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We are interested in-typical Behrens-Fisher problem in general location-scale families. We present
a method of constructing generalized pivotal quantity (GPQ) and generalized P value (GPV) for
the difference between two location parameters. The suggested method is based on the minimum
risk equivariant estimators (MREs), and thus, it is an extension of the methods based onmaximum
likelihood estimators and conditional inference, which have been, so far, applied to some specific
distributions. The efficiency of the procedure is illustrated by Monte Carlo simulation studies.
Finally, we apply the proposed method to two real datasets.

1. Introduction

In statistical problems involving nuisance parameters, the small-sample optimal solution
may not be available. For example, for the difference between means of two exponential
distributions, or two normal distributions with different variances, small sample-optimal
test and confidence intervals do not exist (see, [1]). To overcome this problem, Tsui and
Weerahandi [2] introduced the concept of generalized P value (GPV) and generalized
test variable (GTV). Further, Weerahandi [1] developed the concept of generalized pivotal
quantity (GPQ) and generalized confidence interval (GCI). The GCI and GPV have been
revealed to perform well for some small-sample problems where classical procedures are
not optimal. For example, Weerahandi [1] applied the GCIs to the difference in two
exponential means and two normal means. In addition, Bebu and Mathew [3] developed a
generalized pivotal quantity for comparing themeans and variances of a bivariate log-normal
distribution.

In this paper, we present a method of constructing the GPQ and GTV in two-sample
location-scale families. Also, we extend the method in Sprott [4] where the author applied
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conditional inference to some particular bivariate location-scale families. In the quoted book,
the author uses the maximum likelihood estimator (MLE). However, it is well known that the
MLE does not exist in some location and scale families. For more details, we refer to Pitman
[5], and Gupta and Székely [6] among others.

Our proposed method is based on Pitman estimator that is the minimum risk
equivariant estimator (MRE). It is noticed that, when MLE of a location parameter (or
scale parameter) exists, it is an equivariant estimator. Indeed, the suggested method is more
general, and our simulation studies show that it provides a high coverage probability, high
power and preserves the nominal level of the test.

The rest of this paper is organized as follows. In Section 1, we present some
background about generalized inference in location and scale family. We also establish
in Section 1 the proposed generalized pivotal quantity and generalized test variable in
two-sample location-scale family. Section 2 gives the main result of this paper. Namely, in
this section, we present the algorithm of the proposed method. In Section 3, we discuss
the application of the method in some specific location-scale families. Section 4 presents
some simulation studies as well as analysis results of two real datasets. Finally, Section 5
gives discussion and concluding remarks. Details and technical results are outlined in two
appendices.

2. Background and Preliminary Results

In this section, we present some concepts of generalized inference for the convenience of
the reader. Also, we set up notation which is used in this paper. For more details about
the concepts of GPQ, GTV, and GPV, the reader is referred to Tsui and Weerahandi [2],
Weerahandi [1], and Krishnamoorthy et al. [7] among others. Let X1, ..., Xn be i.i.d. random
variables from the population probability density function (pdf) fx(x | η1). Also, let Y1, ..., Ym
be iid random variables from the population pdf fy(y | η2). We assume that the two random
samples (X1, ..., Xn) and (Y1, ..., Ym) are independent. Also, let η = (η′

1,η
′
2)

′ be a p-column
vector of unknown parameters (with p ≥ 2). Further, let τ(η) be a q-column vector function of
ηwith q ≤ p, and to simplify the notation, let τ(η) = θ = (θ1,θ′

2)
′ where θ1 is the parameter of

interest and θ2 is a vector of nuisance parameters. Let X denote the sample space of possible
values of (X,Y )′, where X = X1, ..., Xn, Y = Y1, ..., Ym, and let Θ denote the parameter space
of θ. In addition, we denote (x, y)((x, y) ∈ X) as an observation from (X,Y ). Given this
statistical model, two statistical problems about θ1 are considered.

First, we are interested in deriving confidence interval estimation of θ1. Second, for a
given θ0, we consider the testing problem

H0 : θ1 ≥ θ0 versus H1 : θ1 < θ0. (2.1)

Definition 2.1. Let R = R(X,Y, x, y,θ) be a function of X, Y , x, y, θ, where θ = (θ1,θ2). Then,
the function R is said to be a generalized pivotal quantity for θ1 if

(1) given x, y, the distribution of R is free from unknown parameters;

(2) the observed value, defined as Robs = R(x, y, x, y,θ), does not depend on the
nuisance parameter θ2.
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Definition 2.2. The generalized test variable for θ1, is defined as a function of (X,Y, x, y,θ),
say T(X,Y, x, y,θ), which satisfies the following requirements.

(1) t = T(x, y, x, y,θ) is free of θ2.

(2) For fixed x, y, θ, the distribution of T(X,Y, x, y,θ) is free of the nuisance parameter
θ2.

(3) For fixed x, y and θ2, P[T(X,Y, x, y,θ) ≥ T(x, y, x, y,θ)] is stochastically monotone
in θ1.

