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We study the valuation of American-type derivatives in the stochastic volatility model of
Barndorff-Nielsen and Shephard (2001). We characterize the value of such derivatives as the
unique viscosity solution of an integral-partial differential equation when the payoff function
satisfies a Lipschitz condition.

1. Introduction

In their seminal paper, Barndorff-Nielsen and Shephard [1] introduced a model that has
been shown to describe particularly well financial assets for which log-returns have heavy
tail distributions and display long-range dependence. In this model, the volatility of the
asset is described by an Ornstein-Uhlenbeck-type process with a pure jump Lévy process
acting as the background driving process. An empirical study was made in [1] and showed
from exchange rate data that suitable distributions for the Lévy process are the so-called
generalized inverse gaussian distributions from which well-understood examples are the
normal inverse gaussian (studied in [2]) and the gamma distribution.

The BNS model has been studied from different points of view. Benth et al. [3]
considered the problem of optimal portfolio selection. Nicolato and Vernados [4] have
studied European option pricing and described the set of equivalent martingale measures
under this model. To evaluate these types of options, the authors propose the transform-
based method and a simple Monte Carlo method.

In this paper, we consider the pricing of American options with the use of integral-
partial differential equations (IPDEs). Although our technique can be simplified and used
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for European options and certain path-dependent options such as barrier options (see [5] for
a definition and examples), we will mainly concentrate on American type derivatives which
have not been studied for this model. The main difficulty in this case is the lack of Lipschitz
continuity of some of the coefficients of the IPDE.

The question of whether observed option prices can be calibrated and shown to
reproduce stylized features such as smiles using thismodel is of great practical and theoretical
relevance. However the majority of exchange-traded options are of the American type and
there do not exist any established numerical methods to compute option prices for this model.
One could use Monte-Carlo methods; however it is generally more efficient to characterize
the option value function as a solution of a variational inequality and to discretize this
inequality in order to get an approximation of the value function. Whereas the existence
of a solution to the IPDE suggests the use of finite difference schemes, the uniqueness of
the solution is a particularly crucial property which insures the convergence of any such
numerical scheme to the correct value function. The characterization of the value function
as the unique solution of an IPDE is thus the first step to achieve this goal. The design and
implementation of a numerical scheme are beyond the scope of this paper; however we refer
the reader to the paper of Levendorskiı̆ et al. [6] and references therein for some ideas on how
this problem could be approached.

The connection between viscosity solutions of IPDEs and Lévy processes has been
studied in the literature by various authors. Pham [7] considered a general stopping time
problem of a controlled jump diffusion processes. However, his results do not apply here
because the Lipschitz condition on the coefficients is not satisfied in our current setting. Cont
and Voltchkova [5] studied barrier options and Barles et al. [8] established the connection
between viscosity solutions and backward stochastic differential equations. In these papers,
the stock price considered is modeled by a stochastic differential equation with jumps driven
by a Lévy process. The main difference between the BNS model and these models is the
presence of stochastic volatility. However, we will see that the lack of smoothness of the
solution to our IPDEwill also lead us to consider the notion of viscosity solutions as presented
in [9].

The rest of the paper is organized as follows. In Section 2, we present the model and
recall the results of Nicolato and Vernados [4] regarding the set of equivalent martingale
measures. Section 3 is devoted to the continuity of the value function. In Section 4, we prove
that the value function is the viscosity solution of the associated IPDE, and the uniqueness of
the solution is presented in Section 5.

2. Lévy Processes and the BNS Model

Let T > 0.We consider the stochastic volatility model of Barndorff-Nielsen and Shephard [1]
for the price process of an asset, denoted by S = {St}0≤t≤T and defined on a filtered probability
space (Ω,F, {Ft}0≤t≤T ,P). We thus assume that the log-returnXt = log(St) of the asset satisfies
the following stochastic differential equation:

dXt =
(
μ + βVt

)
dt +

√
VtdBt + ρdZλt (2.1)

with

dVt = −λVt dt + dZλt (2.2)



Journal of Probability and Statistics 3

in which μ, β ∈ R, λ > 0 and ρ ≤ 0. B = {Bt}0≤t≤T is a Brownian motion, and Z = {Zt}0≤t≤T is
the background driving Lévy process (BDLP) under the physical measure P. In this model,
Z has no gaussian component and the increments are positive. Z and B are assumed to
be independent, and F = {Ft}0≤t≤T is the usual filtration generated by the pair (B,Z). The
positivity of the jumps of Z insure that the process V is always positive. We denote byW the
Lévy measure of Z.

Suppose that Q is a probability measure equivalent to P under which S is a martingale.
We are interested in American-type derivatives of the form

Ut = ess sup
τ∈TT ,τ≥t

EQ

[
e−r(τ−t)h(Xτ) | Ft

]
(2.3)

in which h is the payoff function, and TT is the set of all stopping times with values less or
equal to T . Since {Xt}0≤t≤T and {Vt}0≤t≤T are Markov processes,Ut can be written as a function
of (x, v, t), say,

Ut = u(x, v, t) = sup
τ∈TT−t

EQ

(
e−rτh

(
Xx,v
τ

))
(2.4)

in which (Xx,v
t )t≥0 is the process X for which X0 = x and V0 = v. We also denote by (V v

t )t≥0
the process V starting at V0 = v and at t = 0.

