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L-functionals summarize numerous statistical parameters and actuarial risk measures. Their
sample estimators are linear combinations of order statistics (L-statistics). There exists a class
of heavy-tailed distributions for which the asymptotic normality of these estimators cannot be
obtained by classical results. In this paper we propose, by means of extreme value theory,
alternative estimators for L-functionals and establish their asymptotic normality. Our results may
be applied to estimate the trimmed L-moments and financial risk measures for heavy-tailed
distributions.

1. Introduction

1.1. L-Functionals

Let X be a real random variable (rv) with continuous distribution function (df) F. The
corresponding L-functionals are defined by

L(J) :=
∫1

0
J(s)Q(s)ds, (1.1)

where Q(s) := inf{x ∈ R : F(x) ≥ s}, 0 < s ≤ 1, is the quantile function pertaining to df F and
J is a measurable function defined on [0, 1] (see, e.g. Serfling, [1]). Several authors have used
the quantity L(J) to solve some statistical problems. For example, in a work by Chernoff
et al. [2] the L-functionals have a connection with optimal estimators of location and scale
parameters in parametric families of distributions. Hosking [3] introduced the L-moments as
a new approach of statistical inference of location, dispersion, skewness, kurtosis, and other
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aspects of shape of probability distributions or data samples having finite means. Elamir and
Seheult [4] have defined the trimmed L-moments to answer some questions related to heavy-
tailed distributions for which means do not exist, and therefore the L-moment method cannot
be applied. In the case where the trimming parameter equals one, the first four theoretical
trimmed L-moments are

mi :=
∫1

0
Ji(s)Q(s)ds, i = 1, 2, 3, 4, (1.2)

where

Ji(s) := s(1 − s)φi(s), 0 < s < 1, (1.3)

with φi polynomials of order i − 1 (see Section 4). A partial study of statistical estimation of
trimmed L-moments was given recently by Hosking [5].

Deriving asymptotics of complex statistics is a challenging problem, and this was
indeed the case for a decade since the introduction of the distortion risk measure by
Denneberg [6] and Wang [7]; see also Wang [8]. The breakthrough in the area was offered
by Jones and Zitikis [9], who revealed a fundamental relationship between the distortion
risk measure and the classical L-statistic, thus opening a broad gateway for developing
statistical inferential results in the area (see, e.g., Jones and Zitikis [10, 11]; Brazauskas et al.
[12, 13] and Greselin et al. [14]). These works mainly discuss CLT-type results. We have been
utilizing the aforementioned relationship between distortion risk measures and L-statistics to
develop a statistical inferential theory for distortion risk measures in the case of heavy-tailed
distributions.

Indeed L-functionals have many applications in actuarial risk measures (see, e.g.,
Wang [8, 15, 16]). For example, if X ≥ 0 represents an insurance loss, the distortion risk
premium is defined by

Π(X) :=
∫∞

0
g(1 − F(x))dx, (1.4)

where g is a non decreasing concave function with g(0) = 0 and g(1) = 1. By a change of
variables and integration by parts, Π(X) may be rewritten into

Π(X) =
∫1

0
g ′(1 − s)Q(s)ds, (1.5)

where g ′ denotes the Lebesgue derivative of g. For heavy-tailed claim amounts, the empirical
estimation with confidence bounds for Π(X) has been discussed by Necir et al. [17] and Necir
and Meraghni [18]. If X ∈ R represents financial data such as asset log-returns, the distortion
risk measures are defined by

H(X) :=
∫0

−∞

(
g(1 − F(x)) − 1

)
dx +

∫∞

0
g(1 − F(x))dx. (1.6)
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Likewise, by integration by parts it is shown that

H(X) =
∫1

0
g ′(1 − s)Q(s)ds. (1.7)

Wang [8] and Jones and Zitikis [9] have defined the risk two-sided deviation by

Δr(X) :=
∫1

0
Jr(s)Q(s)ds, 0 < r < 1, (1.8)

with

Jr(s) :=
r

2
s1−r − (1 − s)1−r

s1−r(1 − s)1−r , 0 < s < 1. (1.9)

As we see, Π(X),H(X), and Δr(X) are L-functionals for specific weight functions. For more
details about the distortion risk measures one refers to Wang [8, 16]. A discussion on their
empirical estimation is given by Jones and Zitikis [9].

1.2. Estimation of L-Functionals and Motivations

In the sequel let
p→ and D→ , respectively, stand for convergence in probability and

convergence in distribution and let N(0, η2) denote the normal distribution with mean 0 and
variance η2.

The natural estimators of quantity L(J) are linear combinations of order statistics
called L-statistics. For more details on this kind of statistics one refers to Shorack and Wellner
[19, page 260]. Indeed, let (X1, . . . , Xn) be a sample of size n ≥ 1 from an rv X with df F, then
the sample estimator of L(J) is

L̂n(J) :=
∫1

0
J(s)Qn(s)ds, (1.10)

where Qn(s) := inf{x ∈ R : Fn(x) ≥ s}, 0 < s ≤ 1, is the empirical quantile function that
corresponds to the empirical df Fn(x) := n−1 ∑n

i=1 I{Xi ≤ x} for x ∈ R, pertaining to the
sample (X1, . . . , Xn) with I(·) denoting the indicator function. It is clear that L̂n(J) may be
rewritten into

L̂n(J) =
n∑
i=1

ai,nXi,n, (1.11)

where ai,n :=
∫ i/n
(i−1)/nJ(s)ds, i = 1, . . . , n, and X1,n ≤ · · · ≤ Xn,n denote the order statistics

based upon the sample (X1, . . . , Xn). The first general theorem on the asymptotic normality of
L̂n(J) is established by Chernoff et al. [2]. Since then, a large number of authors have studied
the asymptotic behavior of L-statistics. A partial list consists of Bickel [20], Shorack [21, 22],
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Stigler [23, 24], Ruymgaart and Van Zuijlen [25], Sen [26], Boos [27], Mason [28], and Singh
[29]. Indeed, we have

√
n
(
L̂n(J) − L(J)

) D−−−→ N
(

0, σ2(J)
)
, as n −→ ∞, (1.12)

provided that

σ2(J) :=
∫1

0

∫1

0
(min(s, t) − st)J(s)J(t)dQ(s)Q(t) < ∞. (1.13)

In other words, for a given function J , condition (1.13) excludes the class of distributions F
for which σ2(J) is infinite. For example, if we take J = 1, L(J) is equal to the expected value
EX and hence the natural estimator of L̂n(J) is the sample mean Xn. In this case, result (1.12)
corresponds to the classical central limit theorem which is valid only when the variance of F
is finite. How then can be construct confidence bounds for the mean of a df when its variance
is infinite? This situation arises when df F belongs to the domain of attraction of α-stable
laws (heavy-tailed) with characteristic exponent α ∈ (1, 2); see Section 2. This question was
answered by Peng [30, 31] who proposed an alternative asymptotically normal estimator for
the mean. Remark 3.3 below shows that this situation also arises for the sample trimmed L-
moments mi when 1/2 < α < 2/3 and for the sample risk two-sided deviation Δr(X) when
1/(r + 1/2) < α < 1/r for any 0 < r < 1. To solve this problem in a more general setting,
we propose, by means of the extreme value theory, asymptotically normal estimators of L-
functionals for heavy-tailed distributions for which σ2(J) = ∞.

The remainder of this paper is organized as follows. Section 2 is devoted to a brief
introduction on the domain of attraction of α-stable laws. In Section 3 we define, via the
extreme value approach, a new asymptotically normal estimator of L-functionals and state
our main results. Applications to trimmed L-moments, risk measures, and related quantities
are given in Section 4. All proofs are deferred to Section 5.