To make the connection between GPQ and GTV, it is noticed that the GTV can be
derived from GPQ R(X,Y, x, y,θ). In fact, if R(X,Y, x, y,θ) is a GPQ for θ1 then,

T1
(
X,Y, x, y, θ

)
= R
(
X,Y, x, y,θ

)
− R
(
x, y, x, y,θ

)
(2.2)

is a GTV. For instance, if R(x, y, x, y,θ) = θ1, we have T1(X,Y, x, y,θ) = R(X,Y, x, y,θ) − θ1.
For more details, see Krishnamoorthy et al. [7]. Also, the generalized P value for the testing
problem (2.1) is defined as p = supH0

P[T1(X,Y, x, y,θ) ≥ 0]. More specifically, for the case
where T1(X,Y, x, y,θ) = R(X,Y, x, y,θ) − θ1, the GPV for the testing problem (2.1) becomes

p = sup
H0

P
[
R
(
X,Y, x, y,θ

)
− θ0 ≥ 0

]
= P
(
R
(
X,Y, x, y,θ

)
≥ θ0
)
. (2.3)

Thus, since the distribution of R(X,Y, x, y,θ) is free of any unknown parameters, the GPV
for θ1 can be obtained from (2.3) by either analytical method or Monte Carlo simulation.
We consider the case where η = (μ1, σ1, μ2, σ2)

′, τ(η) = μ1 − μ2. Thus, we present the GPQ
and GTV for the difference between two location parameters δ = μ1 − μ2. On one hand, we
are interested in deriving GCIs for δ. On the other hand, we consider solving the following
testing problem:

H0 : δ ≥ δ0 versus H1 : δ < δ0. (2.4)

Let Rδ denote the GPQ for δ. For the testing problem (2.4), the generalized P value is

pδ = P(Rδ ≥ δ0). (2.5)

2.1. Equivariance and Minimum Risk Equivariant Estimators

In this subsection, we give a brief background about the concept of equivariance and
minimum risk equivariant estimators in location-scale family. For more details about this
concept, we refer to Lehmann and Casella [8, page 171–173], Schervish [9, chapter 6] among
others. To set up some notation, let X = (X1, X2, . . . , Xn)

′ be a random sample whose joint pdf
can be written as (1/σn)

∏n
i=1g((xi − μ)/σ)where g is a pdf which does not depend on μ and

σ. Then, X is said to be from the location-scale family with location parameter μ and scale
parameter σ.



4 Journal of Probability and Statistics

An estimator δ1(X) for the scale parameter σ is said to be equivariant if it satisfies

δ1(bX + a) = bδ1(X), ∀ −∞ < a <∞, b > 0. (2.6)

An estimator δ2(X) for the location parameter μ is said to be equivariant if it satisfies

δ2(bX + a) = bδ2(X) + a, ∀ −∞ < a <∞, b > 0. (2.7)

Also, let δ(X) be equivariant estimator for the scale (or location) parameter θ and let
R(δ(X), θ) be its risk function, that is, the expected value of a certain loss function which
is invariant under the scale (or location) transformation. Then, the estimator δ(X) is said to
be minimum risk equivariant estimator (MRE) if for any other equivariant estimator for θ,
φ(X), we have

R(δ(X), θ) ≤ R
(
φ(X), θ

)
, ∀θ ∈ Θ. (2.8)

In this paper, the loss function under consideration is the quadratic error loss function,
and in this case, the minimum risk equivariant estimator is also known as Pitman estimator
(see Lehmann and Casella [8, pages 154–174]).

In particular, let μ̂lp and σ̂lp, l = 1, 2 denote the minimum risk equivariant estimator
for μl and σl, l = 1, 2, respectively. In this notation, the subscript p refers to Pitman estimator.
Further, let μ̂lobs, σ̂lobs denote the observed values of μ̂lp and σ̂lp, l = 1, 2, respectively. We close
this section by recalling the result which is used in computing μ̂lp, and σ̂lp, l = 1, 2.

Theorem 2.3. Let X1, X2, ..., Xn be iid random sample from scale-location family with pdf f(x |
μ, σ) = σ−1 g((x − μ)/σ), where μ and σ are unknown. Also, under quadratic error loss function,
suppose that there exists an equivariant estimator with finite risk. Then, under quadratic loss function
the MRE of μ and σ are, respectively

μ̂p(x) =
∫∞

0

∫∞

−∞
uvn+1

n∏

i=1

g((xi − u)v)dudv ×
(∫∞

0

∫∞

−∞
vn+1

n∏

i=1

g((xi − u)v)dudv
)−1

,

σ̂p(x) =
∫∞

0
vn
∫∞

−∞

n∏

i=1

g((xi − u)v)dudv ×
(∫∞

0
vn+1
∫∞

−∞

n∏

i=1

g((xi − u)v)dudv
)−1

.

(2.9)

For proof, the reader is referred to Lehmann and Casella [8, page 154], Schervish [9,
chapter 6] and references therein.

