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This paper is devoted to the study of the behavior of the use of double sampling for dealing
with nonresponses, when ranked set sample is used. The characteristics of the sampling strategies
are derived. The structure of the errors generated the need of studying of the optimality of the
strategies by performing a set Monte Carlo experiments.

1. Introduction

The usual theory of survey sampling is developed assuming that the finite population U =
{u1, . . . , uN} is composed by individuals that can be perfectly identified. A sample s of size
n ≤ N is selected. The variable of interest Y is measured in each selected unit. Real-life
surveys should deal the existence of missing observations. There are three solutions to cope
with this fact: to ignore the nonrespondents, to subsample the nonrespondents, or to impute
the missing values. To ignore the non responses is a dangerous decision, to sub sample is
a conservative and costly solution. Imputation is often used to compensate for item nonre-
sponse. See, for discussions on the theme, Rueda and González [1], Singh [2], for example.

Section 2 presents the problem of non response when a single sample is selected.
We consider the use of double sampling for obtaining information on an auxiliary vari-

able X. A first large sample is selected, it is supposedly noncostly. The values of X are used
for selecting a ranked set sample (RSS), as the units are ranked using the values in the first
stage sample. A selection of second sample provides a subsample from the preliminary large
sample. The literature on the use of simple randomdouble sampling (SRS) is large. Text books
give the basic theory, see Singh [2] and Cochran [3]. In this paper we consider a ranked set



2 Journal of Probability and Statistics

sampling (RSS) double sampling procedure. It is presented in Section 3where a family of esti-
mators is considered as an RSS alternative to the proposal of Singh and Kumar [4]. An expres-
sion of the gain in accuracy due to our proposed estimator is found. The estimator is com-
pared with simple mean and the proposal of Singh and Kumar [4]. Real-life data are used for
evaluating the behavior of these alternative estimators of the population mean in Section 4.

2. The Nonresponse Problem: A Single Sample

Non responses may be motivated by a refusal of some units to give the true value of Y or
by other causes. Hansen and Hurvitz in 1946 [5] proposed selecting a sub-sample among the
nonrespondents, see Cochran [3]. This feature depends heavily on the proposed sub-sam-
pling rule. Sampling rules are due to Hansen and Hurvitz [5], Srinath [6], and Bouza [7]. The
existence of non responses fixes thatU is divided into two strata:U1 = {u ∈ U | u responds at
the first visit}, U2 = U \U1. Similarly s is partitioned into si ⊂ Ui, i = 1, 2. The procedure is a
particular double sampling design described, using Hansen-Hurvitz’s rule (HHR) as follows.

Step 1. Select a sample s from U using srswr.

Step 2. Evaluate Y among the respondents and determine {yi : i ∈ s1 ⊂ U1, /s1/ = n1}.
Compute

y1 =

∑n1
i=1 yi

n1
. (2.1)

Step 3. Determine n′
2 = n2/K, K > 1; /s2/ = n2 with s2= {u ∈ s | u ∈ U2}.

Step 4. Select a sub-sample s′2 of size n′
2 from s2 using srswr.

Step 5. Evaluate Y among the units in s′2{yi: i ∈ s′2 ⊂ s2, s2 ⊂ U2}. Compute

y′
2 =

∑n′
2

i=1 yi

n′
2

. (2.2)

Step 6. Compute the estimate of μ

y =
n1

n
y1 +

n2

n
y′
2 = w1y1 +w2y

′
2. (2.3)

Note that (2.1) is the mean of an srswr sample selected fromU1, the response stratum, then its
expected value is the mean of Y in the respondent stratum: μ1. We have that the conditional
expectation of (2.2) is

E
[
y′
2 | s
]
= y2, (2.4)

as (2.4) is the mean of a srswr sample selected from the non response stratum U2

EE
[
y′
2 | s
]
= μ2, (2.5)
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and taking into account that for i = 1, 2 E(ni) = nNi/N = nWi the unbiasedness of (2.3) is
easily derived.

The variance of (2.3) is deduced by using the following trick:

y =
(
w1y1 +w2y2

)
+w2

(
y′
2 − y2

)
, (2.6)

the first term is the mean of s, then its variance is σ2/n. For the second term we have that

V
(
w2
(
y′
2 − y2

) | s) = w2
2E
(
y′
2 − μ2) − (y2 − μ2) | s

)2

= w2
2

[
E
((
y′
2 − μ2

) | s)2 + E
((
y2 − μ2

) | s)2

−2E((y′
2 − μ2

)((
y2 − μ2

)) | s)
]
.

