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We consider the extended Skorokhod problem for real-valued càdlàg functions with the
constraining interval [α, β], where α and β change in time as values of two càdlàg functions.
We find an explicit form of the solution and discuss its continuity properties with respect to the
uniform, J1 and M1, metrics on the space of càdlàg functions. We develop a useful technique of
extending known results for the Skorokhod maps onto the larger class of extended Skorokhod
maps.

1. Introduction

The Skorokhod problem (SP) was introduced originally in [1] as a tool for solving stochastic
differential equations in a domain with one fixed reflective boundary. Given a function ψ, a
solution of the Skorokhod problem on [0,∞) is a pair of functions (φ, η) such that φ ≥ 0, η is
nondecreasing, and

∫∞
0 I{φ(s)>0}dη(s) = 0. The mapping Γ0(ψ) = φ is called a Skorokhod map

(SM) on [0,∞) and is well defined for all càdlàg functions ψ.
The Skorokhod problem has been studied since [1] in more general settings.

Chaleyat-Maural et al. studied in [2] a Skorokhod map constraining functions to [0, a].
A multidimensional version of the SP was introduced by Tanaka in [3]. Over the years,
numerous applications were found for the SM particularly in queueing theory. In [4], Kruk et
al. provided an explicit formula and studied the properties of the two-sided Skorokhod map
constraining the function to remain in the interval [0, a], where a is a positive constant. More
recently attempts were made towards relaxing the rigidity of the constrains. Burdzy et al. in
[5] found an explicit representation for the so called extended Skorokhod map (ESM), which
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is a relaxed version of the SM. [The constraining interval in that paper varies with time.]
Another explicit representation for the SM with two time-dependent boundaries, different
from the representation in [5] and based on the approach in [4], was developed by the
author in [6]. In addition, a number of properties of the SM were studied in [6] including
its continuity and Lipschitz conditions.

In this paperwe obtain an alternative form of the explicit formula for the ESMwith two
time-dependent boundaries developed in [5] that is simpler to understand and potentially
more useful for applications and generalizations to higher dimensions. We develop methods
of extending certain properties of the SM onto the ESM and use them to analyze continuity
properties of the ESM.

Throughout the paper, D[0,∞) will denote real-valued càdlàg functions on
[0,∞), D−[0,∞), and D+[0,∞) will denote càdlàg functions on [0,∞) taking values in
R ∪ {−∞} and in R ∪ {∞}, respectively. A function is càdlàg if it is right-continuous and has
finite left limits at every t ≥ 0. Similarly, we will use I[0,∞) and BV[0,∞) to denote subspaces
of D[0,∞) consisting of nondecreasing functions and functions with bounded variation on
every finite interval, respectively. We will use Df to denote the effective domain of f , that is,
Df = {t ≥ 0 | ∞ < f(t) <∞}.

On the space of the càdlàg functions we will consider the topology of the uniform
convergence and the topology of the uniform convergence on compact sets. For every T > 0,
let ‖f‖T = sup0≤t≤T |f(t)| and ‖f‖ = supt≥0|f(t)|. Let fn be a sequence of functions in D+[0,∞)
or in D−[0,∞). We say that fn converges to f uniformly on compact sets if for every T >
0, limn→∞‖fn − f‖T = 0. Equivalently, we could say that fn converges to f uniformly on
compact sets if fn = f onDc

f
for large enough n and fn converges to f uniformly on [0, T]∩Df

for every T > 0.

Definition 1.1 (extended Skorokhod problem). Let α ∈ D−[0,∞), β ∈ D+[0,∞) be such that
α ≤ β, and let ψ ∈ D[0,∞). A pair of real-valued càdlàg functions, (φ, η), is said to be
a solution of the extended Skorokhod problem (ESP) on [α, β] for ψ if the following three
properties are satisfied:

(i) for every t ≥ 0, φ(t) = ψ(t) + η(t) ∈ [α(t), β(t)];

(ii) for every 0 ≤ s ≤ t,

η(t) − η(s) ≥ 0 if φ(r) < β(r) ∀r ∈ (s, t],

η(t) − η(s) ≤ 0 if φ(r) > α(r) ∀r ∈ (s, t];
(1.1)

(iii) for every t ≥ 0,

η(t) − η(t−) ≥ 0 if φ(t) < β(t),

η(t) − η(t−) ≤ 0 if φ(t) > α(t).
(1.2)

Traditionally η(0−) in (iii) is defined as zero so that η has a jump at 0, whenever
η(0) > 0. The map Γα,β : D[0,∞) → D[0,∞) defined by Γα,β(ψ) = φ is called the extended
Skorokhod map (ESM) on [α, β]. In the traditional Skorokhod problem, conditions (ii) and
(iii) are replaced by a stronger condition.
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Definition 1.2 (Skorokhod problem). Let α, β ∈ D[0,∞) be such that α ≤ β. Given ψ ∈ D[0,∞),
a pair of functions (φ, η) ∈ D[0,∞) × BV[0,∞) is said to be a solution of the Skorokhod
problem on [α, β] for ψ if the following two properties are satisfied:

(i) for every t ∈ [0,∞), φ(t) = ψ(t) + η(t) ∈ [α(t), β(t)];

(ii) η(0−) = 0 and η have the decomposition η = ηl − ηu, where ηl, ηu ∈ I[0,∞),

∫∞

0
I{φ(s)>α(t)}dηl(s) = 0,

∫∞

0
I{φ(s)<β(s)}dηu(s) = 0. (1.3)

Burdzy et al. have shown in Theorem 2.6 of [5] that for any α ∈ D−[0,∞) and β ∈
D+[0,∞) such that α ≤ β, there is a well-defined ESM Γα,β and it is represented by

Γα,β
(
ψ
)
= ψ − Ξα,β

(
ψ
)
, (1.4)

where Ξα,β(ψ) : D[0,∞) → D[0,∞) is given by

Ξα,β
(
ψ
)
(t) = max

{[
(
ψ(0) − β(0))+ ∧ inf

0≤r≤t
(
ψ(r) − α(r))

]
,

sup
0≤s≤t

[
(
ψ(s) − β(s)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]}

.

(1.5)

They obtained their result first for simple functions and then extended it by the limiting
process. In Section 2 we will develop an alternative version of this formula.

It is easy to see that if (φ, η) is a solution of the SP on [α, β] for ψ, then it is also a
solution of the ESP on [α, β] for ψ. Conversely, it is shown in Proposition 2.3 of [5] that
a solution (φ, η) of the ESP solves also the corresponding SP whenever η ∈ BV[0,∞).
Furthermore, Corollary 2.4 of [5] shows that if inft≥0(β(t) − α(t)) > 0 and (φ, η) is a solution
of the ESP on [α, β] for ψ, then η ∈ BV[0,∞). Therefore we can identify the ESM with the SM
in this special case.