2.2. GPQ and GTV in Two-Sample Location-Scale Families

Let (X1, . . . , Xn) and (Y1, . . . , Ym) be two-sample iid from the population pdfs

fx
(
xi | μ1, σ1

)
= σ−1

1 g1

(
xi − μ1

σ1

)
, fy

(
yj | μ2, σ2

)
= σ−1

2 g2

(
yj − μ2

σ2

)
, (2.10)
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respectively with i = 1, . . . , n; j = 1, . . . , m; where μ1, μ2, σ1, σ2 unknown parameters, and g1
and g2 are pdfs. Then, the joint pdf of X1, . . . , Xn, Y1, . . . , Ym is given by

fxy
(
x1, . . . , xn, y1, . . . , ym

)
= σ−n

1 σ−m
2

n∏

i=1

g1

(
xi − μ1

σ1

) m∏

j=1

g2

(
yj − μ2

σ2

)
. (2.11)

We are interested in inference problems concerning the difference between the location
parameters δ = μ1−μ2, with ρ = σ2/σ1 unknown. To set up notation, let Z3 = (Z31, Z32), where

Z3l =
μ̂lp − μl
σ̂lp

, l = 1, 2. (2.12)

By using equivariance property of μ̂l and σ̂l, l = 1, 2, we derive the GPQ, GTV of δ. Indeed,
let

R31 = μ̂1pobs − σ̂1pobsZ31, R32 = μ̂2pobs − σ̂2pobsZ32, (2.13)

where Z3l, l = 1, 2 are defined by (2.12). Then, R3l are GPQ for μl, l = 1, 2. Using R3l, l = 1, 2,
we derive the GPQ and GTV for δ as given by the following proposition.

Proposition 2.4. If the two samples are from the pdf in (2.10), the GPQ for δ is

Rδ = μ̂1pobs − μ̂2pobs − σ̂1pobsZ31 + σ̂2pobsZ32. (2.14)

Furthermore, the GTV is T3 = Rδ − δ.

Proof. Obviously, the observed value ofRδ is δ. Further, since μ̂l and σ̂l, l = 1, 2 are equivariant
for μl and σl, respectively, by using Lemma A.3, we conclude that the distributions of R3l,
l = 1, 2 are not dependent on parameter. Therefore, the distribution of Rδ = R31 −R32 does not
depend on parameter, and this completes the proof.

In the following section, we present an algorithm which is used in computing the GCI
and GPV. The proposed algorithm extensively uses Proposition 2.5 and Corollary 2.6 given
below. To the best of our knowledge, these two results are not in the existing literature. To set
up notation, let a = (a1, . . . , an)

′, and let b = (b1, . . . , bm)
′, where

ai =
Xi − μ̂1p

σ̂1p
, bj =

Yj − μ̂2p

σ̂2p
, i = 1, . . . , n, j = 1, . . . , m. (2.15)

Further, let a = (a1, a2, . . . , an−2)
′, let b = (b1, b2, . . . , bn−2)

′ and let Z4l = σ̂lp /σl, l = 1, 2.

Proposition 2.5. Assume that the two random samples are from the pdfs in (2.10). Then, condition-
ally to a, b, the joint pdf of (Z31, Z32, Z41, Z42) is

f
(
x, y, t, s | a, b

)
= C−1tn−1sm−1

n∏

i=1

g1(t(x + ai))
m∏

j=1

g2
(
s
(
y + bj

))
, (2.16)
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t, s > 0, −∞ < x, y < +∞ where

C =
∫∫∞

−∞

∫∫∞

0
zn−11 zm−1

2

n∏

i=1

g1(z1(u + ai))
m∏

j=1

g2
(
z2
(
w + bj

))
dz1 dz2 dudw. (2.17)

Proposition 2.5 extends Corollary A.2 that is established in Appendix A. The proof
follows from similar arguments as for Corollary A.2. Further, from Proposition 2.5, we
establish Corollary 2.6 that gives the joint pdf of (Z31, Z32) conditionally to a, b.

Corollary 2.6. If Proposition 2.5 holds then, conditionally to a, b, the joint pdf of (Z31, Z32) is

f3
(
x, y | a, b

)
= C−1

∫∫∞

0
tn−1sm−1

n∏

i=1

g1(t(x + ai))
m∏

j=1

g2
(
s
(
y + bj

))
dsdt, (2.18)

where with C given in (2.17).

Proof. The proof follows directly from Proposition 2.5.

3. Framework

In general, the distributions of the GPQ Rδ in (2.14) do not have a closed form. Accordingly,
Monte Carlo simulations are needed in order to compute numerically the distributions of
Rδ. In this section, we present an algorithm which is used in computing the GCI and GPV
for δ. The proposed algorithm is applicable to all members of location-scale families, and
in particular, it is applicable to the normal family that is the most commonly discussed in
the literature. To the best of our knowledge, there does not exist a similar algorithm in the
literature.

The proposed GCI and GPV are obtained by using the following algorithm.

(1) For a given dataset x, using Theorem 2.3, compute μ̂lobs(x), σ̂lobs(x), the observed
values of μ̂l(X), σ̂l(X), l = 1, 2, respectively.

(2) By using (2.15), compute {ai}, i = 1, 2, . . . , n, and {bj}, j = 1, 2, . . . , m.

(3) GenerateU1l ∼ U(0, 1) for l = 1, 2.

(4) From the pdf of (Z31, Z32), f3(x, y | a, b) given in (2.18), determine Z31 andZ32 such
that
∫Z31

−∞
∫∞
−∞ f3(x, y | a, b)dy dx = U11,

∫Z32

−∞
∫∞
−∞ f3(x, y | a, b)dx dy = U12.

