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We have developed the Bayesian estimation procedure for flexible Weibull distribution under Type-II censoring scheme assuming
Jeffrey’s scale invariant (noninformative) and Gamma (informative) priors for the model parameters. The interval estimation
for the model parameters has been performed through normal approximation, bootstrap, and highest posterior density (HPD)
procedures. Further, we have also derived the predictive posteriors and the corresponding predictive survival functions for the
future observations based on Type-II censored data from the flexible Weibull distribution. Since the predictive posteriors are not
in the closed form, we proposed to use the Monte Carlo Markov chain (MCMC)methods to approximate the posteriors of interest.
The performance of the Bayes estimators has also been compared with the classical estimators of the model parameters through the
Monte Carlo simulation study. A real data set representing the time between failures of secondary reactor pumps has been analysed
for illustration purpose.

1. Introduction

In reliability/survival analysis, generally, life test experiments
are performed to check the life expectancy of the manufac-
tured product or items/units before products produced in
the market. But in practice, the experimenters are not able
to observe the failure times of all the units placed on a life
test due to time and cost constraints or due to some other
uncertain reasons. Data obtained from such experiments are
called censored sample. Keeping time and cost constraints in
mind, many types of censoring schemes have been discussed
in the statistical literature named as Type-I censoring, Type-
II censoring and progressive censoring schemes, and so
forth. In this paper, Type-II censoring scheme is considered.
In Type-II censoring scheme, the life test is terminated
as soon as a prespecified number (say, 𝑟) of units have
failed. Therefore, out of 𝑛 units put on test, only first 𝑟
failures will be observed. The data obtained from such a
restrained life test will be referred to as a Type-II censored
sample.

Prediction of the lifetimes of future items based on
censored data is very interesting and valuable topic for
researchers, engineers and reliability practitioners. In predic-
tive inference, In predictive Inference, we can infer about
the lifetimes of the future items using observed data. The
future prediction problem can be classified into two types: (1)
one-sample prediction problem. (2) two-sample prediction
problem. In one-sample prediction problem, the variable to
be predicted comes from the same sequence of variables
observed and dependent of the informative sample. In the
second type, the variable to be predicted comes from another
independent future sample. Reference [1] has developed the
Bayesian procedure to the prediction problems of future
observations and use the concept of Bayesian predictive
posterior distribution. Many authors have focussed on the
problem of Bayesian prediction of future observations based
on various types of censored data from different lifetime
models (see [2–9], and references cited therein).

The flexible Weibull distribution is a new two-parameter
generalization of theWeibullmodel which has been proposed
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Table 1: Average estimates and MSEs (in the brackets) of the estimators of 𝛼 (in the first row of each cell) and 𝛽 (in the second row of each
cell) under different Type-II censoring schemes for fixed values of 𝛼 = 2 and 𝛽 = 2.

(𝑛, 𝑟) MLE Bayes
Jeffrey’s prior Gamma-1 Gamma-2

20, 20

2.16201 (0.19478) 2.12381 (0.18568) 2.11852 (0.16520) 2.12323 (0.18297)
2.15231 (0.25599) 2.11832 (0.24964) 2.11214 (0.21910) 2.11751 (0.24560)

20, 16

2.25425 (0.38927) 2.19812 (0.37041) 2.18709 (0.31676) 2.19695 (0.36310)
2.20897 (0.35759) 2.16973 (0.34807) 2.15957 (0.30027) 2.16858 (0.34157)

20, 12

2.42308 (0.86955) 2.33505 (0.82782) 2.31067 (0.66996) 2.33284 (0.80561)
2.29886 (0.55647) 2.25176 (0.54174) 2.23387 (0.45669) 2.24973 (0.52982)

30, 30

2.10084 (0.10210) 2.07541 (0.09830) 2.07318 (0.09054) 2.07517 (0.09720)
2.09362 (0.13855) 2.07067 (0.13589) 2.0680 (0.123778) 2.07039 (0.13420)

30, 24

2.16669 (0.22014) 2.12924 (0.21169) 2.12430 (0.189528) 2.12873 (0.20866)
2.13586 (0.20569) 2.10924 (0.20143) 2.10460 (0.18104) 2.10875 (0.19861)

30, 18

2.25330 (0.43040) 2.19459 (0.41323) 2.18513 (0.35242) 2.19370 (0.40483)
2.17914 (0.27758) 2.14681 (0.27137) 2.13951 (0.23802) 2.14599 (0.26667)

