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Layer-based counterparts of a number of well-known risk measures have been proposed and
studied. Namely, some motivations and elementary properties have been discussed, and the
analytic tractability has been demonstrated by developing closed-form expressions in the general
framework of exponential dispersion models.

1. Introduction

Denote by X the set of (actuarial) risks, and let 0 ≤ X ∈ X be a random variable (rv) with
cumulative distribution function (cdf) F(x), decumulative distribution function (ddf) F(x) =
1 − F(x), and probability density function (pdf) f(x). The functional H : X → [0,∞] is
then referred to as a risk measure, and it is interpreted as the measure of risk inherent in
X. Naturally, a quite significant number of risk measuring functionals have been proposed
and studied, starting with the arguably oldest Value-at-Risk or VaR (cf. [1]), and up to the
distorted (cf. [2–5]) and weighted (cf. [6, 7]) classes of risk measures.

More specifically, the Value-at-Risk risk measure is formulated, for every 0 < q < 1, as

VaRq[X] = inf
{
x : FX(x) ≥ q

}
, (1.1)

which thus refers to the well-studied notion of the qth quantile. Then the family of distorted
risk measures is defined with the help of an increasing and concave function g : [0, 1] →
[0, 1], such that g(0) = 0 and g(1) = 1, as the following Choquet integral:

Hg[X] =
∫

R+

g
(
F(x)

)
dx. (1.2)
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Last but not least, for an increasing nonnegative function w : [0,∞) → [0,∞) and the so-
called weighted ddf Fw(x) = E[1{X > x}w(X)]/E[w(X)] the class of weighted risk measures
is given by

Hw[X] =
∫

R+

Fw(x)dx. (1.3)

Note that for at least once differentiable distortion function, we have that the weighted class
contains the distorted one as a special case, that is, Hg[X] = E[Xg ′(F(X))] is a weighted risk
measure with a dependent on F weight function.

Interestingly, probably in the view of the latter economic developments, the so-
called “tail events” have been drawing increasing attention of insurance and general finance
experts. Naturally therefore, tail-based risk measures have become quite popular, with the tail
conditional expectation (TCE) risk measure being a quite remarkable example. For 0 < q < 1
and thus F(VaRq[X])/= 0, the TCE risk measure is formulated as

TCEq[X] =
1

F
(
VaRq[X]

)

∫∞

VaRq[X]
x dF(x). (1.4)

Importantly, the TCE belongs in the class of distorted risk measures with the distortion
function

g(x) =
x

1 − q
1
(
x < 1 − q

)
+ 1
(
x ≥ 1 − q

)
, (1.5)

where 1 denotes the indicator function (cf., e.g., [8]), as well as in the class of weighted risk
measures with the weight function

w(x) = 1
{
x ≥ VaRq[X]

}
(1.6)

(cf., e.g., [6, 7]). The TCE risk measure is often referred to as the expected shortfall (ES) and
the conditional Value-at-Risk (CVaR) when the pdf of X is continuous (cf., e.g., [9]).

Functional (1.4) can be considered a tail-based extension of the net premium H[X] =
E[X]. Furman and Landsman [10] introduced and studied a tail-based counterpart of the
standard deviation premium calculation principle, which, for 0 < q < 1, the tail variance

TVq[X] = Var
[
X | X > VaRq[X]

]
, (1.7)

and a constant α ≥ 0, is defined as

TSDq[X] = TCEq[X] + α · TV1/2
q [X]. (1.8)

For a discussion of various properties of the TSD risk measure, we refer to Furman and
Landsman [10]. We note in passing that for q ↓ 0, we have that TSDq[X] → SD[X] =
E[X] + α ·Var1/2[X].
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The rest of the paper is organized as follows. In the next section we introduce and
motivate layer-based extensions of functionals (1.4) and (1.8). Then in Sections 3 and 4 we
analyze the aforementioned layer-based risk measures as well as their limiting cases in the
general context of the exponential dispersion models (EDMs), that are to this end briefly
reviewed in the appendix. Section 5 concludes the paper.

2. The Limited TCE and TSD Risk Measures

Let 0 < q < p < 1 and let X ∈ X have a continuous and strictly increasing cdf. In many
practical situations the degree of riskiness of the layer (VaRq[X],VaRp[X]) of an insurance
contract is to be measured (certainly the layer width VaRp[X] − VaRq[X] = Δq,p > 0).
Indeed, the number of deductibles in a policy is often more than one, and/or there can
be several reinsurance companies covering the same insured object. Also, there is the so-
called “limited capacity” within the insurance industry to absorb losses resulting from, for
example, terrorist attacks and catastrophes. In the context of the aforementioned events, the
unpredictable nature of the threat and the size of the losses make it unlikely that the insurance
industry can add enough capacity to cover them. In these and other cases neither (1.4) nor
(1.8) can be applied since (1) both TCE and TSD are defined for one threshold, only, and
(2) the aforementioned pair of risk measures is useless when, say, the expectations of the
underlying risks are infinite, which can definitely be the case in the situations mentioned
above.