(5) By using (2.14), compute Rδ.

(6) Repeat from step (3) to (5), M times (with M large), and set Rδ, k the value of Rδ

obtained at the kth replicate, k = 1, 2, . . . ,M.

(7) Find Rδ,α/2(x) and Rδ,1−α/2(x) as, respectively, 100α/2 and 100(1 − α/2) percentiles
of Rδ,1, Rδ,2, . . . , Rδ,M.

(8) Let IA denote the indicator function of the event A. Using (2.3), estimate the GPV
for δ by p̂δ =M−1∑M

k=1 I{Rδ, k≥δ0}.
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Remark 3.1. The equations in step (4) of the above algorithm do not generally give a closed-
form solution. Thus, some numerical methods are needed in order to find the quantiles Z31

and Z32. In this paper, we applied Newton’s method.

Remark 3.2. For the normal sample case, the proposed algorithm produces the same solution
as in Weerahandi [1]. Indeed, at normal case, as established in Section 3, Z31 and Z32 have
Student’s distributions with, respectively, n − 1 andm − 1 degrees of freedom.

4. Some Cases of Two-Sample Location-Scale Families

In this section, we discuss the application of the proposed method to some specific two-
sample location-scale families. More precisely, we discuss the application of the proposed
method to the two-sample location-scale families for which MLEs do not exist. Also, in order
to illustrate the fact that the proposed approach generalizes the method designed at normal
case, we discuss briefly the two-sample normal families case.

4.1. Two-Sample Normal Case

Let x = (x1, . . . , xn)
′ and let y = (y1, . . . , ym)

′. From (2.3), we have

fxy(x,y) = σ−n
1 σ−m

2 (2π)−(n+m)/2 exp

⎡

⎣−
(
2σ2

1

)−1 n∑

i=1

(
xi − μ1

)2 −
(
2σ2

2

)−1 m∑

j=1

(
yj − μ2

)2
⎤

⎦.

(4.1)

Under the model in (4.1), we illustrate the computation of GCI and GPV, based on the
proposed GPQ. To set up notation, let

a =
1
n

n∑

i=1

ai, S2
1 =

n∑

i=1

(ai − a)2, b =
1
m

m∑

j=1

bi, S2
2 =

m∑

j=1

(
bi − b

)2
. (4.2)

If Xi ∼ N(μ1, σ1) and Yi ∼ N(μ2, σ2), using Theorem 2.3, we have

μ̂1p = n−1
n∑

i=1

Xi, μ̂2p = m−1
m∑

j=1

Yj, σ̂1p =
(

Γ(n/2)
Γ((n + 1)/2)

)
√√√
√1

2

n∑

i=1

(
Xi −X

)2
,

(4.3)

and σ̂2p = (Γ(m/2)/Γ((m + 1)/2))
√∑m

j=1(Yj − Y )
2/2. Also, a = b = 0, S2

1 = (2Γ2((n +
1)/2))/Γ2(n/2), S2

2 = (2Γ2((m + 1)/2))/Γ2(m/2).
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Then, using Proposition 2.4 and some computations, we have

R31 = μ̂1pobs − σ̂1pobs

(
S1obs√
n(n − 1)

)

×
(√

n(n − 1)
((
μ̂1p − μ1

)
/σ̂1p
)

S1

)

= μ̂1pobs − σ̂1pobs

(
S1obsTn−1√
n(n − 1)

)

,

(4.4)

where Tn−1 stands for a Student’t variate with n − 1 degrees of freedom. Similarly

R32 = μ̂2pobs − σ̂2pobs

(
S2obs√
n(n − 1)

)(√
n(n − 1)

((
μ̂2p − μ2

)
/σ̂2p
)

S2

)

= μ̂2pobs − σ̂2pobs

(
S2obsTm−1√
m(m − 1)

)

,

(4.5)

and taking R31 − R32, we get,

Rδ = μ̂1pobs − μ̂2pobs −
σ̂1pobsS1obsTn−1
√
n(n − 1)

+
σ̂2pobsS2obsTm−1
√
m(m − 1)

. (4.6)

4.2. Two Location-Scale Families Case Where MLE Does Not Exist

Following Gupta and Székely [6], let the families σ−1
l
gl((x − μl)/σl), l = 1, 2 where

g1(x) = c
(
xlog2x

)−1
, g2

(
y
)
= c
(
ylog2y

)−1
, (4.7)

0 < x, y ≤ k < 1, k is any constant that satisfies 0 < k < 1 and c = −1/ log(k) is a constant.
Gupta and Székely [6] proved that MLEs for σl, μl, l = 1, 2 do not exist.

The second illustrative example is based on the result in Pitman [5]. Namely, we
consider families σ−1

l
gl((x − μl)/σl), l = 1, 2, where

gl(xl) =
(
2(1 + |xl|)(1 + log (1 + |xl|)) 2

)−1
, −∞ < xl <∞, l = 1, 2. (4.8)

Pitman [5] proved that MLEs for σl, μl, l = 1, 2 do not exist. For the families in (4.7)
and (4.8), the pdf of R3l and R4l, l = 1, 2 do not have a closed form and thus, the distribution
of Rδ is obtained numerically by using the algorithm given in Section 2.