Remark 1.3. If inft≥0(β(t) − α(t)) > 0, then Γα,β = Γα,β.

2. Alternative Explicit Formula for the Two-Sided Extended Skorokhod
Map with Time-Dependent Boundaries

We will make the explicit formula (1.4) more user friendly by developing a new expression
for the constraining term Ξ that is easier to understand and shows more promise for possible
extensions to higher dimensions than (1.5). Given α ∈ D−[0,∞) and β ∈ D+[0,∞) such that
α ≤ β, we introduce two pairs of times

Tα = min
{
t > 0 | α(t) − ψ(t) ≥ 0

}
, Tβ = min

{
t > 0 | ψ(t) − β(t) ≥ 0

}
, (2.1)

τα = inf
{
t > 0 | α(t) − ψ(t) > 0

}
, τβ = inf

{
t > 0 | ψ(t) − β(t) > 0

}
. (2.2)
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Note that

Tα ≤ τα, Tβ ≤ τβ. (2.3)

Also note that the four times depend on ψ. When necessary we will indicate it by using full
notation such as τα(ψ) or τβ(ψ).

Remark 2.1. Let ψ ∈ D[0,∞), α, αn,∈ D−[0,∞), n = 1, 2, 3, . . ., and β, βn ∈ D+[0,∞), n =
1, 2, 3, . . . . If αn

n→∞−−−−−→ α and βn
n→∞−−−−−→ β pointwise, then

lim sup
n→∞

τβn ≤ τβ, lim sup
n→∞

ταn ≤ τα. (2.4)

Proof. Let ε > 0. By (2.2) there is τβ ≤ t0 < τβ+ε such that ψ(t0)−β(t0) > 0. Let ψ(t0)−β(t0) = δ.
There is n0 such that |βn(t0) − β(t0)| < δ/2 for n ≥ n0. Hence

ψ(t0) − βn(t0) = ψ(t0) − β(t0) + β(t0) − βn(t0) ≥ δ0 −
∣∣β(t0) − βn(t0)

∣∣ ≥ δ0
2
> 0. (2.5)

Thus τβn ≤ t0 < τβ + ε. Since ε is arbitrary, we conclude that lim supn→∞ τβn ≤ τβ. By similar
argument we can show that lim supn→∞ ταn ≤ τα.

The inequalities in Remark 2.1 distinguish τα and τβ from Tα and Tβ and will be
essential for the proof of Theorem 2.11.

Remark 2.2. Let α ∈ D−[0,∞) and β ∈ D+[0,∞) be such that inft≥0(β(t) − α(t)) > 0. For any
ψ ∈ D[0,∞), there are three possibilities

either α(t) < ψ(t) < β(t) for every t ≥ 0, Tα < T
β or Tβ < Tα. (2.6)

Similarly, in terms of τα and τβ, the following three cases are possible:

either α(t) ≤ ψ(t) ≤ β(t) for every t ≥ 0, τα < τ
β or τβ < τα. (2.7)

Clearly, α(t) < ψ(t) < β(t) for every t ≥ 0 if and only if Tα = Tβ = ∞, and α(t) ≤ ψ(t) ≤ β(t) for
every t ≥ 0 if and only if τα = τβ = ∞.

Remark 2.3. It follows from the definition of the ESM that for every 0 ≤ t ≤ τα ∧ τβ, α(t) ≤
ψ(t) ≤ β(t), Γα,β(ψ)(t) = ψ(t) and Ξα,β(ψ)(t) = 0. Similarly, we obtain that for every 0 ≤ t <

Tα ∧ Tβ, α(t) < ψ(t) < β(t) and Γα,β(ψ)(t) = ψ(t).
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Under the assumption that inft≥0(β(t) − α(t)) > 0, we define two increasing sequences
of times {Tk | k = 0, 1, 2, . . .} and {Sk | k = 0, 1, 2, . . .} similar to the sequences τk, σk used in
[6]. If Tβ < Tα, we set T0 = 0 and S0 = Tβ; for k ≥ 1, we set

Tk = min

{

t > Sk−1 | sup
Sk−1≤s≤t

[
ψ(s) − β(s)] ≥ ψ(t) − α(t)

}

, (2.8)

Sk = min
{
t > Tk | ψ(t) − β(t) ≥ inf

Tk≤r≤t
(
ψ(r) − α(r))

}
. (2.9)

If Tα < Tβ, we set T0 = Tα, we define Sk for all k by (2.9), and we define Tk for k ≥ 1 by (2.8).
It is easy to see that 0 ≤ T0 ≤ S0 < T1 < S1 < T2 < S2 < · · · unless one of the times

equals∞, at which point all the following times are also∞. Also note that the time sequences
depend on ψ, α and β. Finally, as in Proposition 2.1 of [6], if inft≥0(β(t) − α(t)) > 0, then

lim
k→∞

Tk = ∞, lim
k→∞

Sk = ∞. (2.10)

The following observations follow immediately from the definition of Sk.

Remark 2.4. If k > 1 or if k = 0 and Tα < Tβ, then

ψ(Sk) − β(Sk) ≥ inf
Tk≤r≤Sk

(
ψ(r) − α(r)) (2.11)

and for every s ∈ [Tk, Sk)

ψ(s) − β(s) < inf
Tk≤r≤s

(
ψ(r) − α(r)). (2.12)

If Tβ < Tα, then

ψ(S0) − β(S0) ≥ 0, (2.13)

and for every s ∈ [T0, S0),

ψ(s) − β(s) < 0. (2.14)

Similarly, by definition of Tk, we make the following conclusions.

Remark 2.5. If k > 1, then

ψ(Tk) − α(Tk) ≤ sup
Sk−1≤s≤Tk

[
ψ(s) − β(s)], (2.15)
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and for every t ∈ [Sk−1, Tk)

sup
Sk−1≤s≤t

[
ψ(s) − β(s)] < ψ(t) − α(t). (2.16)

If Tα < Tβ, then

α(T0) − ψ(T0) ≥ 0, (2.17)

and for every s ∈ [0, T0),

α(s) − ψ(s) < 0. (2.18)

It follows from (2.16) that [ψ(s)−β(s)] < [ψ(t)−α(t)]whenever Sk−1 ≤ s ≤ t < Tk, k ≥ 1.
Therefore

[
ψ(s) − β(s)] ≤ inf

s≤r<Tk

[
ψ(r) − α(r)] whenever Sk−1 ≤ s < Tk. (2.19)

Also note that by (2.11),

inf
Tk−1≤r≤Sk−1

(
ψ(r) − α(r)) ≤ sup

Sk−1≤s≤t

[
ψ(s) − β(s)]. (2.20)

The following result establishes a straight-forward representation for the constraining
term Ξα,β of the ESM similar to the representation of Theorem 2.2 of [6].