2.1. Equivalent Martingale Measures

We start by summarizing the results of Nicolato and Vernados [4] concerning the set of
equivalent martingale measures. In order to do so, we define the set

Y′ =

{

y : [0,∞) −→ [0,∞);
∫∞

0

(√
y(x) − 1

)2

w(x)dx <∞
}

(2.5)

and M′ as the set of all equivalent martingale measures Q such that Z is still a Lévy process
under Q independent of B, possibly with a different marginal distribution.

As in [4], we impose the following conditions on the process Z:

(C1) the process Z is given by the characteristic triplet (0, 0,W) so that the cumulant
transform is given by

κ(θ) = log
{
E
[
exp(θZ1)

]}
=
∫∞

0

(
eθz − 1

)
W(dz), (2.6)

for values of θ, for which this expression is defined;

(C2) θ̂ = sup{θ ∈ R | κ(θ) <∞} > 0;

(C3) limθ→ θ̂ κ(θ) = ∞.
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Remark 2.1. Assumption (C2) implies that there exists θ̂0 > 0 such that

∫∞

0

(
eθ̂0z − 1

)
W(dz) <∞. (2.7)

For z > 0 and n ≥ 1, we have 0 < zn ≤ (n!/θ̂n0 )(e
θ̂0z − 1), so that μn :=

∫∞
0 znW(dz) <

∞. Furthermore, Assumption (C2) is a sufficient condition for the process Z to have finite
moments of all orders.

The following theorem was proved in [4].

Theorem 2.2. For all Q ∈ M′, there exists y ∈ Y′ such that

dXt =
(
r − λκy

(
ρ
)
− 1
2
Vt

)
dt +

√
VtdB

Q

t + ρdZλt, (2.8)

in which

κy(θ) =
∫∞

0

(
eθx − 1

)
y(x)w(x)dx, (2.9)

and BQ

t = Bt −
∫ t
0(
√
Vs)

−1(r − μ − (β + 1/2)Vs − λκy(ρ))ds and Zλt are, respectively, a Brownian
motion and a Lévy process under Q.wy(x) = y(x)w(x) is the Lévy density of Z1 under Q and κy(θ)
is the cumulant function.

In the remaining part of this paper, all expectations will be with respect to a chosen
EMM Q, unless specified otherwise, and W and B will denote the associated Lévy measure
and the Brownian motion associated to Q.

Let O = R × R+ × [0, T) and assume for a moment that u is Lipschitz in (x, v) and

u ∈ C2,1,1(O), (2.10)

that is u is differentiable with respect to v and t, and twice differentiable with respect to x.
We can then apply Itô’s formula toU to find

dUt =
(
∂u

∂t
+L[u]

)
dt +

∂u

∂x

√
VtdBt + dVt, (2.11)

in which

L[u] =
(
r − 1

2
v − λκy

(
ρ
)
+ λρμ1

)
∂u

∂x
− λ

(
v − μ1

)∂u
∂v

+
1
2
v
∂2u

∂x2

+ λ
∫∞

0

(
u
(
x + ρz, v + z, t

)
− u(x,v, t) −

(
ρz
∂u

∂x
+ z

∂u

∂v

))
W(dz),

(2.12)
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and Vt is the Q-martingale given by

dVt =
∫∞

0

(
u
(
Xt− + ρz, Vt− + z, t

)
− u(Xt−, Vt−, t)

−
(
ρz
∂u

∂x
(Xt−, Vt−, t) + z

∂u

∂v
(Xt−, Vt−, t)

))
Ñ(dz, λdt)

+
∫∞

0

(
ρz
∂u

∂x
(Xt−, Vt−, t) + z

∂u

∂v
(Xt−, Vt−, t)

)
Ñ(dz, λdt)

(2.13)

in which Ñ(dz, dt) = N(dz, dt) − W(dz)dt, and N(dz, dt) is the random measure of the
process Z. Since

∫ t
0(∂u/∂x)

√
VtdBt is a Q-martingale, if it can be shown that e−rtUt is also a

martingale, we can then expect u to satisfy the following integral-partial differential equation
(IPDE):

∂u

∂t
(x, v, t) +L[u](x, v, t) − ru(x, v, t) = 0 (2.14)

if u(x, v, t) > h(x). Otherwise u(x, v, t) = h(x) and this IPDE can be written as

max
(
∂u

∂t
(x, v, t) +L[u](x, v, t) − ru(x, v, t), h(x) − u(x, v, t)

)
= 0. (2.15)

It is clear also that the function satisfies

u(x, v, t) = h(x) for v = 0 or t = T. (2.16)

Condition (2.10) is in fact very restrictive and most of the time not satisfied. Despite
this problem, we will see that u can still be regarded as a solution of this equation in a weaker
sense.

3. Continuity of the Value Function

Recall the definition of the value of an American option with payoff h:

u(x, v, t) = sup
τ∈TT−t

E
(
e−rτh

(
Xx,v
τ

))
. (3.1)

In the rest of this paper, we will assume that h is positive and satisfies the Lipschitz condition,
in other words ∃K > 0 such that for all (x1, x2) ∈ R

2

|h(x1) − h(x2)| ≤ K|x1 − x2|. (3.2)

For instance, the payoff function for an American put with strike X̃ > 0 is h(x) = max(X̃ −
exp(x), 0) and satisfies this condition.
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Our goal is to show that the function u satisfies the IPDE (2.15) in some weak sense. In
order to give meaning to this IPDE for a function u that does not satisfy basic differentiability
conditions, we introduce the idea of viscosity solutions following Crandall and Lions [10].
Let W be the set of functions f : O → R that satisfy

sup
(x,v),(x′,v′)∈R×R+

∣
∣f(x, v, t) − f(x′, v′, t)