5. Simulation Study and Data Analysis

5.1. Simulation Study

In this section, we carry out intensive simulation studies in order to evaluate the
performances of the suggested approach in small and moderate sample sizes. To this end,
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Table 1: The coverage probabilities (CPR) of the 95% GCI for δ (family in (4.8)).

Sizes (n,m) CPR: (μ1, μ2, σ1, σ2) = (2, 2, 2, 2) CPR: (μ1, μ2, σ1, σ2) = (2, 1, 2, 1)
(5, 5) 0.847 0.839
(10, 10) 0.925 0.920
(20, 20) 0.942 0.938
(50, 50) 0.946 0.942
(60, 60) 0.946 0.945
(10, 20) 0.967 0.957
(10, 50) 0.970 0.972
(30, 50) 0.962 0.969

Table 2: The simulated powers for δ (the location-scale family in (4.8)).

Sizes (n,m) (δ, σ1, σ2) Power Sizes (n,m) (δ, σ1, σ2) Power

(5, 5)
(−2, 2, 2) 0.194

(20, 20)
(−2, 2, 2) 0.816

(−1, 2, 2) 0.102 (−1, 2, 2) 0.453
(0, 2, 2) 0.037 (0, 2, 2) 0.046

(10, 10)
(−2, 2, 2) 0.527

(50, 50)
(−2, 2, 2) 0.946

(−1, 2, 2) 0.251 (−1, 2, 2) 0.752
(0, 2, 2) 0.044 (0, 2, 2) 0.054

(10, 20)
(−4, 2, 2) 0.831

(10, 50)
(−4, 2, 2) 0.819

(−2, 2, 2) 0.510 (−2, 2, 2) 0.465
(0, 2, 2) 0.042 (0, 2, 2) 0.038

we generate 10000 two-samples from logistic distribution, from the distribution in (4.7), and
from the distribution in (4.8). In order to save space, we report below the empirical coverage
probability and the empirical power for the location-scale family given in (4.8). Namely, the
simulated coverage probabilities of the 95% GCI are presented in Table 1, and the empirical
powers of the proposed test are given in Table 2, at significance level α = .05.

In particular, concerning the GCI of δ, Table 1 shows that, for n ≥ 20, the coverage
probabilities are also relatively close to the nominal confidence level of 95%. Interestingly, the
case of equal scale parameters and that of unequal scale parameters seem to provide similar
results. Further, it is noticed that as the sample size increases, the coverage probability gets
closer to the nominal confidence level (95%). Concerning the performance of the solution to
the testing problem (2.4), Table 2 shows that the power function varies with different values
of m, n, μ1, σ1, σ2, and δ = μ1 − μ2. In fact, from Figure 1, it can be seen that when δ = δ0 = 0,
the powers are all approximately equal to 0.05. But on the left-hand side of 0, the power
continually increases to 1 when the distance between δ and 0 increases. Also, in the right
hand side, the power decreases to 0 as the distance increases. Furthermore, in the left hand
side of 0, for each exact value of δ, the power increases as the sample size increases.

5.2. Illustrative Examples and Data Analysis

5.2.1. Normal Body Temperature Dataset

This dataset is found in Mackowiak et al. [10]. In this dataset, a total number of 130 patients
have been assigned, with 65 males and 65 females. Their body temperatures have been tested
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Figure 1: The simulated power versus δ (the family case in (4.8)).

Table 3: Numerical results for the normal body temperature dataset.

Parameters of interest Point estimate 95% GCI
μ1 98.1 (97.92873, 98.28112)
σ1 .696 (0.5283083, 0.8186700)
μ2 98.39 (98.20655, 98.57497)
σ2 0.74 (0.5623908, 0.8679169)
δ −.2892308 (−0.54288915, −0.03725161)

and recorded. Furthermore, it is already confirmed that the temperatures in these 2 gender
groups are normally distributed. In particular, for the male group, one can consider X ∼
N(μ1, σ1), and for the female group, one can consider Y ∼ N(μ2, σ2). From Table 3, a 95% GCI
for δ is (−0.54288915, −0.03725161) and thus, since the interval does not contain 0, there is a
significant difference between the two location parameters. By applying (2.5) to the testing
problemH0 : δ ≥ 0 versusH0 : δ < 0, the GPV is found to be 0.0133, and this result indicates
that the null hypothesis should be rejected at 2% significant level, that is, this confirms that
μ1 < μ2.

5.2.2. Cloud Seeding Dataset

The cloud seeding dataset consists of the amount of rainfall (in acre-feet) which have been
recorded. The dataset is given in Krishnamoorthy, and Mathew [11]. For this dataset, 26
clouds were randomly seeded with silver nitrate, and 26 others were unseeded. In the
above quoted paper, the authors showed that lognormal model fits the dataset very well.
Thus, we assume unseeded cloud group X1 ∼ Lognormal(μ1, σ1) and seeded cloud group
Y1 ∼ Lognormal(μ2, σ2). We set X = log(X1) ∼ N(μ1, σ1) and Y = log(Y1) ∼ N(μ2, σ2).
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Table 4: Numerical results for the cloud seeding dataset.