Note 1. As noticed by a referee, the risk measure H : X → [0,∞] is often used to price
(insurance) contracts. Naturally therefore, the limited TCE and TSD proposed and studied
herein can serve as pricing functionals for policies with coverage modifications, such as, for
example, policies with deductibles, retention levels, and so forth (cf., [11, Chapter 8]).

Next, we formally define the risk measures of interest.

Definition 2.1. Let xq = VaRq[X] and xp = VaRp[X], for 0 < q < p < 1. Then the limited TCE
and TSD risk measures are formulated as

LTCEq,p[X] = E
[
X | xq < X ≤ xp

]
, (2.1)

and

LTSDq,p[X] = E
[
X | xq < X ≤ xp

]
+ α ·Var1/2[X | xq < X ≤ xp

]
, (2.2)

respectively.

Clearly, the TCE and TSD are particular cases of their limited counterparts. We note in
passing that the former pair of risk measures need not be finite for heavy tailed distributions,
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and they are thus not applicable. In this respect, limited variants (2.1) and (2.2) can provide
a partial resolution. Indeed, for k = 1, 2, . . . , we have that

E
[
Xk | xq < X ≤ xp

]
=

F
(
xp

)
E
[
Xk | X ≤ xp

] − F
(
xq

)
E
[
Xk | X ≤ xq

]

F
(
xp

) − F
(
xq

) < ∞, (2.3)

regardless of the distribution of X.
We further enumerate some properties of the LTSD risk measure, which is our main

object of study.

(1) Translation Invariance. For any constant c ≥ 0, we have that

LTSDq,p[X + c] = LTSDq,p[X] + c. (2.4)

(2) Positive Homogeneity. For any constant d > 0, we have that

LTSDq,p[d ·X] = d · LTSDq,p[X]. (2.5)

(3) Layer Parity. We call X ∈ X and Y ∈ X layer equivalent if for some 0 < q < p < 1,
such that xq = yq, xp = yp, and for every pair {(t1, t2) : q < t1 < t2 < p}, it holds that
P[xt1 < X ≤ xt2] = P[yt1 < Y ≤ yt2]. In such a case, we have that

LTSDt1,t2[X] = LTSDt1,t2[Y ]. (2.6)

Literally, this property states that the LTSD risk measure for an arbitrary layer is
only dependent on the cdf of that layer. Parity of the ddfs implies equality of LTSDs.

Although looking for original ways to assess the degree of (actuarial) riskiness is a
very important task, subsequent applications of various theoretical approaches to a real-
world data are not less essential. A significant number of papers have been devoted to
deriving explicit formulas for some tail-based risk measures in the context of various loss
distributions. The incomplete list of works discussing the TCE risk measure consists of, for
example, Hürlimann [12] and Furman and Landsman [13], gamma distributions; Panjer [14],
normal family; Landsman and Valdez [15], elliptical distributions; Landsman and Valdez
[16], and Furman and Landsman [17], exponential dispersion models; and Chiragiev and
Landsman [18], Vernic [19], Asimit et al. [20], Pareto distributions of the second kind.

As we have already noticed, the “unlimited” tail standard deviation risk measure
has been studied in the framework of the elliptical distributions by Furman and Landsman
[10]. Unfortunately, all members of the elliptical class are symmetric, while insurance risks
are generally modeled by nonnegative and positively skewed random variables. These
peculiarities can be fairly well addressed employing an alternative class of distribution
laws. The exponential dispersion models include many well-known distributions such as
normal, gamma, and inverse Gaussian, which, except for the normal, are nonsymmetric,
have nonnegative supports, and can serve as adequate models for describing insurance risks’
behavior. In this paper we therefore find it appropriate to apply both TSD and LTSD to EDM
distributed risks.
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3. The Limited Tail Standard Deviation Risk Measure for
Exponential Dispersion Models

An early development of the exponential dispersion models is often attributed to Tweedie
[21], however a more substantial and systematic investigation of this class of distributions
was documented by Jørgensen [22, 23]. In his Theory of dispersion models, Jørgensen [24] writes
that the main raison d’étre for the dispersion models is to serve as error distributions for
generalized linear models, introduced by Nelder and Wedderburn [25]. Nowadays, EDMs
play a prominent role in actuarial science and financial mathematics. This can be explained
by the high level of generality that they enable in the context of statistical inference for
widely popular distribution functions, such as normal, gamma, inverse Gaussian, stable, and
many others. The specificity characterizing statistical modeling of actuarial subjects is that
the underlying distributions mostly have nonnegative support, and many EDM members
possess this important phenomenon, (for a formal definition of the EDMs, as well as for a
brief review of some technical facts used in the sequel, cf., the appendix).