50, 50

2.05641 (0.05175) 2.04115 (0.05045) 2.04046 (0.04793) 2.04111 (0.05013)
2.05189 (0.07560) 2.03798 (0.07468) 2.03712 (0.07043) 2.03793 (0.07413)

50, 40

2.08371 (0.09921) 2.06117 (0.09674) 2.05986 (0.08995) 2.06105 (0.09583)
2.06881 (0.10032) 2.05256 (0.09900) 2.05119 (0.09234) 2.05243 (0.09811)

50, 30

2.14568 (0.18827) 2.11044 (0.18191) 2.10701 (0.16367) 2.11011 (0.17946)
2.09982 (0.13099) 2.08009 (0.12866) 2.07740 (0.11804) 2.07982 (0.12722)

by [10]. The density function of the flexible Weibull distribu-
tion is given by

𝑓 (𝑥) = (𝛼 +

𝛽

𝑥
2
) exp(𝛼𝑥 −

𝛽

𝑥

) exp (−𝑒𝛼𝑥−𝛽/𝑥) , 𝛼, 𝛽 > 0.

(1)

The corresponding CDF is given by

𝐹 (𝑥) = 1 − exp (−𝑒𝛼𝑥−𝛽/𝑥) . (2)

They have shown that this distribution is able to model
various ageing classes of lifetime distributions including IFR,
IFRA, and MBT (modified bathtub). They have also checked
the goodness-of-fit of this distribution to the failure time
between secondary reactor pumps data in the comparison
of various extensions of Weibull model and found that this
model gives the better fit. Therefore, this distribution can be
considered as an alternative lifetime model of the various
well-known generalizations of theWeibull distribution. Some
statistical properties and the classical estimation procedure
for the flexible Weibull distribution have been discussed by
[10]. It is to be mentioned here that this distribution has not
been considered under Bayesian setup in the earlier literature.

It is well-known that the squared error loss function is
the most widely used loss function in Bayesian analysis. This
loss is well justified in the classical paradigm on the ground of
minimum variance unbiased estimation procedure. In most
of the cases, Bayesian estimation procedures has been devel-
oped under the same loss function. For Bayesian estimation,
we also need to assume a prior distribution for the model

parameters involved in the analysis. In this paper, Bayesian
analysis have been preformed under the squared error loss
function (SELF) assuming both Jeffreys scale invariant and
Gamma priors.

A major difficulty to the implementation of Bayesian
procedure is that of obtaining the posterior distribution. The
process often requires the integration which is very diffi-
cult to calculate especially when dealing with complex and
high-dimensional models. In such a situation, Monte Carlo
Markov chain (MCMC) methods, namely, Gibbs sampling
[11] and Metropolis-Hastings (MH) algorithms [12, 13], are
very useful to simulate the deviates from the posterior density
and produce the good approximate results.

The rest of the paper is organized as fallows. In Section 2,
we have discussed the point estimation procedures for the
parameters of the considered model under classical set-up.
The confidence/bootstrap intervals have been constructed
in Section 3. In Section 4, we have developed the Bayesian
estimation procedure under the assumption that model
parameters have the gamma prior density function. We
have also derived the one-sample and two-sample predictive
densities and corresponding survival functions of the future
observables in Sections 5 and 6, respectively. The predictive
bounds of future observations under one-sample and two-
sample predictions have also been discussed in respective
sections. For comparing the performance of the classical and
Bayesian estimation procedures, the Monte Carlo simulation
study has been presented in Section 7. To check the applica-
bility of the proposed methodologies, a real data set has been
analysed in Section 8. Finally, the conclusions have been given
in Section 9.
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Table 2: Average estimates and MSEs (in the brackets) of the estimators of 𝛼 (in the first row of each cell) and 𝛽 (in the second row of each
cell) for complete sample 𝑛 = 20 with varying parameters.

