discussed depending on the value of a.

LEMMA 1 For an arbitrary operator T and for a,b,x,y € H and
o € [0, 1], the following are equivalent.

@) |(a,d)| < ||allllb]| (Cauchy—Schwarz inequality).
Equality holds if and only if a = 0b for suitable 5. Moreover, the
bound of inequality is
lall* 151> = I(a, b)I? _Bb~ al?
llall? - P
Jfor any real number  # 0 and a # 0.
i) (o) < (TP (TP py).
Equality holds if and only if U|T|*x = 8|T*|' ™"y for suitable é.
Moreover, the bound of inequality is
(7%, )Ty, y) = (Tx, )1 < IBIT*' %y — UIT|"|)?
(T1"x, %) - B

Jor any real number f§ # 0 and |T|*x # 0.

Proof Remark that the bound in (i) was proved in [6]. (i) implies (ii).
All we have to do is replacing a and b in (i) by U|T|*x and |T*|'~%y,
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respectively, and simplifying them due to the basic properties of the
polar decomposition. More precisely,

(a,b) = (U|Tx, |T*|'~%) = (U|T|*x, U|T|'*U*y)
= (UITlx,y) = (Ix, y);

and

lal2 161 = (UITI1*x, UITPx)(T* %, |T*|' %)
= (|17, x)(IT* 22y, ).

(ii) implies (i). Let 7 =1, x = a and y = b in (ii).

A different proof of (ii) in Lemma 1 is possible by letting a = |T|*x
and b = |T|'*U*y. Incidentally, from (i) in Lemma 1 we have
|(Tx, x)| = (|T'|x, x) for any Hermitian operator 7" and any x € H. Notice
that the Cauchy—Schwarz inequality for positive S is the relation
[(Sx, y)I* < (Sx, x)(Sy, y), which is obviously a special case of (ii) in
Lemma 1. If « = 1/2 in particular, inequality (ii) is precisely Problem
138 in [2].

LEMMA 2 Let SK = V|SK| be the polar decomposition. Then the
Sollowing inequalities hold for every x € H and a € [0, 1].

(1) (ISKI*x,x) < [IS|**(|K|*%, ).

@ (/(SK)* %, %) < [IK[**(1S" [, x).

3) |SK| ,x) < ||K||2°' |S*|2“x x) if SK is Hermitian.

@) (ISK[*x, x) <|K ||2°‘(|S|2°‘x x) if both S and SK are Hermitian.
®) (|SK|2“x, x) < ||K|*(8%x,x) if $ > O and SK is Hermitian.

Moreover, the power 2u in above inequalities may be replaced by the
power 2(1 — a) without changing inequalities.

Proof (1) Since the operator S/||.S|| is a contraction, i.e., §*S < INES

K> K*S*SK
O IS
M IS

so that 0 < |SK|® < |ISI*IK|?. It follows that |SK|** < ||S||**|K|** by
the Lowner—-Heinz formula, and we have inequality (1).
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(2) The proof is similar to (1) if we start with KK* < ||K||* since
K/|K]| is a contraction. The relations

K)*|? SKK*S*
14| 1Kl
imply (2).

It is easily seen that all (3), (4) and (5) follow from (2), and the last
statement is clear.

THEOREM 1 Let SK = V|SK| be the polar decomposition. Then the
Jollowing inequalities hold for every x, y € H and a € [0, 1].

(1) 1SKx, »IF < IKIPTD(SKP%x, x)(1S* 2y, y)
< ISIZNK PA=(Kx, x)(1S* XDy, p).

(2)  1SKx, »)I* < ISIP*(K 1*x, )(ISK)* P12y, p)
< ISIPIKIPC=2(IK 12%x, x)(1S* 2y, y).

(3) If SK is Hermitian, then
I(SKx, »)I* < IKI*(S*[*%x, x)(ISK 21 =2y, »)
< IKIP(S* 1, x)(1S* X'~ 2y, y); and

I(SKx, I < IKIPTD(SK 1 x, x)(IS* 21 ~2y, y)
< IKIP(S* 2%, x)(1S* X1~y p).