∣
∣

1 + |x − x′| + |v − v′| <∞ ∀t ∈ [0, T]. (3.3)

Definition 3.1. The function u ∈ C0(O)∩W is a viscosity subsolution (supersolution) of (2.15)-
(2.16) if for all (x, v, t) ∈ O and for all ψ ∈ W ∩ C2,1,1(O) such that

(i) ψ(x, v, t) = u(x, v, t) and

(ii) for all (x′, v′, t′) ∈ O ψ(x′, v′, t′) ≥ u(x′, v′, t′) (≤),

max
(
∂ψ(x, v, t)

∂t
+L

[
ψ
]
(x, v, t) − rψ(x, v, t);h(x) − u(x, v, t)

)
≥ 0 (≤), (3.4)

u(x, v, t) = h(x) for v = 0 or t = T. (3.5)

The function u is a viscosity solution if it is both subsolution and supersolution.

Remark 3.2. As noted in [5, page 317] the condition ψ ∈ W is sufficient to have a well-defined
integral term in L[ψ]. In fact if ψ ∈ W ∩ C2,1,1, then

∫∞

0

(
ψ
(
x + ρz, v + z, t

)
− ψ(x, v, t) −

(
ρz
∂ψ

∂x
(x, v, t) + z

∂ψ

∂v
(x, v, t)

))
W(dz)

≤
∫

z<η

Cz2W(dz) +
∫∞

η

C(1 + |z|)W(dz) <∞
(3.6)

for any η > 0.

An important property of viscosity solutions is the continuity of the function. It is the
content of the following proposition.

Proposition 3.3. When h satisfies the Lipschitz condition (3.2), the function u is continuous and in
W.

Proof. In this proof, we will assume for simplicity that r = 0. The generalization to r > 0 is
straightforward. Throughout, C is a positive constant that can change from line to line.

We start by showing the continuity of uwith respect to (x, v), uniformly in t. We have
the following representation of the volatility process:

V v
t = ve−λt +

∫ t

0
e−λsdZλs. (3.7)
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We define the integrated variance process started with V0 = v by

V v,∗
t =

∫ t

0
V v
s ds. (3.8)

By (2.2), we find that

V v
t dt =

1
λ

(
−dV v

t + dZλt

)
, (3.9)

so that we have the following representation of the integrated variance process

V v,∗
t =

1
λ

(
v − V v

t

)
+
1
λ

∫ t

0
dZλs (3.10)

= vε(t) +
∫ t

0
ε(s)dZλs, (3.11)

in which ε(t) = (1 − e−λt)/λ.
We also have the following identities:

Xx,v
t = x − λκ

(
ρ
)
t − 1

2
V v,∗
t +

∫ t

0

√
V v
s dBs + ρZλt,

ΔVt := V v′

t − V v
t = Δve−λt,

ΔV ∗
t := V v′,∗

t − V v,∗
t = Δvε(t),

ΔXt := X
x′,v′

t −Xx,v
t = x′ − x − 1

2
Δvε(t) +

∫ t

0

(√
V v′
s −

√
V v
s

)
dBs

:= Δx − 1
2
Δvε(t) +Mv,v′

t ,

(3.12)

with Δx = x′ − x and Δv = v′ − v.
Using the Lipschitz condition on h, we obtain

∣∣u
(
x′, v′, t

)
− u(x, v, t)

∣∣ =

∣∣∣∣∣
sup
τ∈TT−t

Eh
(
Xx′,v′

τ

)
− sup
τ∈TT−t

Eh
(
Xx,v
τ

)
∣∣∣∣∣

≤ sup
τ∈TT−t

E
∣∣∣h
(
Xx′,v′

τ

)
− h

(
Xx,v
τ

)∣∣∣

≤ C sup
τ∈TT−t

E
∣∣∣Xx′,v′

τ −Xx,v
τ

∣∣∣.

(3.13)
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Then,

∣
∣u
(
x′, v′, t

)
− u(x, v, t)

∣
∣ ≤ C

(

|Δx| + |Δv| + sup
τ∈TT−t

E
∣
∣
∣Mv,v′

τ

∣
∣
∣

)

. (3.14)

Letting G = σ({Zs}0≤s≤T ), the σ-field generated by the BDLP Z up to the maturity T ,
we find that {Mv,v′

t }t≥0 is a G∨Ft-martingale. Thus, {|Mv,v′

t |}t≥0 is a G∨Ft-submartingale and
Doob’s theorem applies. In other words,

sup
τ∈TT−t

E
∣
∣
∣Mv,v′

τ

∣
∣
∣ ≤ E

(

sup
τ∈TT−t

E
(∣∣
∣Mv,v′

τ

∣
∣
∣ | G

))

≤ E
(
E
(∣∣∣Mv,v′

T−t

∣∣∣ | G
))

≤
√

E
(
E
((

Mv,v′

T−t

)2
| G

))
.

(3.15)

Also,

E
((

Mv,v′

T−t

)2
| G

)
=
∫T−t

0

(
V v′

s − 2
√
V v′
s V

v
s + V v

s

)
ds

=
∫T−t

0
Δve−λsds + 2

∫T−t

0
V v
s −

√
(V v

s )
2 + V v

s Δve−λsds

=
∫T−t

0
Δve−λsds + 2

∫T−t

0

−V v
s Δve

−λs

V v
s +

√
(V v

s )
2 + V v

s Δve−λs
ds

≤
∫T−t

0
3|Δv|e−λsds = 3|Δv|ε(T − t) ≤ 3|Δv|T.