(𝛼, 𝛽) MLE Bayes
Jeffrey’s prior Gamma-1 Gamma-2

1, 1

1.1139 (0.07556) 1.0684 (0.06575) 1.0656 (0.06067) 1.0680 (0.06508)
1.0900 (0.08537) 1.0493 (0.07775) 1.0462 (0.07101) 1.0490 (0.07688)

1, 2

1.1034 (0.06502) 1.0709 (0.05950) 1.0681 (0.05440) 1.0706 (0.05881)
2.1769 (0.30904) 2.1195 (0.29285) 2.1093 (0.24159) 2.1183 (0.28551)

1, 3

1.0993 (0.06207) 1.0739 (0.05822) 1.0703 (0.05164) 1.0734 (0.05726)
3.2631 (0.66390) 3.1976 (0.64043) 3.1758 (0.47965) 3.1949 (0.61568)

2, 1

2.2067 (0.26010) 2.1418 (0.23801) 2.1317 (0.20114) 2.1407 (0.23297)
1.0884 (0.07726) 1.0597 (0.07321) 1.0561 (0.06690) 1.0594 (0.07235)

2, 2

2.1942 (0.24329) 2.1522 (0.23141) 2.1449 (0.20424) 2.1512 (0.22769)
2.1746 (0.28703) 2.1396 (0.27953) 2.1318 (0.24468) 2.1387 (0.27465)

2, 3

2.1894 (0.23938) 2.1580 (0.23120) 2.1510 (0.20434) 2.1571 (0.22745)
3.2608 (0.62525) 3.2237 (0.61496) 3.2093 (0.51498) 3.2219 (0.60058)

3, 1

3.2979 (0.55861) 3.2216 (0.52396) 3.1977 (0.40431) 3.2187 (0.50676)
1.0877 (0.07376) 1.0659 (0.07116) 1.0610 (0.06349) 1.0653 (0.07006)

3, 2

3.2841 (0.53861) 3.2370 (0.52021) 3.2220 (0.44077) 3.2352 (0.50919)
2.1739 (0.27789) 2.1491 (0.27331) 2.1411 (0.24128) 2.1481 (0.26884)

3, 3

3.2979 (0.55861) 3.2216 (0.52396) 3.1977 (0.40431) 3.2187 (0.50676)
1.0877 (0.07376) 1.0659 (0.07116) 1.0610 (0.06349) 1.0653 (0.07006)

Table 3: Average estimates and MSEs (in the brackets) of the estimators of 𝛼 (in the first row of each cell) and 𝛽 (in the second row of each
cell) for fixed 𝑛 = 20, 𝑟 = 16 with varying parameters.

(𝛼, 𝛽) MLE Bayes
Jeffrey’s prior Gamma-1 Gamma-2

1, 1

1.1601 (0.13900) 1.0873 (0.12006) 1.0832 (0.10606) 1.0870 (0.11811)
1.1051 (0.09747) 1.0605 (0.08798) 1.0565 (0.07969) 1.0600 (0.08695)

1, 2

1.1393 (0.11004) 1.0928 (0.10056) 1.0886 (0.08998) 1.0924 (0.09915)
2.2098 (0.36960) 2.1461 (0.34912) 2.1335 (0.28565) 2.1446 (0.34025)

1, 3

1.1317 (0.10126) 1.0968 (0.09494) 1.0916 (0.08277) 1.0962 (0.09321)
3.3147 (0.81320) 3.2416 (0.78322) 3.2143 (0.58046) 3.2382 (0.75242)

2, 1

2.2786 (0.44015) 2.1857 (0.40223) 2.1691 (0.31750) 2.1840 (0.39033)
1.1049 (0.09240) 1.0731 (0.08728) 1.0681 (0.07812) 1.0725 (0.08607)

2, 2

2.2551 (0.38836) 2.1990 (0.36937) 2.1879 (0.31593) 2.1978 (0.36213)
2.2099 (0.35695) 2.1708 (0.34734) 2.1605 (0.29969) 2.1696 (0.34086)

2, 3

2.2463 (0.37240) 2.2055 (0.35965) 2.1952 (0.31102) 2.2044 (0.35296)
3.3157 (0.79237) 3.2738 (0.77911) 3.2552 (0.64353) 3.2716 (0.75988)

3, 1

3.3950 (0.91132) 3.2905 (0.85450) 3.2509 (0.60166) 3.2864 (0.81711)
1.1049 (0.09035) 1.0805 (0.08702) 1.0736 (0.07525) 1.0798 (0.08538)

3, 2

3.3695 (0.83789) 3.3083 (0.80919) 3.2850 (0.65786) 3.3059 (0.78822)
2.2105 (0.35216) 2.1825 (0.34626) 2.1716 (0.29991) 2.1813 (0.33992)

3, 3

3.3598 (0.81499) 3.3160 (0.79548) 3.2972 (0.65221) 3.3139 (0.77860)
3.3167 (0.78472) 3.2879 (0.77676) 3.2710 (0.66096) 3.2859 (0.76072)

2. Classical Estimation

Let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
be the IID random sample from (1) and let

𝑥
(1)
, 𝑥
(2)
, . . . , 𝑥

(𝑟)
, (𝑟 ≤ 𝑛) be the ordered sample obtained

under Type-II censoring scheme. Then, the likelihood

function for such type of censored sample can be defined
as

𝐿 =

𝑛!