(4) If both S and SK are Hermitian, then
|(SKx, »IF < IKIP*(ISPx, )(ISK 122y, y)
< IKIP(S1x, x)(1S1X =y, ); and

I(SKx, »)I* < IKIPC 2 (ISK 1x, x)(IS12 =2y, y)
< IKIP(IS1%x, x)(1S12 =Dy, y).
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(5) If S > O and SK is Hermitian, then

|(SKx, p)I* < 1K™, x)(ISK 122y, y)

< IK|*(S**x, x)(S*' =)y, y); and
I(SKx, p)I* < IKIPM=D(SK*x, x)(S* =2y, )
< IK[I2(5%x, x)(S21=2y, ).

Proof Firstly we notice that the inequality
I(SKx, p)* < (ISK [, x)(I(SK)* X' =y, y)

holds by Lemma 1. It follows that inequalities (1) and (2) in Lemma 2
imply both (1) and (2) in Theorem 1. Each other inequality above fol-
lows from the corresponding inequality in Lemma 2 and we shall
omit the details.

In particular let y = x and « = 1/2 in (5) of Theorem 1. Then we ob-
tain Reid’s inequality. We now consider sharpening of inequalities (3),
(4) and (5) in Theorem 1, i.e., replacing the norm of an operator by
its spectral radius.

THEOREM 2 Let SK = V|SK| be the polar decomposition. Then the
Jfollowing inequalities hold for every x, y € H and a € [0, 1].

(1) If|S/™ K is Hermitian, then
|(SKx, »)I* < [rEP(SPx, 2)(18* =y, »).
(2) If both S and |S|** K are Hermitian, then
I(SKx, »)I* < [PEOP(SPx, (S, »).
(3) If S > O and S** K is Hermitian, then
I(SKx, ) < [ME)P(S*x, )87, ).

Proof (1) If |S/** K is Hermitian, i.e., K*|S|** = |S|** K, then clearly
(K*)n|S|2a — lSIZa K"
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forn=1,2,.... Next we claim that
ISKx DI < (S1K” %, (1S1P%, 07 (8 )
and the proof will be done by induction. If n = 1, then
I(SKx, I < (ISP Kx, Kx)(1S* ' =, )

by Lemma 1, which yields |(SKx, y)|* < (IS|**K?%x, x)(|S*|* =%y, y).
Now,

I(SKx, )I*™ = [1(SKx, )P I
< (IS1**K % x, )2 (IS bx, )* 72 (15* 1212y, p)*
< (IS1*K % x, K¥ x)(1S1%x, x)(|S1*x, x)* 72(IS* P12y, y)*
= (ISPK>" 2 (1P, 27 (S Py )7

Note that the second inequality above is due to Lemma 1, and the induc-
tion process is done. It follows that

n n n—1__ - n—1
I(SKx, Y)IF < IISIPIIKZ x2S, %) 1 (18 P09y, p)*
which gives us

I(SKx, )| < IS K 11V %1122 (1S 12, )1/
x (18" 10y, »)'72 = r(K)(S1Px, )2

x (|S* ="y, »)!/?  as n — oo,

and the inequality (1) follows.
Obviously inequalities (2) and (3) are special cases of (1) and the
proof is finished.

In particular let y = x and o = 1/2 in (3) of Theorem 2. Then we ob-
tain Halmos’ inequality. It seems that there is no sharpening for (1) or
(2) in Theorem 1 if no other conditions are attached to operators S an-
d/or SK. Let us pose this as an open question, i.e., in Theorem 1 can we
replace the term ||K |21~ in (1) by #(K)*'™ and the term ||S||** in (2)
by r(S)**? However, we know by the Cauchy—Schwarz inequality that
|(SKx, )| < IISK|||Ix|l[yll. Here ||SK || may be replaced by a weaker con-
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dition #((SK)*SK)!/? as the following shows. For any operator E we
claim by induction that

IEx, )P < (BB x, 0)llxl| 2yl

for every x, y€H and nx1. Tt follows that |(Ex, N <
I(E*E)*" ||‘/2"_'||xl|2 lyll%; and passing to the limit as n — oo we
obtain

|ECx, p)I* < HE*E)|IxIlIyll.

We leave the details to the readers.
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