(3.16)

And thus we proved the continuity of u in (x, v) uniformly in t since

∣∣u
(
x′, v′, t

)
− u(x, v, t)

∣∣ ≤ C
(
|Δx| + |Δv| +

√
|Δv|

)
. (3.17)

In particular u ∈ W because of the following inequality:

∣∣u
(
x′, v′, t

)
− u(x, v, t)

∣∣ ≤ C
(
|Δx| + |Δv| +

√
|Δv|

)
≤ 2C(1 + |Δx| + |Δv|). (3.18)

The next step of the proof is to show that

E sup
t≤s≤t′

∣∣Xx,v
s −Xx,v

t

∣∣ −→ 0, E sup
t≤s≤t′

∣∣V v
s − V v

t

∣∣ −→ 0 (3.19)
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as |t − t′| → 0. This is easily obtained by first observing that

E sup
t≤s≤t′

∣
∣Xx,v

s −Xx,v
t

∣
∣ ≤ 1

2
E sup
t≤s≤t′

∣
∣V v,∗

s − V v,∗
t

∣
∣ + E sup

t≤s≤t′

∣
∣
∣
∣

∫s

t

√
V v
y dBy

∣
∣
∣
∣ + ρE sup

t≤s≤t′
|Zλs − Zλt|

≤ 1
2
v
∣
∣ε
(
t′
)
− ε(t)

∣
∣ + E

∣
∣
∣
∣
∣

∫ t′

t

e−λ(t
′−s)dZλs

∣
∣
∣
∣
∣

+ C
√
E
∣
∣V v,∗

t′ − V v,∗
t

∣
∣ + ρE|Zλt′ − Zλt|

≤ 1
2
v
∣
∣ε
(
t′
)
− ε(t)

∣
∣ +

(
1 + ρ

)
E|Zλt′ − Zλt|

+

√
1
2
v|ε(t′) − ε(t)| + E|Zλt′ − Zλt|.

(3.20)

As for the process V ,

E sup
t≤s≤t′

∣∣V v
s − V v

t

∣∣ ≤
∣∣∣1 − e−λ(t′−t)

∣∣∣E
∣∣V v

t

∣∣ + E

∣∣∣∣∣

∫ t′

t

e−λ(t
′−s)dZλs

∣∣∣∣∣

≤
∣∣∣1 − e−λ(t′−t)

∣∣∣E
∣∣V v

t

∣∣ + E|Zλt′ − Zλt|.

(3.21)

Since V v
t ≤ v + ZλT for all t ≤ T ,

E sup
t≤s≤t′

∣∣V v
s − V v

t

∣∣ ≤ C(v + EZλT )
∣∣t′ − t

∣∣ + E|Zλt′ − Zλt|, (3.22)

and we need to show that E|Zλt′ − Zλt| → 0 when |t′ − t| → 0.
We mentioned earlier that condition (C2) implies that the moments of Zt are finite

for all orders. Thus Z is uniformly integrable. Since Z is also continuous in probability, it is
continuous in L1, and the conclusion follows.

Let us now show continuity with respect to time. Let 0 ≤ t ≤ t′ ≤ T . Take τ ∈ TT−t and
define τ ′ = τ ∧ (T − t′). Then,

E
(
e−rτh

(
Xx,v
τ

))
= E

(
e−rτ

′
h
(
Xx,v
τ ′

))
+ E

(
e−rτh

(
Xx,v
τ

)
− e−rτ ′h

(
Xx,v
τ ′

))

≤ u
(
x, v, t′

)
+ E

(
e−rτh

(
Xx,v
τ

)
− e−rτ ′h

(
Xx,v
τ ′

))
.

(3.23)
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From this inequality, we readily find that

∣
∣u
(
x, v, t′

)
− u(x, v, t)

∣
∣ ≤ E sup

T−t′≤s≤T−t

∣
∣Xx,v

s −Xx,v
T−t′

∣
∣

(3.24)

which converges to zero as |t − t′| → 0.
Global continuity follows from the following inequality:

∣∣u
(
x′, v′, t′

)
− u(x, v, t)

∣∣ ≤
∣∣u
(
x′, v′, t′

)
− u

(
x, v, t′

)∣∣ +
∣∣u
(
x, v, t′

)
− u(x, v, t)

∣∣ (3.25)

and the fact that the first bound is independent of t′.

4. Viscosity Solutions

This section is devoted to the viscosity solution property of the value function u. In order to
prove that u is a viscosity solution of (2.15), we need the following dynamic programming
principle. It is a consequence of the martingale property of the Snell envelope stopped before
its optimal stopping time and it is the key property needed in the proof of the subsolution
property.