Parameters of interest Point estimate 95% GCI
μ1 3.990406 (3.325968, 4.641512)
σ1 1.625515 (1.071410, 2.148553)
μ2 5.134187 (4.496115, 5.775415)
σ2 1.583602 (1.019519, 2.084743)
δ −1.143781 (−2.073196, −0.2211248)

From Table 4, the GCI for δ indicates that the difference between the two location
parameters is statistically significant. Also, for the testing problem H0 : δ ≥ 0 versus
H1 : δ < 0, the GPV is 0.007 which indicates that μ1 < μ2. Note that this finding corroborates
the result given in Krishnamoorthy and Mathew [11], where the authors concluded that μ1 is
statistically different from μ2.

6. Conclusion

In this paper, we proposed a solution of typical Behrens-Fisher problem in the general setting
where two independent samples are from location-scale families. We presented a general
statistical method for constructing GPQ and GTV for the difference between two location
parameters of location-scale families. The proposed method is based on the minimum risk
equivariant estimators which are known to bemore general andmore efficient than theMLEs.
The simulation studies show that the proposed methods provide CIs and tests with high
coverage probability and power, and the resulting tests preserve the significance level.

The proposedmethod applies to all members of the location-scale families, as opposed
to the methods given in the literature, as Welch’s method, which are designed only for the
normal case. In addition to this generality, our method is at least as good as Welch’s method
in the normal Behrens-Fisher problem (see simulation results in Appendix B).

Appendices

A. Technical Results and Proof of Proposition 2.5

In this subsection, we present some results which are useful in deriving Proposition 2.5. Recall
that this last proposition is used in deriving Corollary 2.6 that plays a central role in the
proposed algorithm as given in Section 2. For the sake of simplicity, the results are outlined for
the case where σ1 = σ2 = 1, that is, when the two samples (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym)
are independent from location families with location parameters μl, l = 1, 2.

Let μ̂lp be the equivariant estimator of μl, l = 1, 2. Also, let

ci = Xi − μ̂1p, i = 1, . . . , n; dj = Yj − μ̂2p, j = 1, . . . , m, (A.1)

where the two samples (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym) are independent from location
families with location parameters μl, l = 1, 2.
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Proposition A.1. Assume two random samples are from two independent location families and
assume that relation (A.1) holds. Then c1, . . . , cn−1, d1, . . . , dm−1 are ancillary statistics. Furthermore,
the joint pdf of c1, . . . , cn−1, d1, . . . , dm−1 is

fcd(x,y) =
∫∫∞

−∞

n∏

i=1

g1(xi + z1)
m∏

j=1

g2
(
yj + z2

)
dz1 dz2. (A.2)

Proof. From the fact that μ̂1p and μ̂2p are equivariant estimators for μ1 and μ2, respectively,
we conclude that c1, . . . , cn−1, d1, . . . , dm−1 are ancillary statistics. Further, without loss of
generality, assume that σ1 = σ2 = 1. Also, let us define cn, and dn by Xn = cn + μ̂1p,
Ym = dm+μ̂2p. Then, since μ̂1p and μ̂2p are equivariant, cn and dm can be expressed as a function
of c1, . . . , cn−1, d1, d2, . . . , dm−1 and thus, one can set cn = T1(c1, . . . , cn−1), dm = T2(d1, . . . , dn−1).
Then

xi = ci + μ̂1p, i = 1, . . . , n − 1, xn = cn + μ̂1p,

yj = dj + μ̂2p, i = 1, . . . , m − 1, ym = dm + μ̂2p.
(A.3)

Let X = (X1, . . . , Xn), let Y = (Y1, . . . , Ym), let x = (x1, . . . , xn), and let y = (y1, . . . , ym). We
have f(x, y) =

∏n
i=1g1(xi − μ1)

∏m
j=1g2(yj − μ2). Also, let c = (c1, . . . , cn−1), d = (d1, . . . , dm−1).

The joint pdf of (c,d, μ̂1p, μ̂2p) is

f
(
c, d, μ̂1p, μ̂2p

)
= |J|

n∏

i=1

g1
(
ci + μ̂1p − μ1

) m∏

j=1

g2
(
dj + μ̂2p − μ2

)
, (A.4)

where J is the Jacobian matrix. We have

J =

(
J1 0

0 J2

)

with J1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂x1
∂c1

· · · ∂x1
∂cn−1

∂x1
∂μ̂1

... · · ·
...

...

∂xn
∂c1

· · · ∂xn
∂cn−1

∂xn
∂μ̂1

⎞

⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

1 · · · 0 1

... · · ·
...

...

0 · · · 0 1

⎞

⎟⎟⎟
⎠
,

J2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂y1
∂d1

· · ·
∂y1
∂dm−1

∂y1
∂μ̂2

... · · ·
...

...

∂ym
∂d1

· · ·
∂ym
∂dm−1

∂ym
∂μ̂2

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

1 · · · 0 1

... · · ·
...

...

0 · · · 0 1

⎞

⎟⎟⎟
⎠
.