(2.7)

Conditioning to a fixed n2 we have that the expectation of the third term is (y2 − μ2)
2. Then

we have that

V
(
w2
(
y′
2 − y2

) | s) = w2
2

(
σ2
2Y

n′
2
− σ2

2Y

n2

)

= w2
2σ

2
2Y

(
K

n2
− 1
n2

)

,

EV
(
w2
(
y′
2 − y2

) | s) = W2(K − 1)σ2
2Y

n
.

(2.8)

Hence the expected error of (2.3) is given by the well-known expression

EV
(
y
)
=

σ2
Y

n
+
W2(K − 1)σ2

2Y

n
. (2.9)

Our proposal is to consider obtaining information provided by a known variable X for using
RSS.

McIntire [8] proposed the method of RSS. He noticed the existence of a gain in
accuracy with respect to the use of the sample mean with respect to srswr. Dell and Clutter
[9] and Takahashi and Wakimoto [10] provided mathematical support to his claims. The fol-
lowing procedure provides a description of RSS selection.

2.1. RSS Procedure

Step 1. Randomly select m2 units from the target population.

Step 2. Allocate them2 selected units as randomly as possible intom sets, each of size m.

Step 3. Without yet knowing any values for the variable of interest, rank the units within each
set with respect to variable of interest. This may be based on personal professional judgment
or done with concomitant variable correlated with the variable of interest.

Step 4. Choose a sample for actual quantification by including the smallest ranked unit in the
first set, the second smallest ranked unit in the second set, the process is continued in this
way until the largest ranked unit is selected from the last set.



4 Journal of Probability and Statistics

Step 5. Repeat Steps 1 through 4 for r cycles to obtain a sample of size mr for actual quan-
tification.

The RSS sample is the sequence of order statistics (OS) ξ(1 : 1)t, . . . , ξ(m:m)t,where (j : h)t
denotes the statistic of order j in the hth sample in the cycle t = 1, . . . , r. We have n = mr
observation and r of them are of the ith order statistics (os), i = 1, . . . , m. The RSS estimator
of the mean of a variable of interest ξ, μξ is

μ(rss)ξ =
∑r

t=1
∑m

i=1 ξ(i:m)t

rm
, (2.10)

and its variance is given by

V
(
μ(rss)ξ

)
=

∑m
i=1 σ

2
ξ(i:m)

rm2
=

σ2
ξ

rm
−
∑m

i=1 Δ
2
(i:m)

rm2
, (2.11)

where σ2
ξ(i:m)

= E[ξ(i:m) − E([ξ(i:m))]
2 and Δ(i:m) = E([ξ(i:m))] − μξ.

The second term of (2.11) is the gain in accuracy due to the use of RSS instead of srswr.
Bouza [11] developed an RSS alternative under non responses. The non responses in s

is n2 = rm2. He derived that, using a subsample sizem′
2 = m2/K,

y′
2rss =

∑r
t=1
∑m′

j

i=1 y(i:m′
2)t

rm′
2

, (2.12)

is unbiased for the mean of Y in the nr stratum.
The cross-expectation’s expected value is zero. In this case the RSS is balanced and

we may express the variance of the order statistics (OS) as a function of the variance of Y in
U2,V (y(i:m′

2)t), and the gains in accuracy measured by the Δ2
2Y (i),

′s as

V
(
y2 − y′

2rss | s
)
= σ2

2Y

(
1
n′
2
− 1
n2

)

−
m2∑

i=1

Δ2
2Y (i)

n′
2m2

. (2.13)

Substituting n′
2 = rm2/K2 we obtain the following:

V
(
y2rss − y′

2rss | s
)
=

σ2
2Y

r

(
K2 − 1
m2

)

−
m2∑

i=1

Δ2
2Y (i:m2)

rm2

(
K2 − 1
m2

)

= V2. (2.14)

Taking the RSS estimator

yrss =
n1

n
y1rss +

n2

n
y′
2rss = w1yrss1 +w2y

′
2rss,

EV
(
yrss

)
=

σ2
Y

n
+
W2(K − 1)σ2

2Y

n
−Ψ(Y ).

(2.15)
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Then there is gain in accuracy due to the use of RSS which is

Ψ(Y ) = W2(K − 1)E

(∑m2
i=1 Δ

2
2Y (i:m2)

m2

)

, (2.16)

where Δ2
2Y (i:m) = (E(Y(i:m) − μY )

2) is the gain in accuracy due to the use or RSS in the second
stage.