Lemma 4.1. Let ε > 0, (x, v, t) ∈ O, and define the stopping time

τε = inf
{
0 ≤ s ≤ T − t | e−rsu

(
Xx,v
s , V v

s , t + s
)
− ε ≤ e−rsh

(
Xx,v
s

)}
. (4.1)

Then,

u(x, v, t) = E
[
e−rτ

ε

u
(
Xx,v
τε , V

v
τε , t + τ

ε)
]
. (4.2)

Proof. For some constant C, we have that

nE
(∣∣1{h(Xτ )≥n}h(Xτ)

∣∣) ≤ E
(
h(Xτ)2

)
≤ C + CE

(
X2
τ

)
(4.3)

for all τ ∈ TT . We know that Xτ = X0 + rτ + V ∗
τ +

∫τ
0

√
VsdBs + ρZλτ and that 0 ≤ V ∗

τ ≤ V ∗
T ≤

(1/λ)(V0+ZλT ) from (3.11). As a result,X2
τ ≤ 4(X0+rT)

2 + 4(1/λ2)(V0+ZλT )
2 + 4(

∫τ
0

√
VsdBs)

2

+ 4ρ2Z2
λT ≤ C + CZ2

λT + C(
∫τ
0

√
VsdBs)

2
for some constant C large enough. Hence EX2

τ ≤
C+CEZ2

λT
+CEV ∗

T <∞ for all τ ∈ TT .As a consequence, supτ∈TT
E(|1{h(Xτ )≥n}h(Xτ)|) converges

to 0 as n grows to infinity, that is, the collection {e−rτh(Xτ) : τ ∈ TT} is uniformly integrable.
Hence we find that the process (e−rsh(Xs))0≤s≤T is of Class D, and we can apply the results of
[11] to get the result.

The proof of the solution property of umakes use of the following lemma.

Lemma 4.2. Let t ≤ T and ε > 0. Suppose that u(x, v, t) − h(x) > ε. Then Q(τε < s) → 0 when
s → 0.
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Proof. Let η > ε such that η < u(x, v, t) − h(x).
First we show that e−rτ

ε
u(Xx,v

τε , V
v
τε , τ

ε) − e−rτ
ε
h(Xx,v

τε ) ≤ ε almost surely. For some
sequence sn ↓ τε, e−rsnu(Xx,v

sn , V
v
sn , sn) ≤ e−rsnh(Xx,v

sn ) + ε for n large enough. In this case, since
(Xx,v

sn , V
v
sn) converges to (Xx,v

τε , V
v
τε) inL1, we can take a subsequence if necessary and find that

|u(Xx,v
sn , V

v
sn , sn) − u(X

x,v
τε , V

v
τε , τε)| → 0 and h(Xx,v

sn ) → h(Xx,v
τε ) a.s. with n → ∞. Taking the

limit, we find that

e−rτεu
(
Xx,v
τε , V

v
τε , τ

ε) = lim
n→∞

e−rsnu
(
Xx,v
sn , V

v
sn , sn

)

≤ lim
n→∞

e−rsnh
(
Xx,v
sn

)
+ ε

= e−rτεh
(
Xx,v
τε

)
+ ε a.s.

(4.4)

Since u is continuous with respect to t, we find that η < e−rsu(x, v, t + s) − e−rsh(x) for
s small enough. Then, for s small enough,

Q(τε < s) ≤ Q

(
e−rτ

ε

(u(x, v, τε) − h(x)) + e−rτε
(
h
(
Xx,v
τε

)
− u

(
Xx,v
τε , V

v
τε , τ

ε)) > η − ε
)

≤ Q

(
e−rτ

ε∣∣u(x, v, τε) − u
(
Xx,v
τε , V

v
τε , τ

ε)∣∣ + e−rτ
ε∣∣h

(
Xx,v
τε

)
− h(x)

∣∣ > η − ε
)

≤ Q(|V v
τε − v| > δ2) + Q

(∣∣Xx,v
τε − x

∣∣ > δ3
)

(4.5)

for some constants δ2 > 0 and δ3 > 0. By the continuity in probability of the processes X and
V , we know that this expression goes to zero when s → 0.

We can now show that u is a viscosity solution.

Theorem 4.3. When h satisfies the Lipschitz condition (3.2), u is a viscosity solution of IPDE (2.15).

Proof. We already know that u is continuous and in W.
Let us start by showing that u is a supersolution of (2.15). Let (x, v, t) ∈ O and ψ satisfy

the conditions given in the above definition of supersolutions. By definition, for any Δt > 0,

0 ≥ e−rΔtE
(
u
(
Xx,v

Δt , V
v
Δt, t + Δt

))
− u(x, v, t)

≥ E
(
e−rΔtψ

(
Xx,v

Δt , V
v
Δt, t + Δt

)
− ψ

(
Xx,v

0 , V v
0 , t

))

= E

(∫Δt

0
e−rs

(
−rψ +

∂ψ

∂t
+L

[
ψ
]
)
(
Xx,v
s , V v

s , t + s
)
ds

+
∫Δt

0

∂ψ

∂x

(
Xx,v
s , V v

s , t + s
)
e−rs

√
V v
s dBs + Ψx,v

Δt −Ψx,v
0

)

,

(4.6)
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in which Ψx,v is the martingale defined by

dΨx,v
s = e−rs

∫∞

0

(
ψ
(
Xx,v
s− + ρz, V v

s− + z, t + s
)
− ψ

(
Xx,v
s− , V

v
s−, t + s

)

−z
(
ρ
∂ψ

∂x
+
∂ψ

∂v

)
(
Xx,v
s− , V

v
s−, t + s

)
)
Ñ(dz, λds)

+ e−rs
∫∞

0
z

(
ρ
∂ψ

∂x
+
∂ψ

∂v

)
(
Xx,v
s− , V

v
s−, t + s

)
Ñ(dz, λds).