(𝑛 − 𝑟)!

𝑟

∏

𝑖=1

𝑓 (𝑥
(𝑖)
) [1 − 𝐹 (𝑥

(𝑟)
)]
𝑛−𝑟

. (3)
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Table 4: Average estimates and MSEs (in the brackets) of the estimators of 𝛼 (in the first row of each cell) and 𝛽 (in the second row of each
cell) for fixed 𝑛 = 20, 𝑟 = 12 with varying parameters.

(𝛼, 𝛽) MLE Bayes
Jeffrey’s prior Gamma-1 Gamma-2

1, 1

1.2957 (0.37835) 1.1122 (0.35851) 1.1380 (0.26430) 1.1250 (0.33656)
1.1456 (0.13641) 1.0903 (0.12315) 1.0856 (0.10866) 1.0902 (0.12098)

1, 2

1.2447 (0.27307) 1.1609 (0.25275) 1.1552 (0.21467) 1.1611 (0.24655)
2.2777 (0.50948) 2.2017 (0.48238) 2.1838 (0.38908) 2.1996 (0.46883)

1, 3

1.2222 (0.23392) 1.1652 (0.21985) 1.1553 (0.18599) 1.1642 (0.21487)
3.4460 (1.24114) 3.3585 (1.19561) 3.3153 (0.87861) 3.3528 (1.14642)

2, 1

2.4823 (1.07353) 2.3141 (0.99717) 2.2810 (0.67931) 2.3164 (0.93999)
1.1468 (0.13669) 1.1086 (0.12925) 1.0996 (0.11056) 1.1078 (0.12651)

2, 2

2.4243 (0.86825) 2.3363 (0.82612) 2.3117 (0.66887) 2.3340 (0.80407)
2.3000 (0.55574) 2.2530 (0.54086) 2.2349 (0.45605) 2.2509 (0.52898)

2, 3

2.4028 (0.80078) 2.3416 (0.77287) 2.3197 (0.64588) 2.3392 (0.75508)
3.4559 (1.26492) 3.4054 (1.24372) 3.3731 (1.01013) 3.4014 (1.20982)

3, 1

3.6598 (2.05251) 3.4886 (1.92783) 3.3923 (1.13282) 3.4815 (1.79894)
1.1472 (0.13534) 1.1180 (0.13032) 1.1048 (0.10602) 1.1165 (0.12669)

3, 2

3.6041 (1.80173) 3.5124 (1.73891) 3.4586 (1.31761) 3.5071 (1.67923)
2.3039 (0.56221) 2.2702 (0.55276) 2.2498 (0.46441) 2.2679 (0.54033)

3, 3

3.5805 (1.69795) 3.5168 (1.65595) 3.4757 (1.33982) 3.5125 (1.61182)
3.4617 (1.28014) 3.4267 (1.26723) 3.3959 (1.05514) 3.4230 (1.23701)

Substituting (1) and (2) in (3), we have

𝐿 =

𝑛!

(𝑛 − 𝑟)!

𝑟

∏

𝑖=1

(𝛼 +

𝛽

𝑥
2

(𝑖)

) exp(
𝑟

∑

𝑖=1

(𝛼𝑥
(𝑖)
−

𝛽

𝑥
(𝑖)

))

× exp(−
𝑟

∑

𝑖=1

exp(𝛼𝑥
(𝑖)
−

𝛽

𝑥
(𝑖)

)

− (𝑛 − 𝑟) exp(𝛼𝑥
(𝑟)
−

𝛽

𝑥
(𝑟)

)) .

(4)

The log-likelihood function is given by

log 𝐿 = ln( 𝑛!

(𝑛 − 𝑟)!