We are now in a position to evaluate the limited TSD risk measure in the framework
of the EDMs. Recall that, for 0 < q < p < 1, we denote by (xq, xp) an arbitrary layer having
“attachment point” xq and width Δq,p. Also, let

h
(
xq, xp; θ, λ

)
=

∂

∂θ
log
(
F
(
xp; θ, λ

) − F
(
xq; θ, λ

))
(3.1)

denote the generalized layer-based hazard function, such that

h
(
xq, x1; θ, λ

)
=

∂

∂θ
log
(
F
(
xq; θ, λ

))
= h
(
xq; θ, λ

)
,

h
(
x0, xp; θ, λ

)
= − ∂

∂θ
log
(
F
(
xp; θ, λ

))
= −h(xp; θ, λ

)
,

(3.2)

and thus

h
(
xq, xp; θ, λ

)
=

F
(
xq; θ, λ

)

F
(
xq; θ, λ

) − F
(
xp; θ, λ

)h
(
xq; θ, λ

)

− F
(
xp; θ, λ

)

F
(
xq; θ, λ

) − F
(
xp; θ, λ

)h
(
xp; θ, λ

)
.

(3.3)

The next theorem derives expressions for the limited TCE risk measure, which is a
natural precursor to deriving the limited TSD.
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Theorem 3.1. Assume that the natural exponential family (NEF) which generates EDM is regular
or at least steep (cf. [24, page 48]). Then the limited TCE risk measure

(i) for the reproductive EDM Y � ED(¯,œ2) is given by

LTCEq,p[Y ] = μ + σ2 · h(xq, xp; θ, λ
)

(3.4)

and

(ii) for the additive EDM X � ED∗(θ, λ) is given by

LTCEq,p[X] = λκ′(θ) + h
(
xq, xp; θ, λ

)
. (3.5)

Proof. We prove the reproductive case only, since the additive case follows in a similar
fashion. By the definition of the limited TCE, we have that

LTCEq,p[Y ] =
F
(
yq

)
E
[
Y | Y > yq

] − F
(
yp

)
E
[
Y | Y > yp

]

F
(
yp

) − F
(
yq

) . (3.6)

Further, following Landsman and Valdez [16], it can be shown that for every 0 < q < 1, we
have that

E
[
Y | Y > yq

]
= μ + σ2 · h(yq; θ, λ

)
, (3.7)

which then, employing (3.1) and (3.3), yields

LTCEq,p[Y ] =
F
(
yq; θ, λ

)(
μ + σ2 · h(yq; θ, λ

)) − F
(
yp; θ, λ

)(
μ − σ2 · h(yp; θ, λ

))

F
(
yq; θ, λ

) − F
(
yp; θ, λ

)

= μ + σ2 · h(yq, yp; θ, λ
)

(3.8)

and hence completes the proof.

In the sequel, we sometimes write LTCEq,p[Y ; θ, λ] in order to emphasize the
dependence on θ and λ.

Note 2. To obtain the results of Landsman and Valdez [16], we put p ↑ 1, and then, for
instance, in the reproductive case, we end up with

lim
p↑1

LTCEq,p[Y ] = μ + σ2 · h(yq; θ, λ
)
= TCEq[Y ], (3.9)

subject to the existence of the limit.

Next theorem provides explicit expressions for the limited TSD risk measure for both
reproductive and additive EDMs.
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Theorem 3.2. Assume that the NEF which generates EDM is regular or at least steep. Then the
limited TSD risk measure

(i) for the reproductive EDM Y � ED(¯,œ2) is given by

LTSDq,p[Y ] = LTCEq,p[Y ] + α ·
√

σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] (3.10)

and

(ii) for the additive EDM X � ED∗(θ, λ) is given by

LTSDq,p[X] = LTCEq,p[X] + α ·
√

∂

∂θ
LTCEq,p[X; θ, λ]. (3.11)

Proof. We again prove the reproductive case, only. Note that it has been assumed that κ(θ) is
a differentiable function, and thus we can differentiate the following probability integral in θ
under the integral sign (cf., the appendix):

P
(
yq < Y ≤ yp

)
=
∫yp

yq

eλ(θy−κ(θ))dνλ
(
y
)
, (3.12)

and hence, using Definition 2.1, we have that

∂

∂θ

(
LTCEq,p[Y ; θ, λ]

(
F
(
yp; θ, λ

) − F
(
yq; θ, λ

)))