(4.7)

Since

∫Δt

0

∂ψ

∂x

(
Xx,v
s , V v

s , t + s
)
e−rs

√
V v
s dBs (4.8)

is also a martingale, we have the following inequality:

0 ≥
∫Δt

0
E
(
e−rs

(
−rψ +

∂ψ

∂t
+L

[
ψ
]
)
(
Xx,v
s , V v

s , t + s
)
)
ds, (4.9)

in other words, dividing by Δt and taking the limit as Δt → 0,

0 ≥ −rψ(x, v, t) +
∂ψ

∂t
(x, v, t) +L

[
ψ
]
(x, v, t). (4.10)

Since, by definition, u(x, v, t) ≥ h(x), u satisfies (2.15). To prove that u is a viscosity
subsolution of (2.15), let (x, v, t) ∈ O and ψ satisfy the conditions of the above definition
for subsolutions. If u(x, v, t) = h(x), inequality (3.4) is satisfied. Otherwise, let

0 < ε < u(x, v, t) − h(x). (4.11)

We know from Lemma 4.1 that

0 = E
(
e−r(Δt∧τ

ε)u
(
Xx,v

Δt∧τε , V
v
Δt∧τε , t + (Δt ∧ τε)

))
− u(x, v, t)

≤ E
(
e−r(Δt∧τ

ε)ψ
(
Xx,v

Δt∧τε , V
v
Δt∧τε , t + (Δt ∧ τε)

))
− ψ(x, v, t)

= E

(∫Δt∧τε

0
e−rs

(
−rψ +

∂ψ

∂t
+L

[
ψ
]
)
(
Xx,v
s , V v

s , t + s
)
ds

)
(4.12)

for any Δt > 0. Knowing that Q(τε < Δt) → 0 when Δt → 0 by Lemma 4.2, dividing the
preceding inequality by Δt and taking the limit to 0, we get the desired result by Lebesgue’s
dominated convergence theorem.
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5. Comparison Principles and Uniqueness of the Solution

In this section, we prove a comparison result from which we obtain the uniqueness of the
solution of the IPDE. In proving comparison results for viscosity solutions, the notion of
parabolic superjet and subjet as defined by Crandall et al. [10] is particularly useful. Setting
y = (x, v), we define the parabolic superjet and its closure by

J2,+u
(
y, t

)
=
{
(
p, q,A

)
∈ R × R

2 × S2 such that u
(
y′, t′

)
− u

(
y, t

)
≤ p

(
t′ − t

)
+ q ·

(
y′ − y

)

+
1
2
(
y′ − y

)T ·A ·
(
y′ − y

)
+ o

(∣
∣t′ − t

∣
∣ +

∣
∣y′ − y

∣
∣2
)
as

(
t′, y′) −→

(
t, y

)
}
,

J
2,+
u
(
y, t

)
=
{
(
p, q,A

)
= lim

n→∞

(
pn, qn,An

)
such that

(
pn, qn,An

)
∈ J2,+u

(
yn, tn

)
and

(
yn, tn

)
−→

(
y, t

)
(

lim
n→∞

)}
,

(5.1)

The subjet and its closure are then defined similarly by

J2,−u
(
y, t

)
= −J2,+(−u)

(
y, t

)
,

J
2,−
u
(
y, t

)
= −J

2,+
(−u)

(
y, t

)
.

(5.2)

We then have the following lemma which is essentially proved in [8] (Lemma 3.3).

Lemma 5.1. If the function u ∈ C0(R×R+× [0, T]) is a viscosity subsolution (resp. supersolution) of

(2.15), then for all (x, v, t) ∈ R×R+×[0, T) and for all (p, q,A) ∈ J
2,+
u(x, v, t) (resp.,J

2,−
u(x, v, t))

max
(
p +Lq,A

ξ

[
u, ψ

]
(x, v, t) − ru(x, v, t); h(x) − u(x, v, t)

)
≥ 0 (≤), (5.3)

in which

Lq,A

ξ

[
u, ψ

]
(x, v, t) =

(
r − 1

2
v − λκy

(
ρ
)
+ λρμη

)
q(1) − λ

(
v − μη

)
q(2) +

1
2
vA11

+ λ
∫ ξ

0

(
ψ
(
x + ρz, v + z, t

)
− ψ(x, v, t) −

(
ρz
∂ψ

∂x
+ z

∂ψ

∂v

))
W(dz)

+ λ
∫∞

ξ

(
u
(
x + ρz, v + z, t

)
− u(x, v, t) −

(
ρz
∂ψ

∂x
+ z

∂ψ

∂v

))
W(dz)

(5.4)

for some ψ ∈ C2,1,1 and 0 < ξ < 1.

Pham [7] obtains the uniqueness of the solution when the coefficients of L satisfy
Lipschitz conditions on R

2 × [0, T]. For δ > 0, define Oδ = R × (δ,∞) × [0, T). Then, the
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coefficients of L satisfy the Lipschitz conditions on Oδ, and using the ideas of uniqueness
proofs in the literature, we can show a comparison principle on Oδ. This result will then be
used to show the uniqueness of the solution on O.

Theorem 5.2. Let ε ≥ 0, and let u1 be a subsolution and u2 a supersolution of (2.15) onOδ such that

u1(x, v, t) ≤ u2(x, v, t) + ε (5.5)

for t = T or v = δ. Then u1(x, v, t) ≤ u2(x, v, t) + εer(T−t) for all (x, v, t) ∈ Oδ.

Proof. An IPDE of the form (∂ψ(x, ϑ, t)/∂t) + L[ψ](x, ϑ, t) − rψ(x, ϑ, t) = 0 for (x, ϑ, t) ∈ O
and ψ(x, ϑ, T) = h(x) was shown to have a unique solution in [8] when the coefficients of
L satisfy some given Lipschitz conditions. In fact when (x, ϑ, t) and (x′, ϑ′, t′) ∈ Oδ, we have
|
√
ϑ′ −

√
ϑ| ≤ (1/2δ)|ϑ′ − ϑ|, and so the operator L satisfies the assumptions made in [8]. The

extension of the uniqueness result to our current setting is straightforward, and we only give
the main details.