) +

𝑟

∑

𝑖=1

ln(𝛼 +
𝛽

𝑥
2

(𝑖)

)

+

𝑟

∑

𝑖=1

(𝛼𝑥
(𝑖)
−

𝛽

𝑥
(𝑖)

) −

𝑟

∑

𝑖=1

exp(𝛼𝑥
(𝑖)
−

𝛽

𝑥
(𝑖)

)

− (𝑛 − 𝑟) exp(𝛼𝑥
(𝑟)
−

𝛽

𝑥
(𝑟)

) .

(5)

TheMLEs �̂� and ̂𝛽 of 𝛼 and 𝛽 can be obtained as the simulta-
neous solution of the following two nonlinear equations:

𝑟

∑

𝑖=1

1

(𝛼 + 𝛽/𝑥
2

(𝑖)
)

+

𝑟

∑

𝑖=1

𝑥
(𝑖)
−

𝑟

∑

𝑖=1

𝑥
(𝑖)
𝑒
(𝛼𝑥(𝑖)−𝛽/𝑥(𝑖))

− (𝑛 − 𝑟) 𝑥
(𝑟)
𝑒
(𝛼𝑥(𝑟)−𝛽/𝑥(𝑟))

= 0,

(6)

𝑟

∑

𝑖=1

1/𝑥
2

(𝑖)

(𝛼 + 𝛽/𝑥
2

(𝑖)
)

−

𝑟

∑

𝑖=1

1

𝑥
(𝑖)

+

𝑟

∑

𝑖=1

𝑒
(𝛼𝑥(𝑖)−𝛽/𝑥(𝑖))

𝑥
(𝑖)

+ (𝑛 − 𝑟)

𝑒
(𝛼𝑥(𝑟)−𝛽/𝑥(𝑟))

𝑥
(𝑟)

= 0

(7)

It can be seen that the above equations cannot be solved
explicitly and one needs iterativemethod to solve them.Here,
we proposed the use of the fixed point iteration method,
which can be routinely applied as follows:

The equation (6) can be rewrite as

𝛼 = 𝜙
1
(𝛼, 𝛽) =

∑
𝑟

𝑖=1
(1/ (1 + 𝛽/𝛼𝑥

2

(𝑖)
))

ℎ
1
(𝛼, 𝛽)

. (8)

Similarly, from (7), we have

𝛽 = 𝜙
2
(𝛼, 𝛽) =

∑
𝑟

𝑖=1
((1/𝑥

2

(𝑖)
) / ((𝛼/𝛽) + (1/𝑥

2

(𝑖)
)))

ℎ
2
(𝛼, 𝛽)

, (9)
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Table 5: Average 95% confidence/HPD/bootstrap intervals (in brackets) along with their width and shape (in square brackets) for bootstrap
method under different Type-II censoring schemes for fixed 𝛼 = 2 and 𝛽 = 2.

(𝑛, 𝑟) Asymptotic Bootstrap Bayes
Jeffrey Gamma-1 Gamma-2

20, 20

𝛼

1.42104 1.672185 [2.492175] 0.59304 0.57805 0.59072
(1.452209, 2.873245) (1.676250, 3.348435) (1.82722, 2.42026) (1.82973, 2.40778) (1.82818, 2.41890)

𝛽

1.66567 1.892912 [2.134547] 0.68685 0.66402 0.68298
(1.320337, 2.986004) 1.548423, 3.441335 (1.77583, 2.46268) (1.78165, 2.44567) (1.77731, 2.46029)

20, 16

𝛼

1.96999 2.426357 [2.773682] 0.74758 0.72096 0.74375
(1.270139, 3.240126) (1.611282, 4.037639) (1.82464, 2.57222) (1.82727, 2.54823) (1.82559, 2.56934)

𝛽

1.93131 2.301952 [2.467296] 0.72063 0.69357 0.71606
(1.244336, 3.175642) (1.545066, 3.847018) (1.81036, 2.53099) (1.81423, 2.5078) (1.81135, 2.52741)

20, 12

𝛼

2.81147 3.749764 [3.347512] 0.97546 0.92306 0.96713
(1.018547, 3.830021) (1.560572, 5.310336) (1.84771, 2.82317) (1.85060, 2.77366) (1.85008, 2.81721)

𝛽

2.28314 2.936211 [2.990892] 0.77081 0.73686 0.76509
(1.158481, 3.441619) (1.563132, 4.499343) (1.86734, 2.63815) (1.86716, 2.60402) (1.86832, 2.63341)

30, 30

𝛼

1.12314 1.247883 [2.056709] 0.4791 0.47062 0.47771
(1.539796, 2.662935) (1.692596, 2.940479) (1.83586, 2.31496) (1.83784, 2.30846) (1.83645, 2.31416)