=
∫yp

yq

∂

∂θ
yeλ(θy−κ(θ))dνλ

(
y
)

= λ

∫yp

yq

(
y2eλ(θy−κ(θ)) − yκ′(θ)eλ(θy−κ(θ))

)
dνλ
(
y
)

= σ−2
(
E
[
Y 2 | 1{yq < Y ≤ yp

}] − μ(θ) · E[Y | 1{yq < Y ≤ yp

}])
,

(3.13)



8 Journal of Probability and Statistics

with the last line following from the appendix. Further, by simple rearrangement and
straightforward calculations, we obtain that

E
[
Y 2 | yq < Y ≤ yp

]
=

∫yp

yq
y2eλ(θy−κ(θ))dνλ

(
y
)

F
(
yp; θ, λ

) − F
(
yq; θ, λ

)

= μ · LTCEq,p[Y ] + σ2 (∂/∂θ)LTCEq,p[Y ; θ, λ]
(
F
(
yp; θ, λ

) − F
(
yq; θ, λ

))

F
(
yp; θ, λ

) − F
(
yq; θ, λ

)

= σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] + LTCEq,p[Y ]

(
μ + σ2 ∂

∂θ
log
(
F
(
yp; θ, λ

) − F
(
yq; θ, λ

))
)

= σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] +

(
LTCEq,p[Y ; θ, λ]

)2
,

(3.14)

which along with the definition of the limited TSD risk measure completes the proof.

We further consider two examples to elaborate on Theorem 3.2. We start with the
normal distribution, which occupies a central role in statistical theory, and its position in
statistical analysis of insurance problems is very difficult to underestimate, for example, due
to the law of large numbers.

Example 3.3. Let Y � N(μ, σ2) be a normal random variable with mean μ and variance σ2,
then we can write the pdf of Y as

f
(
y
)
=

1√
2πσ

exp

(

−1
2

(
y − μ

σ

)2
)

=
1√

2πσ
exp
(
− 1

2σ2
y2
)

exp
(

1
σ2

(
μy − 1

2
μ2
))

, y ∈ R.

(3.15)

If we take θ = μ and λ = 1/σ2, we see that the normal distribution is a reproductive EDM with
cumulant function κ(θ) = θ2/2. Denote by ϕ(·) and Φ(·) the pdf and the cdf, respectively, of
the standardized normal random variable. Then using Theorem 3.1, we obtain the following
expression for the limited TCE risk measure for the risk Y :

LTCEq,p[Y ] = μ + σ
ϕ
(
σ−1(yq − μ

)) − ϕ
(
σ−1(yp − μ

))

Φ
(
σ−1
(
yp − μ

)) −Φ
(
σ−1
(
yq − μ

)) . (3.16)

If we put p ↑ 1, then the latter equation reduces to the result of Landsman and Valdez [16].
Namely, we have that

lim
p↑1

LTCEq,p[Y ] = μ + σ
ϕ
(
σ−1(yq − μ

))

1 −Φ
(
σ−1
(
yq − μ

)) = TCEq[Y ]. (3.17)
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Further, let zq = (yq − μ)/σ and zp = (yp − μ)/σ. Then

σ2 ∂

∂θ
LTCEq,p[Y ; θ, λ] = σ2

⎛

⎝1 +
ϕ
(
zq
)
zq − ϕ

(
zp
)
zp

Φ
(
zp
) −Φ

(
zq
) −

(
ϕ
(
zq
) − ϕ

(
zp
)

Φ
(
zp
) −Φ

(
zq
)

)2
⎞

⎠. (3.18)

Consequently, the limited TSD risk measure is as follows:

LTSDq,p[Y ]

= μ + σ
ϕ
(
zq
) − ϕ

(
zp
)

Φ
(
zp
) −Φ

(
zq
) + α

√√
√
√
√σ2

⎛

⎝1 +
ϕ
(
zq
)
zq − ϕ

(
zp
)
zp

Φ
(
zp
) −Φ

(
zq
) −

(
ϕ
(
zq
) − ϕ

(
zp
)

Φ
(
zp
) −Φ

(
zq
)

)2
⎞

⎠.

(3.19)

We proceed with the gamma distributions, which have been widely applied in various
fields of actuarial science. It should be noted that these distribution functions possess
positive support and positive skewness, which is important for modeling insurance losses. In
addition, gamma rvs have been well-studied, and they share many tractable mathematical
properties which facilitate their use. There are numerous examples of applying gamma
distributions for modeling insurance portfolios (cf., e.g., [12, 13, 26, 27]).