We first show that u1 − u2 is a subsolution of a related IPDE. Suppose that ψ ∈ W ∩ C2

and u1 − u2 − ψ attains a maximum at (y0, t0) ∈ Oδ. Set

w
(
y1, y2, t, s

)
= u1

(
y1, t

)
− u2

(
y2, s

)
,

φ
(
y1, y2, t, s

)
=

1
2ε

∣∣y1 − y2
∣∣2 +

1
2α

|t − s|2 + ψ
(
y1, t

)
.

(5.6)

Since u1 and u2 are inW, the functionw−φ attains its maximum (y∗
1, y

∗
2, t

∗, s∗) (which depends
on ε, α) in Oδ × Oδ. By a classical argument in the theory of viscosity solutions, we can show
that (1/ε)|y∗

1 − y
∗
2|2, (1/α)|t∗ − s∗|2 → 0 when ε, α → 0 and

(
y∗
1, y

∗
2, t

∗, s∗
)
−→

(
y0, y0, t0, t0

)
(5.7)

when ε, α → 0.
Applying Theorem 8.3 of Crandall et al. [9] to the functionsw and φ, we find matrices

Y1, Y2 such that

(
a +

∂ψ

∂t

(
y∗
1, t

∗), b +Dψ
(
y∗
1, t

∗), Y1

)
∈ J

2,+
u1
(
y∗
1, t

∗)

(−a,−b,−Y2) ∈ J
2,+
(−u1)

(
y∗
2, s

∗),

(5.8)

with a = (1/α)(t∗ − s∗) and b = (1/ε)(y∗
1 − y

∗
2) and for 0 < ξ < 1 the inequalities

max

(

a +Lb,Y1
ξ

[
u1, ψ

](
y∗
1, t

∗) +
∂ψ

∂t

(
y∗
1, t

∗) + v∗
1

∂2ψ

∂x2

(
y∗
1, t

∗)

−ru1
(
y∗
1, t

∗);h
(
x∗
1

)
− u1

(
y∗
1, t

∗)
)

≥ 0,

max
(
a +Lb,Y2

ξ

[
u2, ψ

](
y∗
2, s

∗) − ru2
(
y∗
2, s

∗);h
(
x∗
2
)
− u2

(
y∗
2, s

∗)
)
≤ 0

(5.9)
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are satisfied. Write these two expressions as max(A,B) ≥ 0 and max(C,D) ≤ 0. Then max(A−
C,B −D) ≥ 0. Now, B −D = h(x∗

1) − u1(y
∗
1, t

∗) − h(x∗
2) + u2(y

∗
2, s

∗), and because h is Lipschitz
|h(x∗

1) − h(x
∗
2)| → 0 when ε, α → 0. Thus B −D → u2(y0, t0) − u1(y0, t0). On the other hand

it was shown in [8] that

A − C ≤ r
(
u2
(
y∗
2, s

∗) − u1
(
y∗
1, t

∗)) +
1
ε

(
1
2
− λ +

1
4δ

)∣
∣y∗

1 − y
∗
2

∣
∣2

+
∂ψ

∂t
+
(
r ′ − 1

2
v∗
1, v

∗
1

)
Dψ

(
y∗
1, t

∗) + v∗
1
∂2ψ

∂x2

(
y∗
1, t

∗)

+ λ
∫∞

0

(
ψ
(
x∗
1 + ρz, v

∗
1 + z, t

∗) − ψ
(
y∗
1, t

∗) − z
(
ρ, 1

)
·Dψ

)
W(dz)

+ λ
∫ ξ

0

(
φ
(
x∗
1 + ρz, v

∗
1 + z, x

∗
2, v

∗
2, t

∗, s∗
)
− φ

(
x∗
1, v

∗
1, x

∗
2, v

∗
2, t

∗, s∗
)

−z
(
ρ, 1

)
·
(
b +Dψ

(
y∗
1, t

∗)))W(dz)

− λ
∫ ξ

0

(
φ
(
x∗
1, v

∗
1, x

∗
2 + ρz, v

∗
2 + z, t

∗, s∗
)
− φ

(
x∗
1, v

∗
1, x

∗
2, v

∗
2, t

∗, s∗
)
− z

(
ρ, 1

)
· b2

)
W(dz),

(5.10)

in which r ′ = (r − λκy(ρ) + λμ2). Using the fact that φ ∈ W ∩ C2 we find by letting ξ → 0 and
then ε, α → 0 that

A − C ≤ −r
(
u1
(
y0, t0

)
− u2

(
y0, t0

))
+
∂ψ

∂t
+Lψ. (5.11)

Consequently,

max
(
−r(u1 − u2)

(
y0, t0

)
+
∂ψ

∂t

(
y0, t0

)
+Lψ

(
y0, t0

)
,−(u1 − u2)

(
y0, t0

)
)

≥ 0. (5.12)

As shown in [8] (see Lemma 3.8), there exists a function χ ≥ 1 such that

∂χ

∂t
+Lχ − rχ < 0 (5.13)

for which the maximum

M = sup
R×R+×[t1,T]

(
(u1 − u2)