2. Domain of Attraction of α-Stable Laws

A df is said to belong to the domain of attraction of a stable law with stability index 0 < α ≤ 2,
notation: F ∈ D(α), if there exist two real sequences An > 0 and Cn such that

A−1
n

(
n∑
i=1

Xi − Cn

)
D−−−→ Sα

(
σ, δ, μ

)
, as n −→ ∞, (2.1)

where Sα(σ, δ, μ) is a stable distribution with parameters 0 < α ≤ 2, −1 ≤ δ ≤ +1, σ > 0
and −∞ < μ < +∞ (see, e.g., Samorodnitsky and Taqqu [32]). This class of distributions was
introduced by Lévy during his investigations of the behavior of sums of independent random
variables in the early 1920s [33]. Sα(σ, δ, μ) is a rich class of probability distributions that
allow skewness and thickness of tails and have many important mathematical properties.
As shown in early work by Mandelbrot (1963) and Fama [34], it is a good candidate to
accommodate heavy-tailed financial series and produces measures of risk based on the tails
of distributions, such as the Value-at-Risk. They also have been proposed as models for
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many types of physical and economic systems, for more details see Weron [35]. This class of
distributions have nice heavy-tail properties. More precisely, if we denote by G(x) := P(|X| ≤
x) = F(x) − F(−x), x > 0, the df of Z := |X|, then the tail behavior of F ∈ D(α), for 0 < α < 2,
may be described by the following

(i) The tail 1 −G is regularly varying at infinity with index −α. That is

lim
t→∞

(1 −G(xt))
(1 −G(t))

= x−α, for any x > 0. (2.2)

(ii) There exists 0 ≤ p ≤ 1 such that

lim
x→∞

1 − F(x)
1 −G(x)

= p, lim
x→∞

F(−x)
1 −G(x)

= 1 − p =: q. (2.3)

Let, for 0 < s < 1, K(s) := inf{x > 0 : G(x) ≥ s} be the quantile function pertaining to G and
Q1(s) := max(−Q(1 − s), 0) and Q2(s) := max(Q(s), 0). Then Proposition A.3 in a work by
Csörgő et al. [36] says that the set of conditions above is equivalent to the following.

(i′) K(1 − ·) is regularly varying at 0 with index −1/α. That

lim
s↓0

K(1 − xs)
K(1 − s)

= x−1/α, for any x > 0. (2.4)

(ii′) There exists 0 ≤ p ≤ 1 such that

lim
s↓0

Q1(1 − s)
K(1 − s)

= p1/α, lim
s↓0

Q2(1 − s)
K(1 − s)

=
(
1 − p

)1/α =: q1/α. (2.5)

Our framework is a second-order condition that specifies the rate of convergence in statement
(i′). There exists a function A, not changing sign near zero, such that

lim
s↓0

(A(s))−1
(
K(1 − xs)
K(1 − s)

− x−1/α
)

= x−1/α x
� − 1
�

, for any x > 0, (2.6)

where � ≤ 0 is the second-order parameter. If � = 0, interpret (x� − 1)/� as logx. The
second-order condition for heavy-tailed distributions has been introduced by de Haan and
Stadtmüller [37].

3. Estimating L-Functionals When F ∈ D(α)

3.1. Extreme Quantile Estimation

The right and left extreme quantiles of small enough level t of df F, respectively, are two reals
xR and xL defined by 1 − F(xR) = t and F(xL) = t, that is, xR = Q(1 − t) and xL = Q(t).
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The estimation of extreme quantiles for heavy-tailed distributions has got a great deal of
interest, see for instance Weissman [38], Dekkers and de Haan [39], Matthys and Beirlant
[40] and Gomes et al. [41]. Next, we introduce one of the most popular quantile estimators.
Let k = kn and � = �n be sequences of integers (called trimming sequences) satisfying 1 < k <
n, 1 < � < n, k → ∞, � → ∞, k/n → 0 and �/n → 0, as n → ∞. Weissman’s estimators of
extreme quantiles xR and xL are defined, respectively, by

x̂L = Q̂L(t) :=
(
k

n

)1/αL

Xk,nt
−1/αL , as t ↓ 0,

x̂R = Q̂R(1 − t) :=
(
�

n

)1/αR

Xn−�,nt−1/αR , as t ↓ 0,

(3.1)

where

α̂L = α̂L(k) :=

(
1
k

k∑
i=1

log+(−Xi,n) − log+(−Xk,n)

)−1

,

α̂R = α̂R(�) :=

(
1
�

�∑
i=1

log+(Xn−i+1,n) − log+(Xn−�,n)

)−1
(3.2)

are two forms of Hill’s estimator [42] for the stability index α which could also be estimated,
using the order statistics Z1,n ≤ · · · ≤ Zn,n associated to a sample (Z1, . . . , Zn) from Z, as
follows:

α̂ = α̂(m) :=

(
1
m

m∑
i=1

log+(Zn−i+1,n) − log+(Zn−m,n)

)−1

, (3.3)

with log+u := max(0, logu) and m = mn being an intermediate sequence fulfilling the same
conditions as k and �. Hill’s estimator has been thoroughly studied, improved, and even
generalized to any real-valued tail index. Its weak consistency was established by Mason [43]
assuming only that the underlying distribution is regularly varying at infinity. The almost
sure convergence was proved by Deheuvels et al. [44] and more recently by Necir [45]. The
asymptotic normality has been investigated, under various conditions on the distribution tail,
by numerous workers like, for instance, Csörgő and Mason [46], Beirlant and Teugels [47],
and Dekkers et al. [48].

3.2. A Discussion on the Sample Fractions k and �

Extreme value-based estimators rely essentially on the numbers k and � of lower- and
upper-order statistics used in estimate computation. Estimators α̂L and α̂R have, in general,
substantial variances for small values of k and � and considerable biases for large values of k
and �. Therefore, one has to look for optimal values for k and �, which balance between these
two vices.

Numerically, there exist several procedures for the thorny issue of selecting the
numbers of order statistics appropriate for obtaining good estimates of the stability index α;
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Figure 1: Plots of Hill estimators, as functions of the number of extreme statistics, α̂ (solid line), α̂R (dashed
line), and α̂L (dotted line) of the characteristic exponent α of a stable distribution skewed to the right, based
on 1000 observations with 50 replications. The horizontal line represents the true value of α = 1.2.
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Figure 2: Plots of Hill estimators, as functions of the number of extreme statistics, α̂ (solid line), α̂R (dashed
line), and α̂L (dotted line) of the characteristic exponent α of a stable distribution skewed to the left, based
on 1000 observations with 50 replications. The horizontal line represents the true value of α = 1.2.

see, for example, Dekkers and de Haan [49], Drees and Kaufmann [50], Danielsson et al. [51],
Cheng and Peng [52] and Neves and Alves [53]. Graphically, the behaviors of α̂L, α̂R, and α̂ as
functions of k, � and m, respectively, are illustrated by Figures 1, 2, and 3 drawn by means of
the statistical software R [54]. According to Figure 1, α̂R is much more suitable than α̂L when
estimating the stability index of a distribution which is skewed to the right (δ > 0) whereas
Figure 2 shows that α̂L is much more reliable than α̂R when the distribution is skewed to the
left (δ < 0). In the case where the distribution is symmetric (δ = 0), both estimators seem to be
equally good as seen in Figure 3. Finally, it is worth noting that, regardless of the distribution
skewness, estimator α̂, based on the top statistics pertaining to the absolute value of X, works
well and gives good estimates for the characteristic exponent α.
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Figure 3: Plots of Hill estimators, as functions of the number of extreme statistics, α̂ (solid line), α̂R (dashed
line) and α̂L (dotted line) of the characteristic exponent α of a symmetric stable distribution, based on 1000
observations with 50 replications. The horizontal line represents the true value of α = 1.2.
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Figure 4: Plots of the ratios of the numbers of extreme statistics, as functions of the sample size, for a
stable symmetric distribution S1.2(1, 0, 0) (solid line), a stable distribution skewed to the right S1.2(1, 0.5, 0)
(dashed line) and a stable distribution skewed to the left S1.2(1,−0.5, 0) (dotted line).

It is clear that, in general, there is no reason for the trimming sequences k and � to be
equal. We assume that there exists a positive real constant θ such that �/k → θ as n → ∞. If
the distribution is symmetric, the value of θ is equal to 1; otherwise, it is less or greater than
1 depending on the sign of the distribution skewness. For an illustration, see Figure 4 where
we plot the ratio θ for several increasing sample sizes.

3.3. Some Regularity Assumptions on J

For application needs, the following regularity assumptions on function J are required:
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(H1) J is differentiable on (0, 1),

(H2) λ := lims↓0
J(1 − s)
J(s)

< ∞,

(H3) both J(s) and J(1 − s) are regularly varying at zero with common index β ∈ R.

(H4) there exists a function a(·) not changing sign near zero such that

limt↓0
J(xt)/J(t) − xβ

a(t)
= xβ x

ω − 1
ω

, for any x > 0, (3.4)

where ω ≤ 0 is the second-order parameter.

The three remarks below give more motivations to this paper.

Remark 3.1. Assumption (H3) has already been used by Mason and Shorack [55] to establish
the asymptotic normality of trimmed L-statistics. Condition (H4) is just a refinement of (H3)
called the second order condition that is required for quantile function K in (2.6).