Example 3.4. Let X � Ga(γ, β) be a gamma rv with shape and rate parameters equal γ and β,
correspondingly. The pdf of X is

f(x) =
1

Γ
(
γ
)e−βxxγ−1βγ =

1
Γ
(
γ
)xγ−1 exp

(−βx + γ log
(
β
))
, x > 0. (3.20)

Hence the gamma rv can be represented as an additive EDM with the following pdf:

f(x) =
1

Γ(λ)
xλ−1 exp

(
θx + λ log(−θ)), (3.21)

where x > 0 and θ < 0. The mean and variance of X are E[X] = −λ/θ and Var[X] = λ/θ2.
Also, θ = −β, λ = γ , and κ(θ) = − log(−θ). According to Theorem 3.1, the limited tail
conditional expectation is

LTCEq,p[X] = −λ
θ

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

) . (3.22)

Putting p ↑ 1 we obtain that

lim
p↑1

(
−λ
θ

)
F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

) = −λ
θ

F
(
xq; θ, λ + 1

)

F
(
xq; θ, λ

) = TCEq[X], (3.23)
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which coincides with [13, page 643]. To derive an expression for the limited TSD risk measure,
we use Theorem 3.2, that is,

∂

∂θ
LTCEq,p[X; θ, λ] =

∂

∂θ

(

−λ
θ

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

)

=
λ

θ2

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

− λ

θ

(
∂

∂θ

F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

)

.

(3.24)

Further, since for n = 1, 2, . . . ,

∂

∂θ

(
F
(
xp; θ, λ + n

) − F
(
xq; θ, λ + n

))

=
∫xp

xq

∂

∂θ

(
1

Γ(λ + n)
xλ+n−1 exp

(
θx + (λ + n) log(−θ))

)
dx

=
∫xp

xq

f(x; θ, λ + n)
(
x +

λ + n

θ

)
dx

= −λ + n

θ

(∫xp

xq

f(x; θ, λ + n + 1)dx −
∫xp

xq

f(x; θ, λ + n)dx

)

,

(3.25)

the limited TSD risk measure for gamma is given by

LTSDq,p[X]

=
(
−λ
θ

)
F
(
xp; θ, λ + 1

) − F
(
xq; θ, λ + 1

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

)

+ α

√√√√
√

λ

θ2

⎛

⎝(λ + 1)
F
(
xp; θ, λ + 2

) − F
(
xq; θ, λ + 2

)

F
(
xp; θ, λ

) − F
(
xq; θ, λ

) − λ

(
F(xp; θ, λ + 1) − F(xq; θ, λ + 1)

F(xp; θ, λ) − F(xq; θ, λ)

)2
⎞

⎠.

(3.26)

In the sequel, we consider gamma and normal risks with equal means and variances,
and we explore them on the interval (t, 350], with 50 < t < 350. Figure 1 depicts the results.
Note that both LTCE and LTSD imply that the normal distribution is riskier than gamma for
lower attachment points and vice-versa, that is quite natural bearing in mind the tail behavior
of the two.

Although the EDMs are of pivotal importance in actuarial mathematics, they fail to
appropriately describe heavy-tailed (insurance) losses. To elucidate on the applicability of
the layer-based risk measures in the context of the probability distributions possessing heavy
tails, we conclude this section with a simple example.
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Figure 1: LTCE and LTSD for normal and gamma risks with means 150 and standard deviations 100, alpha
= 2.

Example 3.5. Let X � Pa(γ, β) be a Pareto rv with the pdf

f(x) =
γβγ

xγ+1
, x > β > 0, (3.27)

and γ > 0. Certainly, the Pareto rv is not a member of the EDMs, though it belongs to the
log-exponential family (LEF) of distributions (cf. [7]). The LEF is defined by the differential
equation

F(dx;λ, ν) = exp
{
λ log(x) − κ(λ)

}
ν(dx), (3.28)

where λ is a parameter, ν is a measure, and κ(λ) = log
∫∞

0 xλν(dx) is a normalizing constant
(the parameters should not be confused with the ones used in the context of the EDMs). Then
X is easily seen to belong in LEF with the help of the reparameterization ν(dx) = x−1dx, and
λ = −γ .

In this context, it is straightforward to see that E[X] is infinite for γ ≤ 1, which thus
implies infiniteness of the TCE risk measure. We can however readily obtain the limited
variant as follows:

LTCEq,p[X] =
1

P
[
xq < X ≤ xp

]
∫xp

xq

γβγ

xγ
dx =

γxpxq

γ − 1

⎛

⎝
x
γ−1
p − x

γ−1
q

x
γ
p − x

γ
q

⎞

⎠, (3.29)

that is finite for any γ > 0. Also, since, for example, for γ < 1, we have that xγ−1
p − x

γ−1
q < 0, the

limited TCE risk measure is positive, as expected. The same is true for γ ≥ 1.
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We note in passing that, for γ > 1 and p ↑ 1 and thus xp → ∞, we have that

TCEq[X] = lim
p↑1

γxpxq

γ − 1

⎛

⎝
x
γ−1
p − x

γ−1
q

x
γ
p − x

γ
q

⎞

⎠ =
γ

γ − 1
xq, (3.30)

which confirms the corresponding expression in Furman and Landsman [8].