3. The Nonresponse Problem: Double Sampling

We will consider that double sampling is used for obtaining a sample s∗ from U using srswr.
A cheap variable X is measured in the units in s∗. X is correlated with Y and we are able to
compute the mean of it x in the first stage. There are non responses. In the second stage we
know xs∗ = (

∑n∗
i=1 xi)/n∗ and x = (

∑n
i=1 xi)/n. Note that these estimates are used only in the

estimation process.
Non responses on Y are present in the second stage sample and a subsample among

the non respondents is selected. Singh and Kumar [4] considered this problem for simple
random sampling. They proposed the family of estimators characterized by

y∗ = y

(
ax + b

axs∗ + b

)α(
ax + b

axs∗ + b

)β

, y =
∑n

i=1 yi

n
. (3.1)

The sampler fixes the constants α and β as well as a and b. They can be constants or functions,
a different from zero. Taking

ε =
y − μY

μY
, θ =

x − μX

μX
, ϑ =

xs∗ − μX

μX
, ω =

x − μX

μX
. (3.2)

Proposition 3.1 (see [4]). The bias of

y∗ = y

(
ax + b

axs∗ + b

)α(
ax + b

axs∗ + b

)β

(3.3)

is

B
(
y
∗)

= μY

(
ϕ1 + ϕ2

)
, (3.4)

defining

ϕ1 =
(

γφ

[

αKxy +
α − 1
2

φ

]

+ β

(

Kxy + αφ +
β − 1
2

φ

))

c2x,

ϕ2 = λαφ

(

Kx2y +
α − 1
2

φ

)

c2x2
,

(3.5)
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where

γ =
1
n
− 1
n∗ , λ =

W2(K − 1)
n

, c2x =
σ2
x

μ2
x

, c2x2
=

σ2
x2

μ2
x2

,

Kxy =
μxσxy

μyσ2
x

, Kx2y =
μx2xσ

2
x2y

μyσ2
x2 x2

,

σxy = E
(
X − μx

)(
Y − μY

)
, σx2y = E

((
X − μx

)(
Y − μY

)

U2

)

.

(3.6)

The variance is given by

V
(
y
∗)

= μ2
Y (δ1 + δ2), (3.7)

defining

δ1 =
(
γ
[
c2Y +

(
α + β

)
φ
((
α + β

)
φ + 2Kxy

)
c2x

])
,

δ2 = λ
(
c2y2

+ αφ
(
αφ + 2Kx2y

)
c2x2

)
+
c2y

n∗ ,

c2y =
σ2
y

μ2
y

, c2y2
=

σ2
y2

μ2
y2

.

(3.8)

We are going to derive the RSS counterpart of this family. The first phase sample is selected
using srswr and the information onX is used for selecting the initial sample and to subsample
the non respondents. Our proposal is to use

y∗
rss = yrss

(
axrss + b

axs∗ + b

)α(
ax + b

axs∗ + b

)β

, (3.9)

xrss is the RSS mean of X in the second stage and

εrss =
yrss − μY

μY
, θrss =

xrss − μX

μX
, ϑ =

xs∗ − μX

μX
, ωrss =

xrss − μX

μX
. (3.10)

Let us represent the involved estimators by

yrss = μY (1 + εrss),

xrss = μX(1 + θrss),

xs∗ = μX(1 + ϑ),

xrss = μX(1 +ωrss).

(3.11)

Due to the unbiasedness of the estimators E(Xrss) = 0, Z = ε, θ, ϑ,ω.
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Taking

φ =
aμX

aμx + b
. (3.12)

We can rewrite (3.9) as

y
∗
rss = μY

[
(1 + εrss)

(
1 + φθrss

)α(1 + φϑ
)−α(1 + φωrss

)β(1 + φϑ
)−β]

. (3.13)

Note that

E(εrss)2 =
E
(
yrss − μY

)2

μ2
Y

=
σ2
Y/n +W2(K − 1)σ2

2Y/n
∗

μ2
Y

−
W2(K − 1)E

((∑m2
i=1 Δ

2
2Y (i:m2)

)
/m2

)

μ2
Y

,

E(θrss)
2 =

σ2
x/n +W2(K − 1)σ2

2x/n

μ2
x

−
W2(K − 1)E

((∑m2
i=1 Δ

2
2x(i:m2)

)
/nm2

)

μ2
x

,

E(ϑ)2 =
E(xs∗ − μX)

2

μ2
X

=
σ2
X

n∗μ2
X

,

E(ωrss)2 =
σ2
x/n −

(∑m
i=1 Δ

2
x(i)

)
/rn

μ2
x

.