Remark 3.2. Assumptions (H1)–(H4) are satisfied by all weight functions (Ji)i=2,4 with (β, λ) =
(1,±1) (see Section 4.1) and by function Jr in (1.9) with (β, λ) = (r−1,−1). These two examples
show that the constants β and λ may be positive or negative depending on application needs.

Remark 3.3. L-functionals L(J) exist for any 0 < α < 2 and β ∈ R such that 1/α − β < 1.
However, Lemma 5.4 below shows that for 1/α − β > 1/2 we have σ2(J) = ∞. Then, recall
(1.3); whenever 1/2 < α < 2/3, the trimmed L-moments exist however σ2(Ji) = ∞, i = 1, . . . , 4.
Likewise, recall (1.9); whenever 1/(r + 1/2) < α < 1/r, the two-sided deviation Δr(X) exists
while σ2(Jr) = ∞.

3.4. Defining the Estimator and Main Results

We now have all the necessary tools to introduce our estimator of L(J), given in (1.1), when
F ∈ D(α) with 0 < α < 2. Let k = kn and � = �n be sequences of integers satisfying 1 < k < n,
1 < � < n, k → ∞, � → ∞, k/n → 0, �/n → 0, and the additional condition �/k → θ < ∞
as n → ∞. First, we must note that since 1 + β − 1/α > 0 (see Remark 3.3) and since both α̂L

and α̂R are consistent estimators of α (see, Mason [43]), then we have for all large n

P

(
1 + β − 1

α̂L
> 0

)
= P

(
1 + β − 1

α̂R
> 0

)
= 1 + o(1). (3.5)

Observe now that L(J) defined in (1.1) may be split in three integrals as follows:

L(J) =
∫k/n

0
J(t)Q(t)dt +

∫1−�/n

k/n

J(t)Q(t)dt +
∫1

1−�/n
J(t)Q(t)dt =: TL,n + TM,n + TR,n. (3.6)
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Substituting Q̂L(t) and Q̂R(1−t) for Q(t) and Q(1−t) in TL,n and TR,n, respectively and making
use of assumption (H3) and (3.5) yield that for all large n

∫k/n

0
J(t)Q̂L(t)dt =

(
k

n

)1/αL

Xk,n

∫k/n

0
t−1/αLJ(t)dt = (1 + o(1))

(k/n)J(k/n)
1 + β − 1/α̂L

Xk,n,

∫�/n

0
J(1 − t)Q̂R(1 − t)dt =

(
�

n

)1/αR

Xn−�,n

∫�/n

0
t−1/αRJ(1 − t)dt

= (1 + o(1))
(�/n)J(1 − �/n)

1 + β − 1/α̂R
Xn−�,n.

(3.7)

Hence we may estimate TL,n and TR,n by

T̂L,n :=
(k/n)J(k/n)
1 + β − 1/α̂L

Xk,n, T̂R,n :=
(�/n)J(1 − �/n)

1 + β − 1/α̂R
Xn−�,n, (3.8)

respectively. As an estimator of TM,n we take the sample one that is

T̂M,n :=
∫1−�/n

k/n

J(t)Qn(t)dt =
n−�∑
i=k+1

ai,nXi,n, (3.9)

with the same constants ai,n as those in (1.11). Thus, the final form of our estimator is

L̂k,�(J) =
(k/n)J(k/n)
1 + β − 1/α̂L

Xk,n +
n−�∑
i=k+1

ai,nXi,n +
(�/n)J(1 − �/n)

1 + β − 1/α̂R
Xn−�,n. (3.10)

A universal estimator of L(J) may be summarized by

L̂∗
n(J) = L̂k,�(J)I

(
σ2(J) = ∞

)
+ L̂n(J)I

(
σ2(J) < ∞

)
, (3.11)

where L̂n(J) is as in (1.11). More precisely

L̂∗
n(J) = L̂k,�(J)I

(
A
(
α, β

))
+ L̂n(J)I

(
A
(
α, β

))
, (3.12)

where A(α, β) := {(α, β) ∈ (0, 2) × R : 1/2 < 1/α − β < 1} and A(α, β) is its complementary in
(0, 2) × R.

Note that for the particular case � = k and J = 1 the asymptotic normality of the
trimmed mean T̂M,n has been established in Theorem 1 of Csörgő et al. [56]. The following
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theorem gives the asymptotic normality of T̂M,n for more general trimming sequences k and
� and weighting function J . For convenience, we set, for any 0 < x < 1/2 and 0 < y < 1/2,

σ2(x, y; J
)

:=
∫1−y

x

∫1−y

x

(min(s, t) − st)J(s)J(t)dQ(s)Q(t) < ∞, (3.13)

and let σ2
n(J) := σ2(k/n, �/n; J).

Theorem 3.4. Assume that F ∈ D(α) with 0 < α < 2. For any measurable function J satisfying
assumption (H3) with index β ∈ R such that 0 < 1/α − β < 1 and for any sequences of integers k
and � such that1 < k < n, 1 < � < n, k → ∞, � → ∞, k/n → 0, and �/n → 0, as n → ∞,
there exists a probability space (Ω, A, P) carrying the sequenceX1, X2, . . . and a sequence of Brownian
bridges {Bn(s), 0 ≤ s ≤ 1, n = 1, 2, . . .} such that one has for all large n

√
n
(
T̂M,n − TM,n

)
σn(J)

= −
∫1−�/n
k/n J(s)Bn(s)ds

σn(J)
+ op(1), (3.14)

and therefore

√
n
(
T̂M,n − TM,n

)
σn(J)

D−−−→ N(0, 1) as n −→ ∞. (3.15)

The asymptotic normality of our estimator is established in the following theorem.

Theorem 3.5. Assume that F ∈ D(α) with 0 < α < 2. For any measurable function J satisfying
assumptions (H1)–(H4) with index β ∈ R such that 1/2 < 1/α − β < 1, and for any sequences of
integers k and � such that 1 < k < n, 1 < � < n, k → ∞, � → ∞, k/n → 0, �/n → 0,
�/k → θ < ∞, and

√
ka(k/n)A(k/n) → 0 as n → ∞, one has

√
n
(
L̂k,�(J) − L(J)

)
σn(J)

D−−−→ N
(

0, σ2
0

)
, as n −→ ∞, (3.16)

where

σ2
0 = σ2

0
(
α, β

)
:=
(
αβ + 1

)(
2αβ + 2 − α

) ×
(

2α2 +
(
βα − 1

)2 + 2α
(
βα − 1

)
2
((

1 + β
)
α − 1

)4
+

1(
1 + β

)
α − 1

)
+ 1.

(3.17)

The following corollary is more practical than Theorem 3.5 as it directly provides
confidence bounds for L(J).
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Corollary 3.6. Under the assumptions of Theorem 3.5 one has

√
n
(
L̂k,�(J) − L(J)

)

(�/n)1/2J(1 − �/n)Xn−�,n

D−−−→ N
(

0, V 2
)
, as n −→ ∞, (3.18)

where

V 2 = V 2(α, β, λ, θ, p) :=

(
1 + λ−2

(
q

p

)−2/α

θ−2β+2/α−1

)

×
(

2α2 +
(
βα − 1

)2 + 2α
(
βα − 1

)
2
((

1 + β
)
α − 1

)4
+

1(
1 + β

)
α − 1

)
+ 1,

(3.19)

with (p, q) as in statement (ii) of Section 2 and (λ, β) as in assumptions (H2)-(H3) of Section 3.

3.5. Computing Confidence Bounds for L(J)

The form of the asymptotic variance V 2 in (3.20) suggests that, in order to construct
confidence intervals for L(J), an estimate of p is needed as well. Using the intermediate order
statistic Zn−m,n, de Haan and Pereira [57] proposed the following consistent estimator for p :

p̂n = p̂n(m) :=
1
m

n∑
i=1

I{Xi > Zn−m,n}, (3.20)

where m = mn is a sequence of integers satisfying 1 < m < n, m → ∞, and m/n → 0, as
n → ∞ (the same as that used in (3.3)).

Let J be a given weight function satisfying (H1)–(H4) with fixed constants β and λ.
Suppose that, for n large enough, we have a realization (x1, . . . , xn) of a sample (X1, . . . , Xn)
from rv X with df F fulfilling all assumptions of Theorem 3.5. The (1−ς)-confidence intervals
for L(J) will be obtained via the following steps.

Step 1. Select the optimal numbers k∗, �∗, and m∗ of lower- and upper-order statistics used in
(3.2) and (3.3).