Except for the Pareto distribution, the LEF consists of, for example, the log-normal and
inverse-gamma distributions, for which expressions similar to (3.29) can be developed in the
context of the limited TCE and limited TSD risk measures, thus providing a partial solution
to the heavy-tailness phenomenon.

4. The Tail Standard Deviation Risk Measure for
Exponential Dispersion Models

The tail standard deviation risk measure was proposed in [10] as a possible quantifier of
the so-called tail riskiness of the loss distribution. The above-mentioned authors applied
this risk measure to elliptical class of distributions, which consists of such well-known pdfs
as normal and student-t. Although the elliptical family is very useful in finance, insurance
industry imposes its own restrictions. More specifically, insurance claims are always positive
and mostly positively skewed. In this section we apply the TSD risk measure to EDMs.

The following corollary develops formulas for the TSD risk measure both in the
reproductive and additive EDMs cases. Recall that we denote the ddf of say X by F(·; θ, λ) to
emphasize the parameters θ and λ, and we assume that

lim
p↑1

LTSDq,p[X] < ∞. (4.1)

The proof of the next corollary is left to the reader.

Corollary 4.1. Under the conditions in Theorem 3.1, the tail standard deviation risk measure is

TSDq[Y ] = TCEq[Y ] + α

√

σ2 ∂

∂θ
TCEq[Y ; θ, λ] (4.2)

in the context of the reproductive EDMs, and

TSDq[X] = TCEq[X] + α

√
∂

∂θ
TCEq[X; θ, λ] (4.3)

in the context of the additive EDMs.

We further explore the TSD risk measure in some particular cases of EDMs, which
seem to be of practical importance.
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Example 4.2. Let Y � N(μ, σ2) be again some normal rv with mean μ and variance σ2. Then
we easily evaluate the TSD risk measure using Corollary 4.1 and Example 3.3 as follows:

TSDq[X] = μ + σ
ϕ
(
zq
)

1 −Φ
(
zq
) + α

√√
√
√
√σ2

⎛

⎝1 +
ϕ
(
zq
)

1 −Φ
(
zq
)zq −

(
ϕ
(
zq
)

1 −Φ
(
zq
)

)2
⎞

⎠, (4.4)

which coincides with [10].

Example 4.3. Let X � Ga(γ, β) be a gamma rv with shape and scale parameters equal γ and β,
correspondingly. Taking into account Example 3.4 and Corollary 4.1 leads to

TSDq[X]

= −λ
θ

F
(
xq; θ, λ + 1

)

F
(
xq; θ, λ

) + α

√√√√
√ λ

θ2

⎛

⎝(λ + 1)
F
(
xq; θ, λ + 2

)

F
(
xq; θ, λ

) − λ

(
F(xq; θ, λ + 1)

F(xq; θ, λ)

)2⎞

⎠

=
γ

β

F
(
xq; γ + 1, β

)

F
(
xq; γ, β

) + α

√√√√
√

γ

β2

⎛

⎝(γ + 1
)F
(
xq; γ + 2, β

)

F
(
xq; γ, β

) − γ

(
F(xq; γ + 1, β)

F(xq; γ, β)

)2⎞

⎠,

(4.5)

where the latter equation follows because of the reparameterization θ = −β and λ = γ .

We further discuss the inverse Gaussian distribution, which possesses heavier tails
than, say, gamma distribution, and therefore it is somewhat more tolerant to large losses.

Example 4.4. Let Y � IG(μ, λ) be an inverse Gaussian rv. We then can write its pdf as

f
(
y
)
=

√
λ

2πy3
exp
(
λ

(
− y

2μ2
− 1

2y
+

1
μ

))
, y ∈ [0,∞), (4.6)

(cf. [24]), which means that Y belongs to the reproductive EDMs, with θ = −1/(2μ2) and
κ(θ) = −1/μ = −

√
−2θ. Further, due to Corollary 4.1 we need to calculate

∂

∂θ
TCEq[Y ; θ, λ] =

∂

∂θ

(
μ(θ) + σ2 ∂

∂θ
logFY

(
yq; θ, λ

)
)

= μ′(θ) + σ2 ∂

∂θ

(∂/∂θ)FY

(
yq; θ, λ

)

FY

(
yq; θ, λ

) .