𝛽

1.32406 1.438015 [1.840961] 0.56098 0.54809 0.55861
(1.432405, 2.756466) (1.587448, 3.025463) (1.79086, 2.35184) (1.79496, 2.34305) (1.79186, 2.35047)

30, 24

𝛼

1.54929 1.7729 [2.272754] 0.60329 0.58807 0.60117
(1.392709, 2.942003) (1.624975, 3.397875) (1.82805, 2.43134) (1.83084, 2.41891) (1.82825, 2.42942)

𝛽

1.52657 1.706546 [2.06264] 0.58835 0.57302 0.58567
(1.373484, 2.900058) (1.578646, 3.285192) (1.81574, 2.40409) (1.81937, 2.39239) (1.81669, 2.40236)

30, 21

𝛼

2.15385 2.59599 [2.624895] 0.78178 0.75125 0.77734
(1.176378, 3.330229) (1.537144, 4.133134) (1.80412, 2.58590) (1.81047, 2.56172) (1.80539, 2.58273)

𝛽

1.76257 2.071998 [2.388763] 0.62933 0.60969 0.62606
(1.297852, 3.060424) (1.567708, 3.639706) (1.83298, 2.46231) (1.83617, 2.44586) (1.83368, 2.45974)

50, 50

𝛼

0.84922 0.902724 [1.740127] 0.36791 0.36381 0.36732
(1.631801, 2.481019) (1.726964, 2.629688) (1.85716, 2.22507) (1.85882, 2.22263) (1.85731, 2.22463)

𝛽

1.00564 1.054286 [1.595255] 0.43445 0.42822 0.43321
(1.549076, 2.554712) (1.645654, 2.699940) (1.82095, 2.25540) (1.82367, 2.25189) (1.82162, 2.25483)

50, 40

𝛼

1.1557 1.250972 [1.873862] 0.46222 0.45477 0.46123
(1.505854, 2.661558) (1.648413, 2.899385) (1.83026, 2.29248) (1.83315, 2.28792) (1.83062, 2.29185)

𝛽

1.14531 1.222437 [1.735241] 0.45574 0.44818 0.45429
(1.496150, 2.641461) (1.621884, 2.844321) (1.82516, 2.2809) (1.82774, 2.27592) (1.82558, 2.27987)

50, 30

𝛼

1.6002 1.784637 [2.088423] 0.59843 0.58372 0.59636
(1.345588, 2.945790) (1.567841, 3.352478) (1.81112, 2.40955) (1.81576, 2.39948) (1.81225, 2.40861)

𝛽

1.31418 1.442373 [1.937533] 0.48696 0.47735 0.48517
(1.442738, 2.756921) (1.608814, 3.051187) (1.83724, 2.32420) (1.83956, 2.31691) (1.83778, 2.32295)

where

ℎ
1
(𝛼, 𝛽) =

𝑟

∑

𝑖=1

𝑥
(𝑖)
𝑒
(𝛼𝑥(𝑖)−𝛽/𝑥(𝑖))

+ (𝑛 − 𝑟) 𝑥
(𝑟)
𝑒
(𝛼𝑥(𝑟)−𝛽/𝑥(𝑟))

−

𝑟

∑

𝑖=1

𝑥
(𝑖)
,

ℎ
2
(𝛼, 𝛽) =

𝑟

∑

𝑖=1

1

𝑥
(𝑖)

−

𝑟

∑

𝑖=1

𝑒
(𝛼𝑥(𝑖)−𝛽/𝑥(𝑖))

𝑥
(𝑖)

− (𝑛 − 𝑟)

𝑒
(𝛼𝑥(𝑟)−𝛽/𝑥(𝑟))

𝑥
(𝑟)

.

(10)

The following steps followed to obtain the solution of the
normal equations (6) and (7).

Step 1. Start with initial starting points, say 𝛼0 and 𝛽0.

Step 2. By using 𝛼0 and 𝛽0, obtain �̂� = 𝜙
1
(𝛼
0
, 𝛽
0
) from (8).

Step 3. Then, obtain ̂𝛽 = 𝜙
2
(𝛼
0
, 𝛽
0
) from (9).