Step 2. Determine Xk∗,n, Xn−�∗,n, J(k∗/n), J(1 − �∗/n), and θ∗ := �∗/k∗.

Step 3. Compute, using (3.2), α̂∗
L := α̂L(k∗) and α̂∗

R := α̂R(�∗). Then deduce, by (3.10), the
estimate L̂k∗,�∗(J).

Step 4. Use (3.3) and (3.20) to compute α̂∗ := α̂(m∗) and p̂∗n := p̂n(m∗). Then deduce, by (3.19),
the asymptotic standard deviation

V ∗ :=
√
V 2

(
α̂∗, β, λ, θ∗, p̂∗n

)
. (3.21)
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Finally, the lower and upper (1 − ς)-confidence bounds for L(J), respectively, will be

L̂k∗,�∗(J) − zς/2

√
�∗V ∗Xn−�∗,nJ(1 − �∗/n)

n
,

L̂k∗,�∗(J) + zς/2

√
�∗V ∗Xn−�∗,nJ(1 − �∗/n)

n
,

(3.22)

where zς/2 is the (1−ς/2) quantile of the standard normal distribution N(0, 1) with 0 < ς < 1.

4. Applications

4.1. TL-Skewness and TL-Kurtosis When F ∈ D(α)

When the distribution mean EX exists, the skewness and kurtosis coefficients are,
respectively, defined by L1 := μ3/μ

3/2
2 and L2 := μ4/μ

2
2 with μk := E(X − EX)k, k = 2, 3, and 4

being the centered moments of the distribution. They play an important role in distribution
classification, fitting models, and parameter estimation, but they are sensitive to the behavior
of the distribution extreme tails and may not exist for some distributions such as the Cauchy
distribution. Alternative measures of skewness and kurtosis have been proposed; see, for
instance, Groeneveld [58] and Hosking [3]. Recently, Elamir and Seheult [4] have used the
trimmed L-moments to introduce new parameters called TL-skewness and TL-kurtosis that
are more robust against extreme values. For example, when the trimming parameter equals
one, the TL-skewness and TL-kurtosis measures are, respectively, defined by

υ1 :=
m3

m2
, υ2 :=

m4

m2
, (4.1)

where mi, i = 2, 3, 4, are the trimmed L-moments defined in Section 1. The corresponding
weight functions of (1.3) are defined as follows:

J2(s) := 6s(1 − s)(2s − 1),

J3(s) :=
20
3
s(1 − s)

(
5s2 − 5s + 1

)
,

J4(s) :=
15
2
s(1 − s)

(
14s3 − 21s2 + 9s − 1

)
.

(4.2)

If we suppose that F ∈ D(α) with 1/2 < α < 2/3, then, in view of the results above,
asymptotically normal estimators for υ1 and υ2 will be, respectively,

υ̂1 :=
m̂3

m̂2
, υ̂2 :=

m̂4

m̂2
, (4.3)
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where

m̂i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−6(k/n)2

2 − 1/α̂L
Xk,n +

n−�∑
j=k+1

a
(i)
j,nXj,n +

6(�/n)2

2 − 1/α̂R
Xn−�,n, for i = 2,

20(k/n)2

3(2 − 1/α̂L)
Xk,n +

n−�∑
j=k+1

a
(i)
j,nXj,n +

20(�/n)2

3(2 − 1/α̂R)
Xn−�,n, for i = 3,

−15(k/n)2

2(2 − 1/α̂L)
Xk,n +

n−�∑
j=k+1

a
(i)
j,nXj,n +

15(�/n)2

2(2 − 1/α̂R)
Xn−�,n, for i = 4,

(4.4)

with a
(i)
j,n :=

∫ j/n
(j−1)/nJi(s)ds, i = 2, 3, 4, and j = 1, . . . , n.

Theorem 4.1. Assume that F ∈ D(α) with 1/2 < α < 2/3. For any sequences of integers k and �
such that 1 < k < n, 1 < � < n, k → ∞, � → ∞, k/n → 0, �/n → 0, �/k → θ < ∞, and√
ka(k/n)A(k/n) → 0 as n → ∞, one has, respectively, as n → ∞,

√
n(υ̂1 − υ1)

(�/n)3/2Xn−�,n

D−−−→ N
(

0, V 2
1

)
,

√
n(υ̂2 − υ2)

(�/n)3/2Xn−�,n

D−−−→ N
(

0, V 2
2

)
,

(4.5)

where

V 2
1 :=

36
m2

2

(
1 − 9m3

10m2

)2

σ∗2, V 2
2 :=

225
4m2

2

(
1 − 4m4

5m2

)2

σ∗2, (4.6)

with

σ∗2 :=
(

1 +
(
q/p

)−2/α
θ2/α−3

)
×
(

2α2 + (α − 1)2 + 2α(α − 1)

2(2α − 1)4
+

1
2α − 1

)
+ 1. (4.7)

4.2. Risk Two-Sided Deviation When F ∈ D(α)

Recall that the risk two-sided deviation is defined by

Δr(X) :=
∫1

0
Jr(s)Q(s)ds, 0 < r < 1, (4.8)

where

Jr(s) :=
r

2
s1−r − (1 − s)1−r

s1−r(1 − s)1−r , 0 < s < 1. (4.9)
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An asymptotically normal estimator for Δr(X), when 1/(r + 1/2) < α < 1/r, is

Δ̂r(X) = − r(k/n)r

2r − 4/α̂L
Xk,n +

n−�∑
j=k+1

a
(r)
j,nXj,n +

r(�/n)r

2r − 4/α̂R
Xn−�,n, (4.10)

where

a
(r)
j,n =

1
2

[(
1 − i

n

)−r
−
(

1 − i − 1
n

)−r
−
(

i

n

)−r
+
(
i − 1
n

)−r]
, (4.11)

j = 1, . . . , n.

Theorem 4.2. Assume that F ∈ D(α) with 0 < α < 2 such that 1/(r + 1/2) < α < 1/r, for
any 0 < r < 1. Then, for any sequences of integers k and � such that1 < k < n, 1 < � < n,
k → ∞, � → ∞, k/n → 0, �/n → 0, �/k → θ < ∞, and

√
ka(k/n)A(k/n) → 0 as n → ∞,

one has, as n → ∞,

√
n
(
Δ̂r(X) −Δr(X)

)

(�/n)r−1/2Xn−�,n

D−−−→ N
(

0, V 2
r

)
, (4.12)

where

V 2
r :=

r2

4

(
1 +

(
q

p

)−2/α

θ2/α−2r+1

)
×
(

2α2 + (rα − α − 1)2 + 2α(rα − α − 1)

2(rα − 1)4
+

1
rα − 1

)
+ 1.

(4.13)

5. Proofs

First we begin by the following three technical lemmas.

Lemma 5.1. Let f1 and f2 be two continuous functions defined on (0, 1) and regularly varying at
zero with respective indices κ > 0 and −τ < 0 such that κ < τ . Suppose that f1 is differentiable at zero,
then

lim
x↓0

∫1/2
x f1(s)df2(s)
f1(x)f2(x)

=
τ

κ − τ
. (5.1)

Lemma 5.2. Under the assumptions of Theorem 3.5, one has

lim
n→∞

∫1−�/n
k/n (s(1 − s))1/2−νJ(s)dQ(s)

(k/n)1/2−νJ(k/n)Q(k/n)
=

1 + λθ1/2−ν+β−1/α(q/p)1/α

α
(
1/2 − ν + β

) − 1
, (5.2)

for any 0 < ν < 1/4.
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Lemma 5.3. For any 0 < x < 1/2 and 0 < y < 1/2 one has

σ2(x, y; J
)
= xc2(x) + yc2(1 − y

)
+
∫1−y

x

c2(t)dt −
(
xc(x) + yc

(
1 − y

)
+
∫1−y

x

c(t)dt

)2

,

(5.3)

where c(s) :=
∫s

1/2J(t)dQ(t), 0 < s < 1/2.