(4.7)

To this end, note that the ddf of Y is

F
(
yq;μ(θ), λ

)
= Φ

(√
λ

yq

(
yq

μ(θ)
− 1
))

− e2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

(4.8)
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(cf., e.g., [28]), where Φ(·) is the ddf of the standardized normal random variable. Hence, by
simple differentiation and noticing that

μ′(θ) = (−2θ)−3/2 = μ(θ)3, (4.9)

we obtain that

∂

∂θ
F
(
yq;μ(θ), λ

)

= μ(θ)

(√
λyqϕ

(√
λ

yq

(
yq

μ(θ)
− 1
))

− e2λ/μ(θ)
√
λyqϕ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
)))

+ 2λμ(θ)e2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

.

(4.10)

Notably,

√
λyqϕ

(√
λ

yq

(
yq

μ(θ)
− 1
))

= e2λ/μ(θ)
√
λyqϕ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

, (4.11)

and therefore (4.10) results in

∂

∂θ
F
(
yq;μ(θ), λ

)
= 2λμ(θ)e2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

. (4.12)

Consequently, the expression for the TCE risk measure, obtained by Landsman and Valdez
[16], is simplified to

TCEq[Y ; θ, λ] = μ(θ) +
2μ(θ)

F
(
yq;μ(θ), λ

)e
2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
))

. (4.13)

In order to derive the TSD risk measure we need to differentiate again, that is,

∂

∂θ
TCEq[Y ; θ, λ] =

∂

∂θ

(

μ(θ) +
2μ(θ)

F
(
yq;μ(θ), λ

)e
2λ/μ(θ)Φ

(

−
√

λ

yq

(
yq

μ(θ)
+ 1
)))

= μ(θ)3

⎛

⎜
⎝1 +

∂

∂θ

2μ(θ)e2λ/μ(θ)Φ
(
−
√
λ/yq

(
yq/μ(θ) + 1

))

F
(
yq;μ(θ), λ

)

⎞

⎟
⎠,

(4.14)
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where we use μ′(θ) = μ(θ)3. Further, we have that

∂

∂θ

2μ(θ)e2λ/μ(θ)Φ
(
−
√
λ/yq

(
yq/μ(θ) + 1

))

F
(
yq;μ(θ), λ

)

= 2
μ(θ)3e2λ/μ(θ)

(
Φ
(
ỹq

)(
1 − 2λ/μ(θ)

)
+
(√

λyq/μ(θ)
)
ϕ
(
ỹq

))

F
(
yq;μ(θ), λ

)

− λ
(
2μ(θ)e2λ/μ(θ)Φ

(
ỹq

))2

F
(
yq;μ(θ), λ

)2
,

(4.15)

where ỹq = −
√
λ/yq(yq/μ(θ) + 1). Therefore

TSDq[Y ] = μ

(

1 +
Φ
(
ỹq

)

F
(
yq;μ, λ

)2e2λ/μ

)

+ α

√√√√√
√

μ3

λ

⎛

⎜
⎝1 +

e2λ/μ
(
Φ
(
ỹq

)(
1 − 2λ/μ

)
+
(√

λyq/μ
)
ϕ
(
ỹq

))

F
(
yq;μ, λ

) − λ
(
e2λ/μΦ

(
ỹq

))2

μF
(
yq;μ, λ

)2

⎞

⎟
⎠

(4.16)

subject to Var[Y ] = μ3/λ.

5. Concluding Comments

In this work we have considered certain layer-based risk measuring functionals in the context
of the exponential dispersion models. Although we have made an accent on the absolutely
continuous EDMs, similar results can be developed for the discrete members of the class.
Indeed, distributions with discrete supports often serve as frequency models in actuarial
mathematics. Primarily in expository purposes, we further consider a very simple frequency
distribution, and we evaluate the TSD risk measure for it. More encompassing formulas can
however be developed with some effort for other EDM members of, say, the (a, b, 0) class (cf.,
[11, Chapter 6]) as well as for limited TCE/TSD risk measures.

Example 5.1. Let X � Poisson(μ) be a Poisson rv with the mean parameter μ. Then the
probability mass function of X is written as

p(x) =
1
x!
μxe−μ =

1
x!

exp
(
x log

(
μ
) − μ

)
, x = 0, 1, . . . , (5.1)

which belongs to the additive EDMs in view of the reparametrization θ = log(μ), λ = 1, and
κ(θ) = eθ.
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Motivated by Corollary 4.1, we differentiate (cf. [16], for the formula for the TCE risk
measure)

∂

∂θ
TCEq(X; θ, λ) =

∂

∂θ

(

eθ
(

1 +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)

))

= eθ

⎛

⎝1 +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

) +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)
(
xq − eθ

)
− eθ
(

p(xq; θ, 1)