Theorem 2.6. Let α ∈ D−[0,∞), β ∈ D+[0,∞) be such that inft≥0(β(t)−α(t)) > 0, let ψ ∈ D[0,∞)
and let Ξ be defined by (1.5).
If Tβ < Tα, then

Ξα,β
(
ψ
)
(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 0 ≤ t < S0,

sup
Sk−1≤s≤t

[
ψ(s) − β(s)] if Sk−1 ≤ t < Tk, k ≥ 1,

inf
Tk≤r≤t

[
ψ(r) − α(r)] if Tk ≤ t < Sk, k ≥ 1.

(2.21)

If Tα < Tβ, then

Ξα,β
(
ψ
)
(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if 0 ≤ t < T0,
inf

Tk≤r≤t
[
ψ(r) − α(r)] if Tk ≤ t < Sk, k ≥ 0,

sup
Sk−1≤s≤t

[
ψ(s) − β(s)] if Sk−1 ≤ t < Tk, k ≥ 1.

(2.22)

We precede the proof with two technical lemmas. The first one examines Ξα,β(ψ) on
[Sk−1, Tk).



Journal of Probability and Statistics 7

Lemma 2.7. Under the assumptions of Theorem 2.6, for every k ≥ 1 and for every t ∈ [Sk−1, Tk),

Ξα,β
(
ψ
)
(t) = sup

Sk−1≤s≤t

[
ψ(s) − β(s)]. (2.23)

Proof. Let t ∈ [Sk−1, Tk). Then Ξα,β(ψ)(t) = X1(t) ∨Xk−1
2 (t) ∨Xk−1

3 (t) ∨Xk−1
4 (t), where

X1(t) =
(
ψ(0) − β(0))+ ∧ inf

0≤r≤t
(
ψ(r) − α(r)), (2.24)

Xk−1
2 (t) = sup

0≤s≤Tk−1

[
(
ψ(s) − β(s)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]
, (2.25)

Xk−1
3 (t) = sup

Tk−1≤s≤Sk−1

[
(
ψ(s) − β(s)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]
, (2.26)

Xk−1
4 (t) = sup

Sk−1≤s≤t

[
(
ψ(s) − β(s)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]
. (2.27)

By (2.20),

X1(t) ≤ inf
0≤r≤t
(
ψ(r) − α(r)) ≤ inf

Tk−1≤r≤Sk−1

(
ψ(r) − α(r)) ≤ sup

Sk−1≤s≤t

[
ψ(s) − β(s)], (2.28)

Xk−1
2 (t) ≤ sup

0≤s≤Tk−1

[
inf
s≤r≤t
(
ψ(r) − α(r))

]
≤ inf

Tk−1≤r≤Sk−1

(
ψ(r) − α(r)) ≤ sup

Sk−1≤s≤t

[
ψ(s) − β(s)]. (2.29)

By (2.12) and (2.20),

Xk−1
3 (t) ≤ sup

Tk−1≤s≤Sk−1

[
inf

Tk−1≤r≤s
(
ψ(r) − α(r)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]

≤ inf
Tk−1≤r≤Sk−1

(
ψ(r) − α(r)) ≤ sup

Sk−1≤s≤t

[
ψ(s) − β(s)].

(2.30)

Finally, by (2.19), Xk−1
4 (t) = supSk−1≤s≤t[ψ(s) − β(s)]which completes the proof.

The next lamma examines Ξα,β(ψ) on [Tk, Sk).

Lemma 2.8. Under the assumptions of Theorem 2.6, if k ≥ 1 or if Tα < Tβ and k = 0, then for every
t ∈ [Tk, Sk),

Ξα,β
(
ψ
)
(t) = inf

Tk≤s≤t
[
ψ(s) − α(s)]. (2.31)
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Proof. Let k be a nonnegative integer, and let t ∈ [Tk, Sk). We can write Ξα,β(ψ)(t) = X1(t) ∨
Xk

2 (t) ∨ Yk(t), where X1 and Xk
2 are defined by (2.24) and (2.25), respectively, and

Yk(t) = sup
Tk≤s≤t

[
(
ψ(s) − β(s)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]
. (2.32)

We first show the upper bound,

X1(t) ≤ inf
0≤r≤t
(
ψ(r) − α(r)) ≤ inf

Tk≤r≤t
(
ψ(r) − α(r)), (2.33)

Xk
2 (t) ≤ sup

0≤s≤Tk
inf
s≤r≤t
(
ψ(r) − α(r)) ≤ inf

Tk≤r≤t
(
ψ(r) − α(r)). (2.34)

By (2.12)

Yk(t) ≤ sup
Tk≤s≤t

[
inf

Tk≤r≤s
(
ψ(r) − α(r)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]
= inf

Tk≤s≤t
(
ψ(s) − α(s)). (2.35)

Thus we have shown that Ξα,β(ψ)(t) ≤ infTk≤s≤t(ψ(s) − α(s)). To show the opposite inequality
for k ≥ 1, it suffices to show that

Xk
2 (t) ≥ inf

Tk≤s≤t
(
ψ(s) − α(s)). (2.36)

Let ε > 0 be arbitrary and k ≥ 1, and let ρ ∈ [Sk−1, Tk] be such that

sup
Sk−1≤s≤Tk

[
ψ(s) − β(s)] ≤ ψ(ρ) − β(ρ) + ε. (2.37)

Then, by (2.15),

ψ
(
ρ
) − β(ρ) ≥ ψ(Tk) − α(Tk) − ε. (2.38)

Therefore, by (2.19) and (2.38),

Xk
2 (t) ≥

(
ψ
(
ρ
) − β(ρ)) ∧ inf

ρ≤r≤t
(
ψ(r) − α(r))

≥ (ψ(ρ) − β(ρ)) ∧ inf
ρ≤r<Tk

(
ψ(r) − α(r)) ∧ inf

Tk≤r≤t
(
ψ(r) − α(r))

≥ (ψ(ρ) − β(ρ)) ∧ inf
Tk≤r≤t

(
ψ(r) − α(r))

≥ (ψ(Tk) − α(Tk) − ε
) ∧ inf

Tk≤r≤t
(
ψ(r) − α(r)) ≥ inf

Tk≤r≤t
(
ψ(r) − α(r)) − ε.