(A.5)

Therefore, from (A.4) and letting zl = μ̂l − μl, l = 1, 2, we get fcd(x,y) as stated in the
proposition, and that completes the proof.
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Corollary A.2. If two random samples are from the pdfs in (2.10) with σ1 = σ2 = 1 then, condition-
ally to c, d, the joint pdf of μ̂1p − μ1, μ̂2p − μ2 is

f
(
x, y | c,d

)
=

(∏n
i=1g1(ci + x)

∏m
j=1g2
(
dj + y

))

fcd(c,d)
, −∞ < x, y < +∞, (A.6)

where fcd(c,d) is the pdf given in Proposition A.1.

Proof. From (A.4), we directly get the conditional joint pdf of (μ̂1p, μ̂2p) given c, d. By algebraic
computations, we verify that the conditional pdf of (μ̂1p − μ1, μ̂2p − μ2) corresponds to that
stated in the corollary.

Lemma A.3. Let X = (X1, X2, . . . , Xn)
′ be a random sample from the location-scale family with

location parameter μ and scale parameter σ. Also, let μ̂p, σ̂p be equivariant estimators for μ and σ,
respectively. Then, the distributions of (μ̂p − μ)/σ̂ and σ̂p/σ do not depend on the parameters μ and
σ.

Proof. Let δ1(X) = σ̂p, let δ2(X) = μ̂p, let ψ1(X, μ, σ) = σ̂p/σ, and let ψ2(X, μ, σ) = (μ̂p − μ)/σ̂.
Since δ1(X) and δ2(X) are equivariant for σ and μ, respectively, we have (see Lehmann and
Casella [8, pages 171–173])

δ1(bX + a) = bδ1(X), δ2(bX + a) = bδ2(X) + a, ∀ −∞ < a <∞, b > 0. (A.7)

Hence, taking a = −μ/σ, b = 1/σ, we obtain

δ1

(
X − μ
σ

)
=
δ1(X)
σ

= ψ1
(
X, μ, σ

)
, (A.8)

δ2

(
X − μ
σ

)
=

(
δ2(X) − μ

)

σ
= ψ2
(
X, μ, σ

)
. (A.9)

Further, since X is from a location-scale family with location and scale parameters μ and σ
respectively, the distribution of (X−μ)/σ does not depend on parameter. Indeed, the joint pdf
of X can be written as (1/σn)

∏n
i=1g((xi − μ)/σ)where g is a pdf which does not depend on μ

and σ. Then, the joint pdf of (X−μ)/σ is
∏n

i=1g(yi). Hence, the distributions of δ1((X−μ)/σ)
and δ2((X−μ)/σ) do not depend on parameter. Therefore, from (A.8) and (A.9), we conclude
that the distributions of ψ1(X, μ, σ) and ψ2(X, μ, σ) do not depend on parameter, and this
completes the proof.

B. Simulation Results in Normal Samples Case

In this section we present some numerical results for the normal samples case. Indeed,
the proposed approach generalizes the existing methods used in solving the well-known
Behrens-Fisher problem.
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Table 5: Coverage probability for δ (normal case with unequal sample sizes).

Sizes (m,n) (δ, σ1, σ2)
Coverage proba. Average width St. error of width

Welch GTV Welch GTV Welch GTV

(5, 10) (0, 2, 1) 0.9404 0.9522 4.6383 4.8018 1.6342 1.6096

(5, 100) (0, 2, 1) 0.9452 0.9478 4.2551 4.2896 1.6747 1.6605

(50, 100) (0, 2, 1) 0.9490 0.9496 1.1938 1.1971 0.1085 0.1082

(10, 5) (0, 2, 1) 0.9556 0.9554 3.3334 3.7019 0.8165 0.7930

(100, 5) (0, 2, 1) 0.9436 0.9542 2.7044 2.3623 0.7050 0.6994

(100, 50) (0, 2, 1) 0.9494 0.9506 0.9656 0.9722 0.0566 0.0560

(5, 10) (0, 200, 2) 0.9484 0.9484 466.6274 466.4071 171.1893 171.1114

(5, 100) (0, 200, 2) 0.9522 0.9516 470.7588 470.4365 172.2657 172.2866

(50, 100) (0, 200, 2) 0.9510 0.9502 113.3475 113.2865 11.4323 11.4340

(10, 5) (0, 200, 2) 0.9526 0.9520 278.2983 278.2280 65.7577 65.7696

(100, 5) (0, 200, 2) 0.9514 0.9512 79.3017 79.2324 5.5889 5.6043

(100, 50) (0, 200, 2) 0.9482 0.9496 79.2472 79.2421 5.5864 5.6010

Table 6: Comparison with the bootstrap method (normal case with unequal sample sizes).