Lemma 5.4. Under the assumptions of Theorem 3.5, one has

lim
n→∞

(k/n)J2(k/n)Q2(k/n)
σ2
n(J)

= w2,

lim
n→∞

(�/n)J2(1 − �/n)Q2(1 − �/n)
σ2
n(J)

= λ2
(
q

p

)2/α

θ2β−2/α+1w2,

(5.4)

where

w2 :=

(
αβ + 1

)(
2αβ + 2 − α

)
2
(

1 + λ2
(
q/p

)2/α
θ2β−2/α+1

) . (5.5)

Proof of Lemma 5.1. Let f ′
1 denote the derivative of f1. Applying integration by parts, we get,

for any 0 < x < 1/2,

∫1/2

x

f1(s)df2(s) = f1

(
1
2

)
f2

(
1
2

)
− f1(x)f2(x) −

∫1/2

x

f ′
1(s)f2(s)ds. (5.6)

Since the product f1f2 is regularly varying at zero with index −τ +κ < 0, then f1(x)f2(x) → 0
as x ↓ 0. Therefore

lim
x↓0

∫1/2
x f1(s)df2(s)
f1(x)f2(x)

= −1 − lim
x↓0

∫1/2
x f ′

1(s)f2(s)ds
f1(x)f2(x)

. (5.7)

By using Karamata’s representation (see, e.g., Seneta [59]), it is easy to show that

xf ′
1(x) = κ(1 + o(1))f1(x), as x ↓ 0. (5.8)

Hence

lim
x↓0

∫1/2
x f1(s)df2(s)
f1(x)f2(x)

= −1 − κ lim
x↓0

∫1/2
x f ′

1(s)f2(s)ds

xf ′
1(x)f2(x)

. (5.9)
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It is clear that (5.8) implies that f ′
1 is regularly varying at zero with index κ− 1; therefore f ′

1f2

is regularly varying with index −τ + κ − 1 < 0. Then, Theorem 1.2.1 by de Haan [60, page 15]
yields

lim
x↓0

−
∫1/2
x f ′

1(s)f2(s)ds

xf ′
1(x)f2(x)

=
1

κ − τ
. (5.10)

This completes the proof of Lemma 5.1.

Proof of Lemma 5.2. We have

In :=
∫1−�/n

k/n

(s(1 − s))1/2−νJ(s)dQ(s) =
∫1/2

k/n

(s(1 − s))1/2−νJ(s)dQ(s)

−
∫1/2

1−�/n
(s(1 − s))1/2−νJ(1 − s)dQ(1 − s) =: I1n − I2n.

(5.11)

By taking, in Lemma 5.1, f1(s) = (s(1 − s))1/2−νJ(s) and f2(s) = Q(s) with κ = 1/2− ν + β, τ =
1/α, and x = k/n, we get

lim
n→∞

I1n

(k/n)1/2−νJ(k/n)Q(k/n)
=

1/α
1/2 − ν + β − 1/α

. (5.12)

Likewise if we take f1(s) = (s(1 − s))1/2−νJ(1−s) and f2(s) = Q(1−s) with κ = 1/2−ν+β, τ =
1/α, and x = �/n, we have

lim
n→∞

I2n

(�/n)1/2−νJ(1 − �/n)Q(1 − �/n)
=

1/α
1/2 − ν + β − 1/α

. (5.13)

Note that statement (ii′) of Section 2 implies that

lim
s↓0

Q(1 − s)/Q(s) = −
(
q

p

)1/α

. (5.14)

The last two relations, together with assumption (H2) and the regular variation of Q(1 − s),
imply that

lim
n→∞

I2n

(k/n)1/2−νJ(k/n)Q(k/n)
= −

(
q/p

)1/α
λθ1/2−ν+β−1/α/α

1/2 − ν + β − 1/α
. (5.15)

This achieves the proof of Lemma 5.2.
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Proof of Lemma 5.3. We will use similar techniques to those used by Csörgő et al. [36,
Proposition A.2]. For any 0 < s < 1/2, we set

Wx,y(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c
(
1 − y

)
for 1 − y ≤ t < 1,

c(t) for x < t < 1 − y,

c(x) for 0 < t ≤ x.

(5.16)

Then σ2(x, y; J) may be rewritten into

σ2(x, y; J
)
=
∫1

0
W2

x,y(s)ds −
(∫1

0
Wx,y(s)ds

)2

, (5.17)

and the result of Lemma 5.3 follows immediately.

Proof of Lemma 5.4. From Lemma 5.3 we may write

σ2
n(J)

(k/n)J2(k/n)Q2(k/n)
= Tn1 + Tn2 + Tn3 + Tn4, (5.18)

where

Tn1 :=
(k/n)c2(k/n)

(k/n)J2(k/n)Q2(k/n)
, Tn2 :=

(�/n)c2(1 − �/n)
(k/n)J2(k/n)Q2(k/n)

,

Tn3 :=

∫1−�/n
k/n c2(t)dt

(k/n)J2(k/n)Q2(k/n)
,

Tn4 :=

(
(k/n)c(k/n) + (�/n)c(1 − �/n) +

∫1−�/n
k/n c(t)dt

)2

(k/n)J2(k/n)Q2(k/n)
.

(5.19)

By the same arguments as in the proof of Lemma 5.2, we infer that

lim
n→∞

c(k/n)
J(k/n)Q(k/n)

=
1

αβ − 1
,

lim
n→∞

c(1 − �/n)
J(k/n)Q(k/n)

=
λ
(
q/p

)1/α
θβ−1/α

αβ − 1
.

(5.20)

Therefore

lim
n→∞

Tn1 =
1(

αβ − 1
)2

, lim
n→∞

Tn2 =
λ2(q/p)2/α

θ2β−2/α+1

(
αβ − 1

)2
. (5.21)
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Next, we consider the third term Tn3 which may be rewritten into

Tn3 =

∫1/2
k/nc

2(t)dt

(k/n)J2(k/n)Q2(k/n)
+

∫1−�/n
1/2 c2(t)dt

(k/n)J2(k/n)Q2(k/n)
. (5.22)

Observe that

∫1/2
k/nc

2(t)dt

(k/n)J2(k/n)Q2(k/n)
=
(

c(k/n)
J(k/n)Q(k/n)

)2
∫1/2
k/nc

2(t)dt

(k/n)c2(k/n)
. (5.23)

It is easy to verify that function c2(·) is regularly varying at zero with index 2(β − 1/α). Thus,
by Theorem 1.2.1 by de Haan [60] we have

lim
n→∞

∫1/2
k/nc

2(t)dt

(k/n)c2(k/n)
=

α

2 − 2αβ − α
. (5.24)

Hence

lim
n→∞

∫1/2
k/nc

2(t)dt

(k/n)J2(k/n)Q2(k/n)
=

α(
αβ − 1

)2(2 − 2αβ − α
) . (5.25)

By similar arguments we show that

lim
n→∞

∫1−�/n
1/2 c2(t)dt

(k/n)J2(k/n)Q2(k/n)
=

α
(
q/p

)2/α
λ2θ2β−2/α+1

(
αβ − 1

)2(2 − 2αβ − α
) . (5.26)

Therefore

lim
n→∞

Tn3 =
1 + α

(
q/p

)2/α
λ2θ2β−2/α+1

(
αβ − 1

)2(2 − 2αβ − α
) . (5.27)

By analogous techniques we show that Tn4 → 0 as n → ∞; we omit details. Summing up
the three limits of Tni, i = 1, 2, 3, achieves the proof of the first part of Lemma 5.4. As for the
second assertion of the lemma, we apply a similar procedure.

5.1. Proof of Theorem 3.4

Csörgő et al. [36] have constructed a probability space (Ω, A, P) carrying an infinite sequence
ξ1, ξ2, . . . of independent rv’s uniformly distributed on (0, 1) and a sequence of Brownian
bridges {Bn(s), 0 ≤ s ≤ 1, n = 1, 2, . . .} such that, for the empirical process,

ϕn(s) := n1/2{Γn(s) − s}, 0 ≤ s ≤ 1, (5.28)
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where Γn(·) is the uniform empirical df pertaining to the sample (ξ1, . . . , ξn); we have for any
0 ≤ ν < 1/4 and for all large n

sup
1/n≤s≤1−1/n

∣∣ϕn(s) − Bn(s)
∣∣

(s(1 − s))1/2−ν = Op

(
n−ν). (5.29)

For each n ≥ 1, let ξ1,n ≤ · · · ≤ ξn,n denote the order statistics corresponding to (ξ1, . . . , ξn).
Note that for each n, the random vector (Q(ξ1,n), . . . , Q(ξn,n)) has the same distribution as
(X1,n, . . . , Xn,n). Therefore, for 1 ≤ i ≤ n, we shall use the rv’s Q(ξi,n) to represent the rv’s
Xi,n, and without loss of generality, we shall be working, in all the following proofs, on the
probability space above. According to this convention, the term T̂M,n defined in (3.9) may be
rewritten into

T̂M,n =
∫ ξn−�,n

ξk,n

Q(s)dΨ(Γn(s)), (5.30)

where Ψ(s) :=
∫s

0J(t)dt. Integrating by parts yields

n1/2
(
T̂M,n − TM,n

)
σn(J)

= Δ1,n + Δ2,n + Δ3,n,
(5.31)

where

Δ1,n := −
n1/2

∫1−�/n
k/n {Ψ(Γn(s)) −Ψ(s)}dQ(s)

σn(J)
,

Δ2,n :=
n1/2

∫ ξk,n
k/n{Ψ(Γn(s)) −Ψ(k/n)}dQ(s)

σn(J)
,

Δ3,n :=
n1/2

∫1−�/n
ξn−�,n

{Ψ(Γn(s)) −Ψ(1 − �/n)}dQ(s)

σn(J)
.