(2.39)
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Since (2.39) holds for every ε > 0, the proof of (2.36) is complete for k ≥ 1. To complete the
proof for k = 0 in the case of Tα < Tβ, it suffices to show that

X1(t) = inf
T0≤r≤t

(
ψ(r) − α(r)), for every t ∈ [T0, S0). (2.40)

In this case Tβ > 0, and so ψ(0) − β(0) < 0. Also inf0≤r<T0(ψ(r) − α(r)) ≥ 0 since T0 = Tα and
infT0≤r≤t(ψ(r) − α(r)) ≤ ψ(T0) − α(T0) ≤ 0. Therefore

X1(t) = 0 ∧ inf
0≤r<T0

(
ψ(r) − α(r)) ∧ inf

T0≤r≤t
(
ψ(r) − α(r)) = inf

T0≤r≤t
(
ψ(r) − α(r)), (2.41)

which ends the proof.

Proof of Theorem 2.6. Let Tβ < Tα. If t ∈ [0, S0), then Ξα,β(ψ)(t) = 0 by Remark 2.3. If
t ∈ [Sk−1, Tk) for some k ≥ 1, then (2.21) holds by Lemma 2.7, and if t ∈ [Tk, Sk) for some
k ≥ 1, then (2.21) holds by Lemma 2.8.

Similarly, when Tα < Tβ, then T0 = Tα and (2.22) holds for t ∈ [0, T0) by Remark 2.3, for
t ∈ [Sk−1, Tk), k ≥ 1 by Lemma 2.7, and for t ∈ [Tk, Sk), k ≥ 1 by Lemma 2.8.

We introduce two functions

Hα,β

(
ψ
)
(t) = sup

0≤s≤t

[
(
ψ(s) − β(s)) ∧ inf

s≤r≤t
(
ψ(r) − α(r))

]
, (2.42)

Lα,β
(
ψ
)
(t) = inf

0≤s≤t

[
(
ψ(s) − α(s)) ∨ sup

s≤r≤t

(
ψ(r) − β(r))

]

. (2.43)

It is easy to verify that the following relationship holds:

Lα,β
(
ψ
)
(t) = −H−β,−α

(−ψ)(t). (2.44)

Corollary 2.9. Let α ∈ D−[0,∞), β ∈ D+[0,∞) be such that inft≥0(β(t) − α(t)) > 0. Then for every
ψ ∈ D[0,∞),

Ξα,β
(
ψ
)
(t) = I{Tβ<Tα}I[Tβ,∞)(t)Hα,β

(
ψ
)
(t) + I{Tα<Tβ}I[Tα,∞)(t)Lα,β

(
ψ
)
(t). (2.45)

Proof. If Tα = ∞ and Tβ = ∞, then both sides of (2.45) are zero.
Suppose that Tβ < Tα. Then S0 = Tβ. If t ∈ [0, Tβ), then Ξα,β(ψ)(t) = 0 by Remark 2.3.
Let t ∈ [Sk−1, Tk) for some k ≥ 1. We have shown in the proof of Lemma 2.7 that

Hα,β

(
ψ
)
(t) = Xk−1

2 (t) ∨Xk−1
3 (t) ∨Xk−1

4 (t) = Xk−1
4 (t). (2.46)

Therefore (2.45) holds by (2.19) and (2.21).
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Consider now t ∈ [Tk, Sk) for some k ≥ 1. We have shown in the proof of Lemma 2.8
that

Hα,β

(
ψ
)
(t) = Xk

2 (t) ∨ Yk(t) = inf
Tk≤s≤t

(
ψ(s) − α(s)). (2.47)

Hence, again, we conclude (2.45) from (2.21).
Suppose now that Tα < Tβ and set ψ ′ = −ψ, α′ = −β, and β′ = −α. Then Tβ

′
(ψ ′) =

Tα(ψ) < Tβ(ψ) = Tα′(ψ ′) and so we can apply the already proven case of (2.45) to ψ ′, α′ and β′.
We obtain, by (2.44),

Ξα′,β′
(
ψ ′)(t) = I[Tβ′ ,∞)(t)Hα′,β′

(
ψ ′)(t) = −I[Tα,∞)(t)Lα,β

(
ψ
)
(t). (2.48)

By Remark 1.3 and Remark 2.5 in [6], Ξα,β(ψ)(t) = −Ξα′,β′(ψ ′)(t), and so the proof of (2.45) is
complete.

We are going to show next that the times Tα and Tβ in (2.45) can be replaced by τα and
τβ. Their properties described in Remark 2.1 will be essential in expanding the representation
to a general ESM.

Corollary 2.10. Let α ∈ D−[0,∞), β ∈ D+[0,∞) be such that inft≥0(β(t)−α(t)) > 0. Then for every
ψ ∈ D[0,∞),

Ξα,β
(
ψ
)
(t) = I{τβ<τα}I[τβ,∞)(t)Hα,β

(
ψ
)
(t) + I{τα<τβ}I[τα,∞)(t)Lα,β

(
ψ
)
(t). (2.49)

Proof. By Remark 2.2, there are three possible cases. If τα = τβ = ∞, then Ξα,β(ψ)(t) = 0, and
(2.49) holds trivially.

Consider the case when τβ < τα. If t ≤ τβ, then, as in Remark 2.2, Ξα,β(ψ)(t) = 0, and
(2.49) holds.

If t > τβ, then by (2.3), t > Tβ, and so, by (2.10), there is k ≥ 1 such that t ∈ [Sk−1, Tk)
or t ∈ [Tk, Sk). If t ∈ [Sk−1, Tk), then, as in the proof of Lemma 2.7, Ξα,β(ψ)(t) = Xk−1

4 (t), and
therefore, by (2.46), Ξα,β(ψ)(t) = Hα,β(ψ)(t).

If t ∈ [Tk, Sk), then by (2.31) and (2.47), we have Ξα,β(ψ)(t) = Hα,β(ψ)(t) again.
In the case of τα < τβ we can apply the already proven case of (2.49) to −ψ, −β, and −α,

as in the proof of Corollary 2.9, to complete the proof.

In the following final result, we extend the representation of (2.49) to a general case,
thus producing an alternative representation formula for the ESM with two time-dependent
reflective boundaries.