(
y, t

)
− βχ

(
y, t

))
er(t−T) (5.14)

is attained at some point (y0, t0). Then

(
u1 − u2 − βχ

)(
y, t

)
≤
(
u1 − u2 − βχ

)(
y0, t0

)
er(t0−t). (5.15)
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Let ψ(y, t) = βχ(y, t) − (u1 − u2 − βχ)(y0, t0)er(t0−t). Then ψ satisfies the properties in the
subsolution definition, hence it satisfies (5.12). But

(
∂ψ

∂t
+Lψ

)
(
y0, t0

)
=
(
β
∂χ

∂t
+ r

(
u1 − u2 − βχ

)
+ βLχ

)
(
y0, t0

)
< r(u1 − u2)

(
y0, t0

)
. (5.16)

Hence, either (u1 − u2)(y0, t0) ≤ 0, or v0 = δ or t0 = T and, in this case, (u1 − u2)(y0, t0) ≤ ε by
assumption. Hence, we conclude that

(u1 − u2)
(
y, t

)
≤ βχ

(
y, t

)
− βχ

(
y0, t0

)
er(t0−t) + (u1 − u2)

(
y0, t0

)
er(t0−t)

≤ βχ
(
y, t

)
+ εer(t0−t).

(5.17)

Sending β to zero we get u1 ≤ u2 + εer(T−t) on R× (δ,∞)× [t1, T]. As done in [8], we can repeat
this argument as many times as needed to get u1 ≤ u2 + εer(T−t) on Oδ.

A solution of (2.15)-(2.16) is said to beminimal if it is less or equal to any other solution
of (2.15)-(2.16). To prove uniqueness, we first show that the solution u is minimal.

Theorem 5.3. u is the minimal viscosity solution of (2.15)-(2.16).

Proof. Let δ > 0 and define

uδ(x, v, t) = sup
τ∈TT−t,τ≤τδ

E
(
e−rτh

(
Xx,v
τ

))
(5.18)

in which

τδ = inf{s ≥ 0 : V v
s ≤ δ}. (5.19)

Then uδ is a viscosity solution of (2.15) on Oδ with boundary conditions

uδ(x, v, t) = h(x) for t = T or v = δ. (5.20)

The proof of this statement is essentially the same as the proof for the viscosity solution
property of u. The main difference is that the maturity T is replaced by τδ. Note that V δ′

s > δ
for δ′ > δeλT , hence uδ(x, v, t) = u(x, v, t) for all x ∈ R, t < T and v > δeλT .

Let ũ be another viscosity solution of (2.15)-(2.16). Then ũ is a viscosity solution of
(2.15) on Oδ with boundary values ũ(x, v, t) for t = T or v = δ. Also, ũ(x, v, t) ≥ h(x) =
uδ(x, v, t) for t = T or v = δ. By Theorem 5.2, we find that ũ ≥ uδ on Oδ. In particular,
ũ(x, v, t) ≥ u(x, v, t) for x ∈ R, t < T and v > δeλT . Since δ is arbitrary, ũ ≥ u on O.

Following Pham [7], we denote by UCx,v(O) the set of functions defined on O
uniformly continuous in (x, v), uniformly in t. We have already shown that the function u
satisfies

∣∣u
(
x′, v′, t

)
− u(x, v, t)

∣∣ ≤ C
(∣∣x′ − x

∣∣ +
∣∣v′ − v

∣∣ +
√
|v′ − v|

)
. (5.21)
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Hence, u ∈ UCx,v(O). Using the two previous theorems, we can show the uniqueness in
UCx,v(O).

Theorem 5.4. u is the unique viscosity solution of (2.15)-(2.16) inUCx,v(O).

Proof. Let ũ ∈ UCx,v(O) be another viscosity solution of (2.15)-(2.16). Let ε > 0. Then there
exists δ > 0 such that 0 ≤ u(x, v, t)−u(x, 0, t) = u(x, v, t)−h(x) < ε and 0 ≤ ũ(x, v, t)−ũ(x, 0, t) =
ũ(x, v, t) − h(x) < ε for v ≤ δ. In particular, |u(x, v, t) − ũ(x, v, t)| < ε for all x, all t and
v ≤ δ. Furthermore, by Theorem 5.3, we obtain that u(x, δ, t) ≤ ũ(x, δ, t) ≤ u(x, δ, t) + ε, and
u(x, v, T) = ũ(x, v, T) by definition. By the comparison principle of Theorem 5.2, we find that
u(x, v, t) ≤ ũ(x, v, t) ≤ u(x, v, t) + εer(T−t) for all (x, v, t) ∈ Oδ. Hence, u(x, v, t) ≤ ũ(x, v, t) ≤
u(x, v, t) + εerT for all (x, v, t) ∈ O. Since ε is arbitrary, we obtain the desired result.

To prove the uniqueness of the solution, we first modified the optimal stopping
problem by defining it on Oδ in order to avoid the degeneracy of the infinitesimal generator.
This suggests that one may be able to use known numerical schemes for nondegenerate
IPDEs for Lévy processes to design a numerical scheme for the value function uδ. When δ is
close to 0, we obtain an approximation for the value function u. The reader is referred to the
work of Levendorskiı̆ et al. [6] and references therein for possible numerical implementation
techniques and difficulties associated to them. On the other hand, it is likely that the method
of proof of the uniqueness property could be used for a larger class of stochastic volatility
models, including the models of Heston [12] and Hull and White [13]. Indeed, all these
models have the non-Lipschitz term

√
Vt in the differential equation for the log-returns. There

remain open problems which we leave to future research.

Acknowledgment

Some parts of this paper were done at HEC Montréal, and the author would like to thank
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