(5.32)

Next, we show that

Δ1,n
D−−−→ N(0, 1) as n −→ ∞, (5.33)

Δi,n
p−−−→ 0 as n −→ ∞ for i = 2, 3. (5.34)

Making use of the mean-value theorem, we have for each n

Ψ(Γn(s)) −Ψ(s) = (Γn(s) − s)J(ϑn(s)), (5.35)



Journal of Probability and Statistics 21

where {ϑn(s)}n≥1 is a sequence of rv’s with values in the open interval of endpoints s ∈ (0, 1)
and Γn(s). Therefore

Δ1,n =
−∫1−�/n

k/n ϕn(s)J(ϑn(s))dQ(s)

σn(J)
. (5.36)

This may be rewritten into

Δ1,n = −
∫1−�/n
k/n ϕn(s)J(s)dQ(s)

σn(J)
−
∫1−�/n
k/n ϕn(s)J(s){J(ϑn(s)) − J(s)}dQ(s)

σn(J)

=: Δ∗
1,n + Δ∗∗

1,n.

(5.37)

Note that

∫1−�/n
k/n

∣∣ϕn(s) − Bn(s)
∣∣J(s)dQ(s)

σn(J)

≤ sup
k/n≤s≤1−�/n

∣∣ϕn(s) − Bn(s)
∣∣

(s(1 − s))1/2−ν

∫1−�/n

k/n

(s(1 − s))1/2−ν|J(s)|dQ(s)/σn(J),

(5.38)

for 0 < ν < 1/4, which by (5.29) is equal to

Op(n−ν)
∫1−�/n
k/n (s(1 − s))1/2−ν|J(s)|dQ(s)

σn(J)
. (5.39)

Since we have, from Lemmas 5.2 and 5.3,

(
n

k

)ν∫1−�/n

k/n

(s(1 − s))1/2−ν|J(s)|dQ(s)/σn(J) = O(1), as n −→ ∞, (5.40)

then the right-hand side of the last inequality is equal to Op(k−ν) which in turn tends to zero
as n → ∞. This implies that as n → ∞

Δ∗
1,n = −

∫1−�/n
k/n Bn(s)J(s)dQ(s)

σn(J)
+ op(1). (5.41)

Next, we show that Δ∗∗
1,n = op(1). Indeed, function J is differentiable on (0, 1); then by

the mean-value theorem, there exists a sequence {ϑ∗
n(s)}n≥1 of rv’s with values in the open

interval of endpoints s ∈ (0, 1) and ϑn(s) such that for each n we have

Δ∗∗
1,n =

∫1−�/n
k/n ϕn(s)J(s){ϑn(s) − s}J ′(ϑ∗

n(s))dQ(s)

σn(J)
. (5.42)
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From inequalities (3.9) and (3.10) by Mason and Shorack [55], we infer that, for any 0 < ρ < 1,
there exists 0 < Mρ < ∞ such that for all large n we have

∣∣J ′(ϑ∗
n(s))

∣∣ ≤ Mρ|J(s)|
(s(1 − s))

, (5.43)

for any 0 < s ≤ 1/2. On the other hand, we have for any 0 < s < 1

|ϑn(s) − s| ≤ |Γn(s) − s|. (5.44)

Therefore

∣∣∣Δ∗∗
1,n

∣∣∣ ≤ Mρn
−1/2

∫1/2
k/n

(∣∣ϕn(s)
∣∣2|J(s)|/s(1 − s)

)
dQ(s)

σn(J)
. (5.45)

This implies, since, for each n ≥ 1, E|ϕn(s)|2 < s(1 − s), that

E
∣∣∣Δ∗∗

1,n

∣∣∣ ≤ Mρn
−1/2

∫1/2
k/n|J(s)|dQ(s)

σn(J)
, (5.46)

which tends to zero as n → ∞.
Next, we consider the term Δ2,n which may be rewritten into

Δ2,n =
n1/2

∫ ξk,n
k/n{Ψ(Γn(s)) −Ψ(s)}dQ(s)

σn(J)
+
n1/2

∫ ξk,n
k/n{Ψ(s) −Ψ(k/n)}dQ(s)

σn(J)
. (5.47)

Making use of the mean-value theorem, we get

Δ2,n =

∫ ξk,n
k/n

ϕn(s)J
(
μn(s)

)
dQ(s)

σn(J)
+
n1/2

∫ ξk,n
k/n(s − k/n)J(s∗n)dQ(s)

σn(J)
, (5.48)

where μn(s) is a sequence of rv’s with values in the open interval of endpoints s ∈ (k/n, ξk,n)
and Γn(s) and s∗n a sequence of rv’s with values in the open interval of endpoints s ∈
(k/n, ξk,n) and k/n. Again we may rewrite Δ2,n into

Δ2,n =

∫ ξk,n
k/nϕn(s)

(
J
(
μn(s)

) − J(s)
)
dQ(s)

σn(J)
+

∫ ξk,n
k/nϕn(s)J(s)dQ(s)

σn(J)

+ n1/2J

(
k

n

)∫ ξk,n

k/n

(
s − k

n

)(
J(s∗n)
J(k/n)

− 1
)
dQ(s)/σn(J)

+ n1/2J

(
k

n

)∫ ξk,n

k/n

(
s − k

n

)
dQ(s)/σn(J).

(5.49)
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Recall that, as n → ∞, both k and � tend to infinity with k/n → 0 and �/n → 0. This implies
that

n

k1/2

(
ξk,n − k

n

)
D−−−→ N(0, 1) as n −→ ∞, (5.50)

n

l1/2

(
ξn−l,n − 1 +

l

n

)
D−−−→ N(0, 1) as n −→ ∞, (5.51)

(see, e.g., Balkema and de Haan [61, page 18]). Next, we use similar arguments to those used
in the proof of Theorem 1 by Csörgő et al. [56]. For any 0 < c < ∞ write

Δ(1)
2,n(c) :=

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)

∣∣ϕn(s)
∣∣∣∣J(μn(s)

) − J(s)
∣∣dQ(s)

σn(J)

+

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)|J(s)|

∣∣ϕn(s)
∣∣dQ(s)

σn(J)
,

Δ(2)
2,n(c) :=

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)n

1/2|s − k/n|J(s∗n)dQ(s)

σn(J)

+
n1/2J(k/n)

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)(s − k/n)(J(s∗n)/J(k/n) − 1)dQ(s)

σn(J)
.

(5.52)

Notice that by (5.49)

lim
c→∞

lim inf
n→∞

P

{
|Δ2,n| ≤ Δ(1)

2,n(c) + Δ(2)
2,n(c)

}
≥ lim

c→∞
lim inf
n→∞

P

{∣∣∣∣ξk,n − k

n

∣∣∣∣ ≤ c
k1/2

n

}
. (5.53)

In view of (5.50), this last quantity equals 1. Therefore to establish (5.34) for i = 2, it suffices
to show that for each 0 < c < ∞

Δ(1)
2,n(c)

p−−−→ 0, Δ(2)
2,n(c) −→ 0 as n −→ ∞. (5.54)

By the mean-value theorem, there exists {μ∗
n(s)}n≥1 a sequence of rv’s with values in the open

interval of endpoints s and μn(s) such that for each n we have

J
(
μn(s)

) − J(s) =
(
μn(s) − s

)
J ′
(
μ∗
n(s)

)
. (5.55)
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Since |μn(s) − s| ≤ |Γn(s) − s|, then by inequality (5.43) we infer that, for any 0 < ρ < 1,
there exists 0 < M′

ρ < ∞ such that for all large n we have

∣∣J(μn(s)
) − J(s)

∣∣ ≤ M′
ρn

−1/2
∣∣ϕn(s)

∣∣|J(s)|
(s(1 − s))

. (5.56)

This implies that the first term in Δ(1)
2,n(c) is less than or equal to

M′
ρn

−1/2
∫k/n+c(k1/2/n)

k/n−c(k1/2/n)

(
ϕ2
n(s)|J(s)|
(s(1 − s))

)
dQ(s)/σn(J) . (5.57)

Since E(ϕ2
n(s)) ≤ s(1 − s), then the expected value of the previous quantity is less than or

equal to

M′
ρn

−1/2
∫ (1+c)k/n
(1−c)k/n|J(s)|dQ(s)

σn(J)
. (5.58)

Likewise the expected value of the second term in Δ(1)
2,n(c) is less than or equal to

∫k/n+c(k1/2/n)
k/n−c(k1/2/n)(s(1 − s))1/2|J(s)|dQ(s)

σn(J)
≤
(
k/n + c(k1/2/n)

)1/2∫k/n+c(k1/2/n)
k/n−c(k1/2/n)|J(s)|dQ(s)

σn(J)
.