Theorem 2.11. Let α ∈ D−[0,∞), β ∈ D+[0,∞) be such that α ≤ β. Then for every ψ ∈ D[0,∞)
and every t ≥ 0,

Ξα,β
(
ψ
)
(t) = I{τβ≤τα}I[τβ,∞)(t)Hα,β

(
ψ
)
(t) + I{τα<τβ}I[τα,∞)(t)Lα,β

(
ψ
)
(t). (2.50)
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Proof. Let α(t) ≤ β(t) for every t ≥ 0, and define αn(t) = α(t) ∧ (β(t) − n−1) and βn(t) = (α(t) +
n−1)∨β(t). Then αn ∈ D−[0,∞), βn ∈ D+[0,∞), αn ↑ α, βn ↓ β, −n−1 ≤ αn−α ≤ 0 ≤ βn−β ≤ n−1,
and inft≥0(βn(t) − αm(t)) ≥ n−1 ∨m−1. By Corollary 2.10, for every n, m and every t ≥ 0,

Ξαm,βn
(
ψ
)
(t) = I{τβn<ταm}I[τβn ,∞)(t)Hαm,βn

(
ψ
)
(t) + I{ταm<τβn}I[ταm ,∞)(t)Lαm,βn

(
ψ
)
(t). (2.51)

To complete the proof of (2.50), it suffices to show that the right-hand side of (2.51)
converges to the right-hand side of (2.50) uniformly on compact sets. By Proposition 2.5 in
[5], we could then conclude that limn→∞ Ξαn,βn(ψ) = Ξα,β(ψ). In fact we will show the uniform
convergence of the right-hand sides.

It is easy to see that for every n

τα ≤ ταn , τβ ≤ τβn . (2.52)

Hence, by Remark 2.1,

lim
n→∞

ταn = τα, lim
n→∞

τβn = τβ. (2.53)

To show the convergence of Hαn,βn(ψ) we consider a mapping R : D+[0,∞) ×
D−[0,∞) → D[0,∞) defined by

R
(
f, g
)
(t) = sup

0≤s≤t

[
f(s) ∧ inf

s≤r≤t
g(r)

]
. (2.54)

It is easy to see that R is continuous in the uniform metric. In fact, it can be shown that

∥∥R
(
f1, g1

) − R(f2, g2
)∥∥ ≤ ∥∥f1 − f2

∥∥ ∨ ∥∥g1 − g2
∥∥. (2.55)

SinceHα,β(ψ) = R(β − ψ, ψ − α), we get that limn→∞Hαn,βn(ψ) = Hα,β(ψ) uniformly. Similarly,
limn→∞ Lαn,βn(ψ) = Lα,β(ψ) uniformly.

We consider four possible cases: τα = τβ = ∞, τα < τβ, τβ < τα, and τα = τβ < ∞. If
τα = τβ = ∞, then by (2.52), ταn = τβn = ∞ for every n, and so the right-hand sides of both
(2.51) and (2.50) are zero.

Suppose that τβ < τα, then also τβn < ταn for almost all n. We show first that
I[τβn ,∞)Hαn,βn(ψ) converges to I[τβ,∞)Hα,β(ψ) uniformly. If β − ψ has a jump at τβ, then τβn = τβ

and so also I[τβn ,∞) = I[τβ,∞) for sufficiently large n. Thus for large enough n we have that
I[τβn ,∞)Hαn,βn(ψ) = I[τβ,∞)Hαn,βn(ψ) converges uniformly to I[τβ,∞)Hα,β(ψ). If β−ψ is continuous
at τβ, then β(τβ) = ψ(τβ) and so Hα,β(ψ)(τβ) = 0. Because Hα,β(ψ) is right-continuous,
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limn→∞ supτβ≤t≤τβnHα,β(ψ)(t) = 0. Hence

lim
n→∞

∥
∥I[τβn ,∞)Hαn,βn

(
ψ
) − I[τβ,∞)Hα,β

(
ψ
)∥∥

≤ lim
n→∞

∥
∥I[τβn ,∞)Hαn,βn

(
ψ
) − I[τβn ,∞)Hα,β

(
ψ
)∥∥ + lim

n→∞
∥
∥I[τβn ,∞)Hα,β

(
ψ
) − I[τβ,∞)Hα,β

(
ψ
)∥∥

≤ lim
n→∞

∥
∥Hαn,βn

(
ψ
) −Hα,β

(
ψ
)∥∥ + lim

n→∞
sup

τβ≤t≤τβn

∣
∣Hα,β

(
ψ
)
(t)
∣
∣ = 0.

(2.56)

Thus we have established that

lim
n→∞

I[τβn ,∞)Hαn,βn

(
ψ
)
= I[τβ,∞)Hα,β

(
ψ
)
, (2.57)

and therefore

lim
n→∞

[
I{τβn<ταn}I[τβn ,∞)Hαn,βn

(
ψ
) − I{ταn<τβn}I[ταn ,∞)Lαn,βn

(
ψ
)]

= lim
n→∞

I[τβn ,∞)Hαn,βn

(
ψ
)
= I[τβ,∞)Hα,β

(
ψ
)

= I{τβ≤τα}I[τβ,∞)Hα,β

(
ψ
) − I{τα<τβ}I[τα,∞)Lα,β

(
ψ
)
,

(2.58)

where the convergence is uniform.
By a similar argument we show convergence in the case of τα < τβ. We consider now

the final case of τα = τβ <∞. Because inft≥0[βn(t)−α(t)] ≥ n−1, it follows by (2.7), that τβn /= τα.
Analogously we can show that ταn /= τ

β. Hence, for every n,

τβ < τβn+1 ≤ τβn , τα < ταn+1 ≤ ταn . (2.59)

By (2.53) and (2.59), we can find an increasing sequence of positive integers {nk | k = 1, 2, . . .}
such that

τβn1 > ταn2 > τ
βn3 > ταn4 > τ

βn5 > · · · . (2.60)

Let

α′2k+1 = αn2k+2 for k ≥ 0, α′2k = αn2k for k ≥ 1, (2.61)

β′2k+1 = βn2k+1 for k ≥ 1, β′2k = βn2k+1 for k ≥ 1. (2.62)
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Then it follows from (2.60) that

τα′2k+1 < τ
β′2k+1 for every k ≥ 0, τα′2k > τ

β′2k for every k ≥ 1. (2.63)

Therefore, as in (2.58),

lim
k→∞

[
I{τβ′2k+1<τα′2k+1}

I
[τβ

′
2k+1 ,∞)

Hα′2k+1,β
′
2k+1

(
ψ
)
+ I{τα′2k+1<τ

β′2k+1}I[τα′2k+1 ,∞)Lα′2k+1,β
′
2k+1

(
ψ
)
]

= lim
k→∞

I[τα′2k+1 ,∞)Lα′2k+1,β
′
2k+1

(
ψ
)
= I[τα,∞)Lα,β

(
ψ
)
.