Sizes (m,n) (δ, σ1, σ2)
Coverage proba. Average width St. error of width

Bootstr GTV Bootstr GTV Bootstr GTV

(5, 10) (0, 2, 1) 0.941 0.952 5.199 4.802 2.605 1.607

(5, 100) (0, 2, 1) 0.946 0.948 6.284 4.290 3.499 1.661

(50, 100) (0, 2, 1) 0.948 0.950 1.184 1.197 0.117 0.108

(10, 5) (0, 2, 1) 0.953 0.955 3.424 3.702 0.726 0.793

(100, 5) (0, 2, 1) 0.934 0.954 2.493 2.362 1.000 0.699

(100, 50) (0, 2, 1) 0.944 0.951 0.963 0.972 0.067 0.056

(5, 10) (0, 200, 2) 0.942 0.948 764.452 466.407 769.088 171.111

(5, 100) (0, 200, 2) 0.946 0.952 698.5501 470.437 504.280 172.287

(50, 100) (0, 200, 2) 0.953 0.950 111.983 113.287 12.110 11.434

(10, 5) (0, 200, 2) 0.945 0.952 297.40 278.228 78.240 65.770

(100, 5) (0, 200, 2) 0.942 0.951 78.867 79.232 6.198 5.604

(100, 50) (0, 200, 2) 0.949 0.950 78.666 79.242 6.155 5.601

For comparison purposes, we compared the proposed method with bootstrap. In
particular, Table 6 shows that the proposed method dominates the bootstrap in small sample
cases, and it is at least as good as the bootstrap in large sample cases. Also, we present
in Table 5 the coverage probability obtained by using the Welch’s approximation method
for the normal case. Also, we present in Tables 7 and 8 the empirical powers obtained by
using the Welch approximation method for the normal case. In summary, for the Behrens-
Fisher problem with unbalanced sample sizes, the proposed confidence interval is at least as
accurate as that given by Welch method. Further, the proposed test is at least as powerful as
the Welch approximation test. In addition, the proposed method has the advantage of being
useful for the more general statistical model of two samples from location-scale family.
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Table 7: Powers for δ (normal case with unequal sample sizes & scale parameters).

Sizes (m,n) (δ, σ1, σ2)
Power (δ, σ1, σ2)

Power

Welch GTV Welch GTV

(5, 10)

(−2, 2, 1) 0.5472 0.550 (−102, 200, 2) 0.2462 0.2488

(−1, 2, 1) 0.2274 0.2296 (−12, 200, 2) 0.0572 0.0608

(0, 2, 1) 0.0578 0.0464 (0, 200, 2) 0.0542 0.0504

(1, 2, 1) 0.0082 0.0066 (8, 200, 2) 0.046 0.037

(10, 5)

(−2, 2, 1) 0.7712 0.7791 (−102, 200, 2) 0.438 0.4402

(−1, 2, 1) 0.3216 0.3304 (−12, 200, 2) 0.066 0.0678

(0, 2, 1) 0.045 0.0458 (0, 200, 2) 0.0524 0.049

(1, 2, 1) 0.0016 0.002 (8, 200, 2) 0.0448 0.042

(5, 100)

(−2, 2, 1) 0.5714 0.5804 (−102, 200, 2) 0.2414 0.2496

(−1, 2, 1) 0.2322 0.2409 (−12, 200, 2) 0.0592 0.0688

(0, 2, 1) 0.0542 0.0508 (0, 200, 2) 0.047 0.0486

(1, 2, 1) 0.0044 0.004 (8, 200, 2) 0.0448 0.0486

(50, 100)

(−2, 2, 1) 1 1 (−102, 200, 2) 0.9712 0.9726

(−1, 2, 1) 0.9522 0.9534 (−12, 200, 2) 0.110 0.116

(0, 2, 1) 0.052 0.0488 (0, 200, 2) 0.047 0.049

(1, 2, 1) 0 0 (8, 200, 2) 0.029 0.0252

(100, 50)
(−2, 2, 1) 1 1 (−102, 200, 2) 0.9984 0.999

(−1, 2, 1) 0.992 0.9932 (−12, 200, 2) 0.1378 0.156

(0, 2, 1) 0.0512 0.0492 (0, 200, 2) 0.051 0.0486

Table 8: Powers for δ for the normal case: other scenarios with unequal sample sizes.

Sizes (m,n) (δ, σ1, σ2)
Power (δ, σ1, σ2)

Power

Welch GTV Welch GTV

(10, 5)

(−2, 2, 1) 0.7712 0.7791 (−102, 200, 2) 0.438 0.4402

(−1, 2, 1) 0.3216 0.3304 (−12, 200, 2) 0.066 0.0678

(0, 2, 1) 0.045 0.0458 (0, 200, 2) 0.0524 0.049

(1, 2, 1) 0.0016 0.002 (8, 200, 2) 0.0448 0.042

(2, 2, 1) 0 0 (98, 200, 2) 0.001 0

(100, 5)

(−2, 2, 1) 0.9616 0.9678 (−102, 200, 2) 0.9994 0.9996

(−1, 2, 1) 0.555 0.558 (−12, 200, 2) 0.148 0.152

(0, 2, 1) 0.0478 0.0544 (0, 200, 2) 0.0532 0.0476

(1, 2, 1) 0 0 (8, 200, 2) 0.0214 0.0196

(2, 2, 1) 0 0 (98, 200, 2) 0 0

(100, 50)

(−2, 2, 1) 1 1 (−102, 200, 2) 0.9984 0.999

(−1, 2, 1) 0.992 0.9932 (−12, 200, 2) 0.1378 0.156

(0, 2, 1) 0.0512 0.0492 (0, 200, 2) 0.051 0.0486

(1, 2, 1) 0 0 (8, 200, 2) 0.0218 0.0214

(2, 2, 1) 0 0 (98, 200, 2) 0 0
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