(3.14)

Under the hypothesis /φZ/ < 1, Z = εrss, θrss, ϑ, ωrss, an expansion in Taylor series of (3.13)
may be worked out. Grouping conveniently we have that

y
∗
rss − μY = μY

[

εrss + β(ωrss + εrssωrss − εrssϑ) + αφ(θrss + εrssθrss − εrssϑ)

− (α + β
)
φϑ + αβφ2

(
ϑ2 + ϑ(ωrss + θrss) + ϑωrss

)
− φ2

(
β2ϑωrss + α2ϑθrss

)

+
β
(
β + 1

)
φ2

2

(
ϑ2 +ω2

rss

)
+
α(α + 1)φ2

2

(
ϑ2 +ω2

rss

)
]

.

(3.15)

The cross-products for the OS Z(i), Z = X,Y , are expressed by

h∑

i=1

(
Z(i) − μZ(i)

)(
Z′

(i) − μZ′
(i)

)
=

h∑

i=1

(
Z(i) ∓ μZ − μZ(i)

)(
Z′

(i) ∓ μZ′ − μZ′
(i)

)

=
h∑

i=1

(
Z(i) − μZ

)(
Z′

(i) − μZ′
)
−

h∑

i=1

Z(i)ΔZ′
(i)
+ Z′

(i)ΔZ(i) −ΔZ(i)ΔZ′
(i)

= (h − 1)(σZZ′ + ΨZZ′). (3.16)
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The conditional expectations of the RSS estimators are

E(xrss/s
∗) = E

(
E
(
xrss/s

)
/s∗
)
= x∗. (3.17)

Using these results we have that

E(εrssθrss) =
σXY + ΨXY

nμxμy
+
W2(K − 1)(σX2Y + ΨX2Y )

nμxμy
,

E(εrssϑ) =
σXY + ΨXY

n∗μxμy
,

E(εrssωrss) =
σXY + ΨXY

nμxμy
,

(3.18)

with

ΨX2Y = −E
⎛

⎝

∑m′
2

i=1 X(i)2Δx(i)2 + Y(i)2Δy(i)2 −Δx(i)2Δy(i)

m2

⎞

⎠,

ΨXY = −E
(∑m

i=1 X(i)Δx(i) + Y(i)Δy(i) −Δx(i)Δy(i)

m

)

.

(3.19)

In addition

E(ωrssθrss) =
σ2
x + ΨX

nμ2
x

, ΨX = −
∑m

i=1 Δ
2
x8(i)

r

E(ϑθrss) =
σ2
x

n∗μ2
x

,

E(ϑωrss) =
σ2
x

n∗μ2
x

.

(3.20)

Substituting in (3.15) after some algebraic work we obtain that the bias of (3.9) is

B
(
y
∗
rss

)
= μY

(
ϕ1rss + ϕ2rss

)
, (3.21)

where

ϕ1rss =

(

γφ

[

α

(

Kxyc
2
x +

ΨXY

nμxμy

)

+
α − 1
2

φ

(

c2x +
ΨX

nμ2
x

)]

+β

(

Kxyc
2
x +

ΨXY

nμxμy
+ αφ

(

c2x +
ΨX

nμ2
x

)

+
β − 1
2

φc2x

))

Ψz2 = −
E
((∑m2

i=1 Δ
2
2z(i:m2)

)
/m2

)

nμ2
z

, z = x, y. (3.22)

For a large value of n the bias tends to zero. Then we have proved the first statement of the
following proposition.
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Proposition 3.2. The estimator y∗
rss = yrss((axrss + b)/(axs∗ + b))

α
((axrss + b)/(axs∗ + b))β is

asymptotically unbiased in terms of n and its variance is given by

V
(
y
∗
rss

)
=

σ2
Y

n
+ γμ2

Y

(
((
α + β

)
φ
)2
c2x + 2

(
α + β

)
φKxyc

2
x +

ΨXY

μxμY

)

+ λμ2
Y2

(
σ2
Y2

μ2
Y2

+
ΨY2

μ2
Y2

+ αφ

(

αφ

(
σ2
x

μ2
x

+ Ψx2

))

+ 2Kx2Y c
2
x2
+
ΨX2Y

μxμY
(1 + Ψx2) +

σ2
x2Y

μxμY

)

.

(3.23)

If /φZ/ < 1, Z = εrss, θrss, ϑ, ωrss.

Proof. An expansion in Taylor series of (y
∗
rss − μY )

2 may be worked out. It is, neglecting the
terms of order t > 2,

(
y
∗
rss − μY

)2
= μ2

Y (τ1 + τ2 + τ3 + τ4), (3.24)

where

τ1 = ε2rss +
(
α2θ2

rss + β2ω2
rss + 2αβεrssωrss

)
φ2,

τ2 = ε2rss +
(
α + β

)2
ϑ2φ2,

τ3 = 2φ
(
αεrssθrss + βεrssωrss

)
,

τ4 = −2(α + β
)
(φϑεrss + φ2(αϑεrss + βϑωrss

)
.