(2.64)

Similarly,

lim
k→∞

[
I{τβ′2k <τα′2k }

I
[τβ

′
2k ,∞)

Hα′2k,β2k
(
ψ
)
+ I{τα′2k <τ

β′2k }I[τα′2k ,∞)Lα′2k,β
′
2k

(
ψ
)
]

= lim
k→∞

I
[τβ

′
2k ,∞)

(t)Hα′2k,β
′
2k

(
ψ
)
= I[τβ,∞)(t)Hα,β

(
ψ
)
.

(2.65)

Both limits, in (2.64) and in (2.65), are in fact the uniform limits. Since, by Proposition 2.5 in
[5], limk→∞ Ξα′2k,β′2k(ψ) = Ξα,β(ψ) and limk→∞ Ξα′2k+1,β′2k+1(ψ) = Ξα,β(ψ), the limits in (2.64) and
(2.65)must be the same, that is,

Ξα,β
(
ψ
)
= I[τα,∞)(t)Lα,β

(
ψ
)
(t) = I[τβ,∞)(t)Hα,β

(
ψ
)
(t). (2.66)

Therefore limn→∞ Ξαn,βn(ψ) = Ξα,β(ψ) uniformly, and so (2.50) holds again.

3. Continuity Properties of the ESM in Metrics on D[0,∞)

In [6]we have established a number of continuity properties of the Skorokhodmap under the
assumptions that α, β ∈ D[0,∞) and inft≥0[β − α] > 0. We are going to extend some of these
properties onto the ESM. This will be done in two steps. First we will allow α ∈ D−[0,∞),
β ∈ D+[0,∞), and secondly we will let inft≥0[β(t) − α(t)] ≥ 0.

We begin by observing the following nesting property of the SP and the ESP constrains.
It can be readily verified by checking the conditions of Definions 1.2 and 1.1.

Remark 3.1. Let (φ, η) be the solution of the SP [resp., ESP] for ψ on [α1, β1] for some α1 ∈
D−[0,∞) and β1 ∈ D+[0,∞). Consider another pair of constrains α2 ∈ D−[0,∞) and β2 ∈
D+[0,∞). If α1 ≤ α2 ≤ φ ≤ β2 ≤ β1, then (φ, η) is also the solution of the SP [resp., ESP] for ψ
on [α2, β2].

Instead of checking that the proofs of all the continuity properties in [6] are valid
when the constraining functions α, β are allowed to take infinite values, we develop in the
next lemma a convenient tool for expanding such properties to this more general case.



14 Journal of Probability and Statistics

Lemma 3.2. Let α ∈ D−[0,∞) and β ∈ D+[0,∞) be such that inft≥0[β(t) − α(t)] > 0. For any
ψ ∈ D[0,∞) there is a nonincreasing sequence {αn | n ≥ 1} ⊂ D[0,∞) and a nondecreasing
sequence {βn | n ≥ 1} ⊂ D[0,∞) such that the following conditions hold:

(i) α ≤ αn ≤ Γα,β(ψ) ≤ βn ≤ β for every n ≥ 1;

(ii) inft≥0[βn(t) − αn(t)] = inft≥0[β(t) − α(t)] for every n ≥ 1;

(iii) for every T > 0, there isNT such that for all n ≥NT and all t ∈ [0, T],

αn(t) =

⎧
⎨

⎩

α(t) if t ∈ Dα,

−n if t /∈Dα,
βn(t) =

⎧
⎨

⎩

β(t) if t ∈ Dβ,

n if t /∈Dβ;
(3.1)

(iv) Γαn,βn(ψ) = Γα,β(ψ) for every n ≥ 1.

Proof. Let α ∈ D−[0,∞), β ∈ D+[0,∞) with d = inft≥0[β(t) − α(t)] > 0, let ψ ∈ D[0,∞), and let
φ = Γα,β(ψ). For every n ≥ 1, we define

αn = α ∨ [(−n) ∧ φ ∧ 0.5
(
α + β − d)I{α>−∞, β<∞}

]

= (α ∨ (−n)) ∧ φ ∧ 0.5
(
α + β − d)I{α>−∞, β<∞},

βn = β ∧ [n ∨ φ ∨ 0.5
(
α + β + d

)
I{α>−∞, β<∞}

]

=
(
β ∧ n) ∨ φ ∨ 0.5

(
α + β + d

)
I{α>−∞, β<∞}.

(3.2)

It is easy to verify that for every n ≥ 1,

α ≤ αn+1 ≤ αn ≤ φ ≤ βn ≤ βn+1 ≤ β, (3.3)

αn ≤ α + β − d
2

≤ α + β + d
2

≤ βn on Dα ∩Dβ. (3.4)

Inequalities in (3.3) show the monotonic properties of αn and βn and prove statement (i) as
well.

To prove (ii)we note that, by (3.4), for t ∈ Dα ∩Dβ

βn(t) − αn(t) ≥
α + β + d

2
− α + β − d

2
= d (3.5)

and so (ii) immediately follows.
For T > 0, define

Nα
T = sup

t∈Dα∩[0,T]
|α(t)|, N

β

T = sup
t∈Dβ∩[0,T]

∣∣β(t)
∣∣, N

φ

T = sup
t∈[0,T]

∣∣φ(t)
∣∣, (3.6)

and setNT =Nα
T ∨N

β

T ∨N
φ

T . Let t ∈ [0, T] and let n ≥NT . If β(t) <∞, then βn(t) = (β(t)∧n)∨
φ(t)∨0.5(α(t)+β(t)+d)I{α(t)>−∞} = β(t). If β(t) = ∞, then βn(t) = (β(t)∧n)∨φ(t) = n. Similarly,
we show that αn(t) = α(t) if α(t) > −∞ and αn(t) = −n if α(t) = −∞, which completes the proof
of (iii).
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Finally, (iv) follows from (i) and Remark 3.1.

The limiting process used in the proof of Theorem 2.11 provides a useful technique
of extending properties of the Skorokhod map with separated constraining boundaries onto
the general ESM. In the following proposition we set a formal method that will allow us to
replace the assumption of inft≥0(β(t) − α(t)) > 0 by a weaker assumption of β ≥ α.

Definition 3.3. Consider C, a family of mappings Tα,β from D[0,∞) to D[0,∞) indexed by
a set of pairs (α, β), where α ∈ D−[0,∞), β ∈ D+[0,∞). We will say that C is closed if the
following condition is satisfied: for any sequence Tαn,βn in C if αn

n→∞−−−−−→ α, βn
n→∞−−−−−→ β, and

Tαn,βn(ψ)
n→∞−−−−−→ Tα,β(ψ) for every ψ ∈ D[0,∞) uniformly, then Tα,β ∈ C.