F(xq; θ, 1)

)2
⎞

⎠

= eθ

⎛

⎝F
(
xq − 1; θ, 1

)

F
(
xq; θ, 1

) +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)
(
xq − eθ

)
− eθ
(

p(xq; θ, 1)

F(xq; θ, 1)

)2
⎞

⎠,

(5.2)

where the latter equation follows because

F
(
xq; θ, 1

)
+ p
(
xq; θ, 1

)
= F
(
xq − 1; θ, 1

)
. (5.3)

The formula for the TSD risk measure is then

TSDq(X)

= eθ
(

1 +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)

)

+ α

√√√√
√eθ

⎛

⎝F
(
xq − 1; θ, 1

)

F
(
xq; θ, 1

) +
p
(
xq; θ, 1

)

F
(
xq; θ, 1

)zq − eθ

(
p(xq; θ, 1)

F(xq; θ, 1)

)2
⎞

⎠,

(5.4)

where E[X] = Var[X] = eθ and zq = xq − eθ.

Appendix

A. Exponential Dispersion Models

Consider a σ-finite measure ν on R and assume that ν is nondegenerate. Next definition is
based on [24].

Definition A.1. The family of distributions of X � ED∗(θ, λ) for (θ, λ) ∈ Θ × Λ is called
the additive exponential dispersion model generated by ν. The corresponding family of
distributions of Y = X/λ � ED(μ, σ2), where μ = τ(θ) and σ2 = 1/λ are the mean value
and the dispersion parameters, respectively, is called the reproductive exponential dispersion
model generated by ν. Moreover, given some measure νλ the representation of X � ED∗(θ, λ)
is as follows:

exp(θx − λκ(θ))νλ(dx). (A.1)
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If in addition the measure νλ has density c∗(x;λ) with respect to some fixed measure
(typically Lebesgue measure or counting measure), the density for the additive model is

f∗(x; θ, λ) = c∗(x;λ) exp(θx − λκ(θ)), x ∈ R. (A.2)

Similarly, we obtain the following representation of Y � ED(μ, σ2) as

exp
(
λ
(
yθ − κ(θ)

))
νλ
(
dy
)
, (A.3)

where νλ denotes νλ transformed by the duality transformation X = Y/σ2. Again if the
measure νλ has density c(y;λ) with respect to a fixed measure, the reproductive model has
the following pdf:

f
(
y; θ, λ

)
= c
(
y;λ
)

exp
(
λ
(
θy − κ(θ)

))
, y ∈ R. (A.4)

Note that θ and λ are called canonical and index parameters, Θ = {θ ∈ R : κ(θ) < ∞}
for some function κ(θ) called the cumulant, and Λ is the index set. Throughout the paper, we
use X � ED∗(μ, σ2) and X � ED(θ, λ) for the additive form with parameters μ and σ2 and the
reproductive form with parameters θ and λ, correspondingly, depending on which notation
is more convenient.

We further briefly review some properties of the EDMs related to this work. Consider
the reproductive form first, that is, Y � ED(μ, σ2), then

(i) the cumulant generating function (cgf) of Y is, for θ′ = θ + t/λ,

K(t) = logE
[
etY
]
= log

(∫

R
exp
(
λ

(
y

(
θ +

t

λ

)
− κ(θ)

))
dνλ
(
y
)
)

= log
(

exp
(
λ

(
κ

(
θ +

t

λ

)
− κ(θ)

))∫

R
exp
(
λ
[
θ′y − κ

(
θ′)])dνλ

(
y
)
)

= λ

(
κ

(
θ +

t

λ

)
− κ(θ)

)
,

(A.5)

(ii) the moment generating function (mgf) of Y is given by

M(t) = exp
(
λ

(
κ

(
θ + t

λ

)
− κ(θ)

))
, (A.6)

(iii) the expectation of Y is

E[Y ] =
∂K(t)
∂t

∣∣∣∣
t=0

= κ′(θ) = μ, (A.7)
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(iv) the variance of Y is

Var[Y ] =
∂2K(t)
∂t2

∣
∣
∣
∣
∣
t=0

= σ2κ(2)(θ). (A.8)

Consider next an rv X following an additive EDM, that is, X � ED∗(θ, λ). Then, in a
similar fashion,

(i) the cgf of X is

K(t) = λ(κ(θ + t) − κ(θ)), (A.9)

(ii) the mgf of X is

M(t) = exp(λ(κ(θ + t) − κ(θ))), (A.10)

(iii) the expectation of X is

E[X] = λκ′(θ), (A.11)

(iv) the variance of X is

Var[X] = λκ(2)(θ). (A.12)

For valuable examples of various distributions belonging in the EDMs we refer to
Jørgensen [24].
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