(5.59)

Fix 1 < ε < ∞. It is readily verified that, for all large n, the quantity (5.58) is less than

M′
ρn

−1/2
∫ε(k/n)
k/εn |J(s)|dQ(s)

σn(J)
, (5.60)

and the right-hand side of (5.59) is less than

2
(
k

n

)1/2∫ ε(k/n)

k/εn

|J(s)|dQ(s)/σn(J). (5.61)

Therefore for all large n

E
(
Δ(1)

2,n(c)
)
≤
(

2 +M′
ρk

−1/2
)(k

n

)1/2∫ ε(k/n)

k/εn

|J(s)|dQ(s)/σn(J). (5.62)

By routine manipulations, as in the proofs of Lemmas 5.1 and 5.2 (we omit details), we easily
show that

lim
n→∞

(
k

n

)1/2∫ ε(k/n)

k/εn

|J(s)|dQ(s)/σn(J) =
w

αβ − 1

(
ε1/α−β − εβ−1/α

)
. (5.63)
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Since k → ∞, then for any 0 < c < ∞

lim sup
n→∞

E
(
Δ(1)

2,n(c)
)
≤ 2

(
ε1/α−β − εβ−1/α

)
w, (5.64)

for any fixed 1 < ε < ∞. This implies that for all 0 < c < ∞

lim
n→∞

E
(
Δ(1)

2,n(c)
)
= 0. (5.65)

Therefore, by Markov inequality, we have the first result of (5.34).
Now, consider the term Δ(2)

2,n(c). Observe that ns∗/k is a sequence of rv’s with values in

the open interval of endpoints nξk,n/k and 1. On the other hand, (5.49) implies that nξk,n/k
p−→

1 as n → ∞. Hence ns∗/k
p−→ 1 as well. Then, it is readily checked that, in view of relation

(3.9) by Mason and Shorack [55], we have

sups∈Hn
J(s∗n)

J(k/n)
= Op(1) as n −→ ∞. (5.66)

Therefore

Δ(2)
2,n(c) = Op(1)J

(
k

n

)∫k/n+c(k1/2/n)

k/n−c(k1/2/n)
n1/2

∣∣∣∣s − k

n

∣∣∣∣dQ(s)/σn(J). (5.67)

Observe that

∫k/n+c(k1/2/n)

k/n−c(k1/2/n)
n1/2

∣∣∣∣s − k

n

∣∣∣∣dQ(s) ≤ c

(
k

n

)1/2∫k/n+c(k1/2/n)

k/n−c(k1/2/n)
dQ(s). (5.68)

Hence for all large n

Δ(2)
2,n(c) = Op(1)J

(
k

n

)∫ ε(k/n)

k/εn

dQ(s)/σn(J), (5.69)

for any fixed 1 < ε < ∞, we have

Δ(2)
2,n(c) = Op(1)

(
ε1/α−β − εβ−1/α

)
w. (5.70)

this means that Δ(2)
2,n(c) → 0 as n → ∞. By the same arguments and making use of (5.51) we

show that Δ3,n
p→ 0 as n → ∞ (we omit details), which achieves the proof of Theorem 3.4.
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5.2. Proof of Theorem 3.5

Recall (3.8), (3.9), and (3.10) and write

L̂k,�(J) − L(J) =
(
T̂L,n − TL,n

)
+
(
T̂M,n − TM,n

)
+
(
T̂R,n − TR,n

)
. (5.71)

It is easy to verify that

T̂R,n − TR,n =
(k/n)J(k/n)Xk,nα̂L(

1 + β
)
α̂L − 1

−
∫k/n

0
J(s)Q(t)dt = SL

n1 + SL
n2 + SL

n3, (5.72)

where

SL
n1 :=

(
k

n

)
J

(
k

n

)
Xk,n

{
α̂L(

1 + β
)
α̂L − 1

− α(
1 + β

)
α − 1

}
,

SL
n2 :=

α(k/n)Q(k/n)J(k/n)(
1 + β

)
α − 1

{
Xk,n

Q(k/n)
− 1

}
,

SL
n3 :=

α(k/n)J(k/n)Q(k/n)(
1 + β

)
α − 1

−
∫k/n

0
J(s)Q(t)dt.

(5.73)

Likewise we have

T̂R,n − TR,n =
(�/n)J(1 − �/n)Xn−�,nα̂R(

1 + β
)
α̂R − 1

−
∫�/n

0
J(s)Q(1 − t)dt = SR

n1 + SR
n2 + SR

n3, (5.74)

where

SR
n1 := (k/n)J(k/n)Xk,n

{
α̂L(

1 + β
)
α̂L − 1

− α(
1 + β

)
α − 1

}
,

SR
n2 :=

α(�/n)Q(1 − �/n)J(1 − �/n)(
1 + β

)
α − 1

{
Xn−�,n

Q(1 − �/n)
− 1

}
,

SR
n3 :=

α(�/n)Q(1 − �/n)J(1 − �/n)(
1 + β

)
α − 1

−
∫�/n

0
J(s)Q(1 − t)dt.

(5.75)

It is readily checked that SR
n1 may be rewritten into

SL
n1 =

α̂Lα(k/n)J(k/n)Xk,n((
1 + β

)
α̂L − 1

)((
1 + β

)
α − 1

)
(

1
α̂L

− 1
α

)
. (5.76)
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Since α̂L is a consistent estimator of α, then for all large n

SL
n1 =

(
1 + op(1)

)α2(k/n)J(k/n)Xk,n((
1 + β

)
α − 1

)2

(
1
α̂L

− 1
α

)
. (5.77)

In view of Theorems 2.3 and 2.4 of Csörgő and Mason [46], Peng [30], and Necir et al. [17]
has been shown that under the second-order condition (2.6) and for all large n

√
kα

(
1
α̂L

− 1
α

)
= −

√
n

k
Bn

(
k

n

)
+
√

n

k

∫k/n

0

Bn(s)
s

ds + op(1),

√
k

(
Xk,n

Q(k/n)
− 1

)
= −α−1

√
n

k
Bn

(
k

n

)
+ op(1),

Xk,n
Q

(
k

n

)
= 1 + op(1),

(5.78)

where {Bn(s), 0 ≤ s ≤ 1, n = 1, 2, . . .} is the sequence of Brownian bridges defined in
Theorem 3.4. This implies that for all large n

SL
n1 =

(
1 + op(1)

)α(k1/2/n
)
J(k/n)Q(k/n)((

1 + β
)
α − 1

)2

{
−
√

n

k
Bn

(
k

n

)
+
√

n

k

∫k/n

0

Bn(s)
s

ds + op(1)

}
,

SL
n2 =

α
(
k1/2/n

)
Q(k/n)J(k/n)(

1 + β
)
α − 1

{
−
√

n

k
Bn

(
k

n

)
+ op(1)

}
.

(5.79)

Then, in view of Lemma 5.3, we get for all large n

√
n
(
SL
n1 + SL

n2

)
σn(J)

= − αw((
1 + β

)
α − 1

)2

{
−
√

n

k
Bn

(
k

n

)
+
√

n

k

∫k/n

0

Bn(s)
s

ds

}

− w(
1 + β

)
α − 1

√
n

k
Bn

(
k

n

)
+ op(1).