(3.25)

Calculating the expected value and grouping we have that

E
(
y
∗
rss − μY

)2
=

σ2
Y

n
+ γμ2

Y

(
((
α + β

)
φ
)2
c2x + 2

(
α + β

)
φKxyc

2
x +

ΨXY

μxμY

)

+ λμ2
Y2

(
σ2
Y2

μ2
Y2

+
ΨY2

μ2
Y2

+ αφ

(

αφ

(
σ2
x

μ2
x

+ Ψx2

))

+2Kx2Y c
2
x2
+
ΨX2Y

μxμY
(1 + Ψx2) +

σ2
x2Y

μxμY

)

.

(3.26)

Remark 3.3. The gain in accuracy due to the use of (3.9) in terms of the variance is

Grss =
σx2y + γμ2

yΨxy + 2Ψxy(1 + Ψ2) + λΨx2μ
2
y

μxμy
. (3.27)

Hence, as V (y
∗
rss) = V (y

∗
) +G the proposed method is more precise if G < 0.
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This result allows to deduce the RSS counterparts of different double sampling
estimators of the mean. For example,

(
α, β, a, b

)
= (−1, 0, 1, 0) −→ Khare-Srivanstava-Tabasum-Khan estimator 1,

(
α, β, a, b

)
= (0,−1, 1, 0) −→ Khare-Srivanstava-Tabasum-Khan estimator 2,

(
α, β, a, b

)
= (−1,−1, 1, 0) −→ Shing-Kumar ratio estimator,

(
α, β, a, b

)
= (−1, 0, 1, 0) −→ Shing-Kumar product estimator.

(3.28)

See Khare and Srivastava [12, 13] and Singh and Kumar, [4, 14, 15].

4. Numerical Comparisons

We compared the behavior of the proposed RSS method with the SRS one using data from
three populations. Their description is given as follows.

Population 1

A set of 244 accounts was considered. The balance of each of them in the previous semester
wasX and Y was produced by an auditory. The first phase sample was provided by selecting
120 accounts and 72 non responses were reported. A new auditory was performed. The sec-
ond stage sample was of size 24.

Population 2

The evaluation of radiographies provided values of X in 350 patients with cancer. A sample
of 100 provided the first phase sample and 24 of them the second phase. Y was the size of an
extirpated tumor. 53 measurements were missing. The measurement of them needed a search
in the pathology department.

Population 3

The height of 1270 pigs provided the information on X in the population. 170 of them were
selected at the first phase and 24 of them the second phase . Y was the weight of the pigs and
69 initial measurements were missing. The missing pig’s weight was obtained by locating
them before sending them to the butchery.

The values of r and m were fixed conveniently for obtaining a sample of size 24.
The means and variances of the os’s involved were determined by forming all the possible
samples and computing them. The relative gain in accuracy due to the use of RSS was
measured by

� =
Grss

V
(
y
∗) , (4.1)



Journal of Probability and Statistics 11

Table 1: Gain in accuracy due to the use of RSS in three populations.

Population m = 3 m = 4 m = 6
Balance of accounts 0,1122 0,1523 0,1095
Size of tumors 0,1214 0,1207 0,1105
Height of pigs 0,2672 0,2998 0,2159

Table 2: Gain in accuracy due to the use of RSS of six populations: n∗ = 240 and K = 0, 10.

Distribution m = 3 m = 4 m = 6
Uniform (0,1) 0,121 0,146 0,118
Normal (0,1) 0,101 0,127 0,096
Logistic (0,1) 0,009 0,011 0,009
Laplace (0,1) 0,087 0,092 0,074
Exponential (1) 0,006 0,007 0,005
Gamma (2,1) 0,092 0,114 0,088
Weibull (1,3) 0,081 0,087 0,074
Beta (7,4) 0,157 0,151 0,138

form = 3, 4, 6. The results are given in Table 1. They sustain that the use of RSS provides gains
of accuracy larger than 10%/.

A similar study was developed by generating a sample of 240 values of X and
determining

Y = 5 + 2X + ε, (4.2)

ε was generated using the same distribution. The results are given in Table 2. Note that
generally the gain in efficiency is larger when the underlying distribution is symmetric. The
best results are derived when m = 4 excepting the Beta distribution.

5. Conclusions

The accuracy of the proposed method seems to be better than the SRS method when Grss is
analyzed. It can take negative values but it has been larger than zero in the experiments de-
veloped. It was around 0,1 in all the cases and usingm = 4 may be the best choice.
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