Proposition 3.4. Let C be a family of mappings Tα,β from D[0,∞) to D[0,∞) indexed by a set of
pairs (α, β), where α ∈ D−[0,∞), β ∈ D+[0,∞). If C is closed and contains all Skorokhod maps Γα,β,
such that inft≥0(β(t) − α(t)) > 0, then C contains all extended Skorokhod maps Γα,β, where α ≤ β.

Proof. Suppose that C is closed and contains all Skorokhod maps Γα,β with inft≥0(β(t)−α(t)) >
0. Let Γα,β be an ESM, where α ∈ D−[0,∞), β ∈ D+[0,∞), and α ≤ β. As in the proof of
Theorem 2.11 we can construct sequences {αn | n ≥ 1} ⊂ D−[0,∞) and {βn | n ≥ 1} ⊂ D+[0,∞)
such that αn ↑ α, βn ↓ β, and inft≥0(βn(t) − αn(t)) ≥ 1/n, so that, by Remark 1.3, Γαn,βn is an
SM for every n ≥ 1, and Γαn,βn(ψ) converges to Γα,β(ψ) uniformly for every ψ ∈ D[0,∞). Since
Γαn,βn ∈ C, for every n ≥ 1 we get Γα,β ∈ C.

Theorem 3.5. For any ψ1, ψ2 ∈ D[0,∞), α1, α2 ∈ D−[0,∞), β1, β2 ∈ D+[0,∞) such that α1 ≤ β1
and α2 ≤ β2

∥∥∥Γα1,β1
(
ψ1
) − Γα2,β2

(
ψ2
)∥∥∥ ≤ 4

∥∥ψ1 − ψ2
∥∥ + 3

[‖α1 − α2‖ ∨
∥∥β1 − β2

∥∥]. (3.7)

Proof. Assume first that α1, α2, β1, β2 ∈ D[0,∞), and that the condition inft≥0(βi(t) − αi(t)) > 0
holds for i = 1, 2. By Proposition 4.1 and Remark 4.3 in [6], for any ψ1, ψ2 ∈ D[0,∞),

∥∥Γα1,β1
(
ψ1
) − Γα2,β2

(
ψ2
)∥∥ ≤ 4

∥∥ψ1 − ψ2
∥∥ + 2‖α1 − α2‖ +

[‖α1 − α2‖ ∨
∥∥β1 − β2

∥∥]. (3.8)

By Remark 2.5 in [6], Γα,β(ψ) = −Γ−β,−α(−ψ); therefore applying (3.8) to Γ−β,−α(−ψ), we get

∥∥Γα1,β1
(
ψ1
) − Γα2,β2

(
ψ2
)∥∥ ≤ 4

∥∥ψ1 − ψ2
∥∥ + 2

∥∥β1 − β2
∥∥ +
[‖α1 − α2‖ ∨

∥∥β1 − β2
∥∥]. (3.9)

Combining (3.8) and (3.9), we get that (3.7) holds for Skorokhodmaps when the constraining
boundaries take finite values and are separated.
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Suppose now that αi ∈ D−[0,∞) and βi ∈ D+[0,∞) for i = 1, 2. We can find sequences
{αni | n ≥ 1}, {βni | n ≥ 1} ⊂ D[0,∞), i = 1, 2, satisfying (i)–(iv) of Lemma 3.2 and we already
know that for every n ≥ 1

∥
∥
∥Γαn1 ,βn1

(
ψ1
) − Γαn2 ,βn2

(
ψ2
)∥∥
∥ ≤ 4

∥
∥ψ1 − ψ2

∥
∥ + 3

[∥∥αn1 − αn2
∥
∥ ∨ ∥∥βn1 − βn2

∥
∥]. (3.10)

If Dα1 /=Dα2 or Dβ1 /=Dβ2 then ‖α1 − α2‖ = ∞, or ‖β1 − β2‖ = ∞ and so (3.7) holds trivially. We
can assume therefore that Dα1 = Dα2 and Dβ1 = Dβ2 . By part (iii) of Lemma 3.2, ‖αn1 − αn2‖ =
‖α1 − α2‖ and ‖βn1 − βn2‖ = ‖β1 − β2‖ for large enough n. On the other hand, by part (iv) of
Lemma 3.2, ‖Γαn1 ,βn1 (ψ1)−Γαn2 ,βn2 (ψ2)‖ = ‖Γα1,β1(ψ1)−Γα2,β2(ψ2)‖. Thus, for large n, we can replace
αn1 , β

n
1 , α

n
2 , and βn2 in (3.10) by α1, β1, α2, and β2, and so (3.9) holds for Skorokhod maps with

separated constraining boundaries.
Next, we are going to relax the assumption that αi, βi are separated for i = 1, 2. For a

fixed α1 ∈ D−[0,∞) and β1 ∈ D+[0,∞) satisfying inft≥0[β1(t) − α1(t)] > 0, consider a family
Cα1,β1 of mappings Tα2,β2 : D[0,∞) → D[0,∞) indexed by pairs (α2, β2), where α2 ∈ D−[0,∞)
and β2 ∈ D+[0,∞) and satisfying for every ψ1, ψ2 ∈ D[0,∞)

∥∥Γα1,β1
(
ψ1
) − Tα2,β2

(
ψ2
)∥∥ ≤ 4

∥∥ψ1 − ψ2
∥∥ + 3

[‖α1 − α2‖ ∨
∥∥β1 − β2

∥∥]. (3.11)

We have already established that Γα2,β2 ∈ Cα1,β1 whenever inft≥0[β2(t) − α2(t)] > 0. It is also
easy to verify that Cα1,β1 is closed and so, by Proposition 3.4, Γα2,β2 ∈ Cα1,β1 for any α2 ≤ β2.
Thus we have shown so far that (3.7) holds whenever inft≥0[β1(t) − α1(t)] > 0.

Finally, for a fixed α2 ∈ D−[0,∞) and β2 ∈ D+[0,∞) such that α2 ≤ β2, let Cα2,β2
be a family of mappings Tα1,β1 : D[0,∞) → D[0,∞) indexed by pairs (α1, β1), where
α1 ∈ D−[0,∞) and β1 ∈ D+[0,∞) and satisfying for every ψ1, ψ2 ∈ D[0,∞)

∥∥∥Tα1,β1
(
ψ1
) − Γα2,β2

(
ψ2
)∥∥∥ ≤ 4

∥∥ψ1 − ψ2
∥∥ + 3

[‖α1 − α2‖ ∨
∥∥β1 − β2

∥∥]. (3.12)

Then Cα2,β2 contains all Γα1,β1 with inft≥0[β1(t) − α1(t)] > 0, and it is closed. Applying again
Proposition 3.4, we obtain that Γα1,β1 ∈ Cα2,β2 for any α1 ≤ β1, and so the proof of (3.7) is
complete.