(5.80)

By the same arguments (we omit details), we show that for all large n

√
n
(
SR
n1 + SR

n2

)
σn(J)

=
αwR((

1 + β
)
α − 1

)2

{√
n

�
Bn

(
1 − �

n

)
−
√

n

�

∫1

1−�/n

Bn(s)
1 − s

ds

}

+
wR(

1 + β
)
α − 1

{
−
√

n

�
Bn

(
1 − �

n

)}
+ op(1),

(5.81)
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where wR := |λ|(q/p)1/αθβ−1/α+1/2w. Similar arguments as those used in the proof of Theorem
1 by Necir et al. [17] yield that

√
nSR

n3

σn(J)
=

√
nSR

n3

σn
(J) = o(1) as n −→ ∞. (5.82)

Then, by (5.80), (5.81), and (5.82) we get

√
n
(
L̂k,�(J) − L(J)

)
σn(J)

= − αw((
1 + β

)
α − 1

)2

{
−
√

n

k
Bn

(
k

n

)
+
√

n

k

∫k/n

0

Bn(s)
s

ds

}

− w(
1 + β

)
α − 1

√
n

k
Bn

(
k

n

)
+ op(1) −

∫1−�/n
k/n J(s)Bn(s)ds

σn(J)

+
αwR((

1 + β
)
α − 1

)2

{√
n

�
Bn

(
1 − �

n

)
−
√

n

�

∫1

1−�/n

Bn(s)
1 − s

ds

}

+
wR(

1 + β
)
α − 1

{
−
√

n

�
Bn

(
1 − �

n

)}
+ op(1).

(5.83)

The asymptotic variance of
√
n(L̂k,�(J) − L(J))/σn(J) will be computed by

σ2
0 = lim

n→∞

{
w2 α2

((
1 + β

)
α − 1

)4

n

k

∫k/n

0
ds

∫k/n

0

min(s, t) − st

st
dt

+w2

(
1 − βα

)2

((
1 − β

)
α − 1

)4

n

k

k

n

(
1 − k

n

)
+

∫1−�/n
k/n dc(s)

∫1−�/n
k/n (min(s, t) − st)dc(s)

σn(J)

+w2
R

(
1 − βα

)2

((
1 − β

)
α − 1

)4

n

�

�

n

(
1 − �

n

)

+w2
R

α2

((
1 + β

)
α − 1

)4

n

�

∫1

1−�/n
ds

∫1

1−�/n

min(s, t) − st

st
dt

− 2w2 α
(
1 − βα

)
((

1 − β
)
α − 1

)4

n

k

∫k/n

0

t − (k/n)t
t

dt

+ 2w
α((

1 + β
)
α − 1

)2

√
n

k

∫k/n

0
ds

∫1−�/n

k/n

s − st

s
dc(t)/σn(J)
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− 2wwR

α
(
1 − βα

)
((

1 + β
)
α − 1

)4

√
n

k

√
n

�

∫k/n

0

s − (1 − �/n)s
s

ds

+ 2wwR
α2

((
1 + β

)
α − 1

)4

√
n

k

√
n

�

∫k/n

0
ds

∫1

1−�/n

min(s, t) − st

st
dt

− 2w

( (
1 − βα

)
((

1 + β
)
α − 1

)2

)√
n

k

∫1−�/n

k/n

(
k

n
− s

(
k

n

))
dc(t)/σn(J)

− 2w

( (
1 − βα

)
((

1 + β
)
α − 1

)2

)√
n

k

∫1−�/n

k/n

(
k

n
− s

(
k

n

))
dc(t)/σn(J)

+ 2wwR

(
1 − βα

)2

((
1 + β

)
α − 1

)4

√
n

k

√
n

�

(
k

n
− k

n

(
1 − �

n

))

− 2wwR

α
(
1 − βα

)
((

1 + β
)
α − 1

)4

∫1

1−�/n

k/n − (k/n)s
1 − s

ds

− 2wR

( (
1 − βα

)
((

1 + β
)
α − 1

)2

)√
n

�

∫1−�/n

k/n

(
s − s

(
1 − �

n

))
dc(t)/σn(J)

+ 2wR

(
α((

1 + β
)
α − 1

)2

)√
n

�

∫1

1−�/n
ds

∫1−�/n

k/n

(t − st)
(1 − s)

dc(t)/σn(J)

−2w2
R

α
(
1 − βα

)
((

1 + β
)
α − 1

)4

(n
�

)∫1

1−�/n

(1 − �/n) − (1 − �/n)s
1 − s

ds

}
.

(5.84)

After calculation we get

σ2
0 = w2 2α2

((
1 + β

)
α − 1

)4
+w2

(
1 − βα

)2

((
1 + β

)
α − 1

)4
+ 1 +w2

R

(
1 − βα

)2

((
1 + β

)
α − 1

)4
+w2

R

2α2

((
1 + β

)
α − 1

)4

− 2w2 α
(
1 − βα

)
((

1 + β
)
α − 1

)4
+ 2w

α((
1 + β

)
α − 1

)2
w

− 2w

(
1 − βα

)
((

1 + β
)
α − 1

)2
w + 2wR

α((
1 + β

)
α − 1

)2
wR

− 2wR

(
1 − βα

)
((

1 + β
)
α − 1

)2
wR −w2

R

2α((
1 + β

)
α − 1

)4

=
(
w2 +w2

R

)[2α2 +
(
βα − 1

)2 + 2α
(
βα − 1

)
((

1 + β
)
α − 1

)4
+

2(
1 + β

)
α − 1

]
+ 1.

(5.85)
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Finally, it is easy to verify that

w2 +w2
R =

(
αβ + 1

)(
2αβ + 2 − α

)
2

. (5.86)

This completes the proof of Theorem 3.5.

5.3. Proof of the Corollary

Straightforward by combining Theorem 3.5 and Lemma 5.4, we omit details.

5.4. Proof of Theorem 4.1

We will only present details for the proof concerning the first part of Theorem 4.1. The proof
for the second part is very similar. For convenience we set

Δm2 := m̂2 −m2, Δm3 := m̂3 −m3. (5.87)

Then we have

υ̂1 − υ1 =
m̂3

m̂2
− m3

m2
=

m2Δm3 −m3Δm2

m̂2m2
. (5.88)

Since m̂2 is consistent estimator of m2, then for all large n

υ̂1 − υ1 = (1 + oP (1))

(
Δm3

m2
− m3Δm2

m2
2

)
, (5.89)

and therefore

√
n(υ̂1 − υ1)
σn(J3)

=
1
m2

(C1n + C2n) + op(1), (5.90)

where

C1n :=
√
nΔm3

σn(J3)
, C2n := −m3

√
nΔm2

m2σn(J3)
. (5.91)
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In view of (5.83) we may write that for all large n

C1n = − αw1

(2α − 1)2

{
−
√

n

k
Bn

(
k

n

)
+
√

n

k

∫k/n

0

Bn(s)
s

ds

}

− w1

2α − 1

√
n

k
Bn

(
k

n

)
+ op(1) −

∫1−�/n
k/n J(s)Bn(s)ds

σn(J)

+
αwR,1

(2α − 1)2

{√
n

�
Bn

(
1 − �

n

)
−
√

n

�

∫1

1−�/n

Bn(s)
1 − s

ds

}

+
wR,1

2α − 1

{
−
√

n

�
Bn

(
1 − �

n

)}
+ op(1),

(5.92)

and, by Lemma 5.4, we infer that σn(J3)/σn(J2) → 10/9 as n → ∞,

−10m2

9m3
C2n = − αw1

(2α − 1)2

{
−
√

n

k
Bn

(
k

n

)
+
√

n

k

∫k/n

0

Bn(s)
s

ds

}

− w1

2α − 1

√
n

k
Bn

(
k

n

)
+ op(1) −

∫1−�/n
k/n J(s)Bn(s)ds

σn(J)

+
αwR,1((

1 + β
)
α − 1

)2

{√
n

�
Bn

(
1 − �

n

)
−
√

n

�

∫1

1−�/n

Bn(s)
1 − s

ds

}

+
wR,1

2α − 1

{
−
√

n

�
Bn

(
1 − �

n

)}
+ op(1),

(5.93)

with

w1 :=
(α + 1)(2α + 2 − α)

2
(

1 +
(
q/p

)2/α
θ3−2/α

) , wR,1 :=
(
q/p

)1/α
θ3/2−1/αw1. (5.94)

By the same arguments as the proof of Theorem 3.5 we infer that

√
n(υ̂1 − υ1)

(�/n)3/2Xn−�,n

D−−−→ N
(

0, V 2
1

)
as n −→ ∞. (5.95)

This achieves the proof of Theorem 4.1.

5.5. Proof of Theorem 4.2

Theorem 4.2 is just an application of Theorem 3.5, we omit details.
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