Applying Theorem 3.5 in the special case of α1 = α2 and β1 = β2, we can get the
Lipschitz continuity of the ESM with the Lipschitz constant 4. However, reapplying our
techniques based on Lemma 3.2 and Proposition 3.4, we will obtain the following stronger
result, which is a generalization of Proposition 4.6 in [6].

Theorem 3.6 (Lipschitz continuity). Let α ∈ D−[0,∞), β ∈ D+[0,∞) be such that α ≤ β. Then
for any ψ1, ψ2 ∈ D[0,∞)

∥∥∥Γα,β
(
ψ1
) − Γα,β

(
ψ2
)∥∥∥ ≤ 2

∥∥ψ1 − ψ2
∥∥. (3.13)

Proof. By Proposition 4.6 in [6], (3.13) holds for any α, β ∈ D[0,∞) such that inft≥0(β(t) −
α(t)) > 0. If α ∈ D−[0,∞) and β ∈ D+[0,∞) then, as in the proof of Theorem 3.5, we find
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sequences {αn | n ≥ 1}, {βn | n ≥ 1} ⊂ D[0,∞), i = 1, 2, satisfying (i)–(iv) of Lemma 3.2. By
part (iv) of Lemma 3.2, for any positive integer n,

∥
∥Γα,β

(
ψ1
) − Γα,β

(
ψ2
)∥∥ =

∥
∥Γαn,βn

(
ψ1
) − Γαn,βn

(
ψ2
)∥∥ ≤ 2

∥
∥ψ1 − ψ2

∥
∥. (3.14)

Finally, to relax the assumption of inft≥0[β1(t) − α1(t)] > 0, we apply Proposition 3.4
to the family C of mappings Tα,β : D[0,∞) → D[0,∞) indexed by pairs (α, β), where α ∈
D−[0,∞) and β ∈ D+[0,∞) and satisfying

∥
∥Tα,β

(
ψ1
) − Tα,β

(
ψ2
)∥∥ ≤ 2

∥
∥ψ1 − ψ2

∥
∥. (3.15)

Since C contains all Γα,β with inft≥0[β(t) − α(t)] > 0 and it is closed, we conclude, by
Proposition 3.4, that Cmust contain all Γα,β with β ≥ α. Thus, (3.13) holds for every ESM.

We next examine the continuity of the ESM under the Skorokhod J1 metric d0. The
Skorokhod metric d0 on D[0,∞) is defined by

d0
(
f, g
)
= inf

λ

(‖λ − I‖ ∨ ∥∥f − g ◦ λ∥∥), (3.16)

where the infimum is over all strictly increasing continuous bijections of [0,∞).
We are going to need the following scaling property of the ESM.

Remark 3.7. Let ψ ∈ D[0,∞), α ∈ D−[0,∞), and β ∈ D+[0,∞) be such that α ≤ β. For any
strictly increasing continuous bijection λ of [0,∞)

Γα,β
(
ψ
) ◦ λ = Γα◦λ,β◦λ

(
ψ ◦ λ). (3.17)

Proof. Using formula (2.42)we can verify thatHα,β(ψ) ◦ λ = Hα◦λ,β◦λ(ψ ◦ λ). Then from (2.44)
we obtain Lα,β(ψ) ◦ λ = Lα◦λ,β◦λ(ψ ◦ λ). Using (2.2), we can verify that λ−1(τα(ψ)) = τα◦λ(ψ ◦ λ)
and λ−1(τβ(ψ)) = τβ◦λ(ψ◦λ), which in turn implies that I[τα(ψ),∞)◦λ = I[τα◦λ(ψ◦λ),∞) and I[τβ(ψ),∞)◦
λ = I[τβ◦λ(ψ◦λ),∞). Then by (2.50) we obtain Ξα,β(ψ) ◦ λ = Ξα◦λ,β◦λ(ψ ◦ λ), and so, applying (1.4),
we conclude (3.17).

Theorem 3.8. For any ψ1, ψ2 ∈ D[0,∞), α ∈ D−[0,∞), β ∈ D+[0,∞) such that α ≤ β

d0
(
Γα,β
(
ψ1
)
,Γα,β

(
ψ2
)) ≤ 4d0

(
ψ1, ψ2

)
+ 3sup

r,s>0
|α(r) − α(s)| ∨ sup

r,s>0

∣∣β(r) − β(s)∣∣. (3.18)
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Proof. Let λ be any strictly increasing continuous bijection of [0,∞). By (3.17) and (3.13),

d0
(
Γα,β
(
ψ1
)
,Γα,β

(
ψ2
))

≤ ‖λ − I‖ ∨
∥
∥
∥Γα,β

(
ψ1
) − Γα,β

(
ψ2
) ◦ λ

∥
∥
∥ = ‖λ − I‖ ∨

∥
∥
∥Γα,β

(
ψ1
) − Γα◦λ,β◦λ

(
ψ2 ◦ λ

)∥∥
∥

≤ ‖λ − I‖ ∨ [4∥∥ψ1 − ψ2 ◦ λ
∥
∥ + 3

(‖α − α ◦ λ‖ ∨ ∥∥β − β ◦ λ∥∥)]

≤ ‖λ − I‖ ∨ 4
∥
∥ψ1 − ψ2 ◦ λ

∥
∥ + 3

(‖α − α ◦ λ‖ ∨ ∥∥β − β ◦ λ∥∥)

≤ 4
(‖λ − I‖ ∨ ∥∥ψ1 − ψ2 ◦ λ

∥
∥) + 3

(

sup
r,s>0

|α(r) − α(s)| ∨ sup
r,s>0

∣
∣β(r) − β(s)∣∣

)

.

(3.19)

Taking infλ, we obtain (3.18).

Note that in cases when Dα or Dβ is a proper subset of [0,∞) the oscillation terms
supr,s>0|α(r)− α(s)| or supr,s>0|β(r)− β(s)| become infinite thus rendering the upper bound of
(3.18) useless.

Remark 3.9. In general Γα,β is not continuous in d0 metric on D[0,∞].

Proof. Example 4.1 in [6] shows how to construct α, β, ψ1, and ψ2 so that d0(ψ1, ψ2) is
arbitrarily small while d0(Γα,β(ψ1),Γα,β(ψ2)) is arbitrarily large. Thus Γα,β is not continuous
in d0 metric and therefore neither is Γα,β.

In fact the same example can be used to demonstrate that in general Γα,β is not
continuous in the SkorokhodM1 metric as indicated in Example 4.2 of [6].
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