Step 4. If |𝛼0 − �̂�| ≤ 𝜖 and |𝛽0 − ̂
𝛽| ≤ 𝜖, where 𝜖 is some

preassigned tolerance limit, then (�̂�, ̂𝛽) will be the desired
solution of (8) and (9).
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Table 6: Average 95% confidence/HPD intervals (in brackets) and bootstrap method along with their width and shape (in square brackets)
for bootstrap method for complete sample 𝑛 = 20 with varying parameters.

(𝛼,𝛽) Asymptotic Bootstrap Bayes
Jeffrey Gamma-1 Gamma-2

1, 1

𝛼

0.84323 1.024972 [2.695397] 0.51464 0.506 0.51346
(0.6923179, 1.5355495) (0.836569, 1.861541) (0.81088, 1.32552) (0.81256, 1.31856) (0.81082, 1.32428)

𝛽

0.94998 1.086861 [2.203492] 0.56244 0.5504 0.56069
(0.6150548, 1.5650366) (0.750772, 1.837632) (0.76999, 1.33243) (0.77297, 1.32337) (0.77060, 1.33129)

1, 2

𝛼

0.79894 0.9567911 [2.582233] 0.40899 0.40252 0.40818
(0.7039037, 1.5028432) (0.836280, 1.793071) (0.86641, 1.27540) (0.86717, 1.26969) (0.86644, 1.27462)

𝛽

1.80953 2.068489 [2.192656] 0.90842 0.86205 0.9015
(1.272122, 3.081648) (1.528995, 3.597484) (1.66685, 2.57527) (1.68082, 2.54287) (1.66961, 2.57111)

1, 3

𝛼

0.78582 0.9352116 [2.53492] 0.3523 0.3457 0.35143
(0.7063879, 1.4922066) (0.834733, 1.769945) (0.89762, 1.24992) (0.89777, 1.24347) (0.89765, 1.24908)

𝛽

2.65059 3.034498 [2.197503] 1.17065 1.07699 1.15653
(1.937839, 4.588432) (2.314114, 5.348612) (2.61358, 3.78423) (2.63980, 3.71679) (2.61865, 3.77518)

2, 1

𝛼

1.59788 1.913583 [2.582236] 0.81799 0.78679 0.81391
(1.407806, 3.005689) (1.672561, 3.586144) (1.73282, 2.55081) (1.73930, 2.52609) (1.73389, 2.54780)

𝛽

0.90477 1.034245 [2.19266] 0.45421 0.44617 0.45288
(0.6360592, 1.5408260) (0.764498, 1.798743) (0.83341, 1.28762) (0.83447, 1.28064) (0.83390, 1.28678)

2, 2

𝛼

1.56103 1.851625 [2.507755] 0.63 0.6128 0.6276
(1.413654, 2.974686) (1.666304, 3.517929) (1.8373, 2.4673) (1.8391, 2.4519) (1.8379, 2.4655)

𝛽

1.74157 1.996533 [2.203399] 0.6938 0.6703 0.6904
(1.303866, 3.045431) (1.551394, 3.547927) (1.7936, 2.4874) (1.7980, 2.4683) (1.7945, 2.4849)

2, 3

𝛼

1.55385 1.836112 [2.47468] 0.5332 0.52 0.5314
(1.412461, 2.966312) (1.660960, 3.497072) (1.8912, 2.4244) (1.8915, 2.4115) (1.8919, 2.4233)

𝛽

2.56731 2.948256 [2.214166] 0.8724 0.8288 0.866
(1.977191, 4.544503) (2.343578, 5.291834) (2.7883, 3.6607) (2.7967, 3.6255) (2.7900, 3.6560)

3, 1

𝛼

2.35746 2.805634 [2.534927] 1.05692 0.99444 1.04846
(2.119162, 4.476625) (2.504204, 5.309838) (2.69286, 3.74978) (2.70190, 3.69634) (2.69436, 3.74282)

𝛽

0.88353 1.0115 [2.197506] 0.39022 0.38322 0.389
(0.6459449, 1.5294797) (0.771372, 1.782872) (0.87118, 1.26140) (0.87031, 1.25353) (0.87132, 1.26032)

3, 2

𝛼

2.33077 2.754159 [2.474687] 0.7998 0.7697 0.7957
(2.118684, 4.449453) (2.491433, 5.245592) (2.8368, 3.6366) (2.8381, 3.6078) (2.8379, 3.6336)

𝛽

1.71154 1.965495 [2.214164] 0.5816 0.5654 0.5791
(1.318121, 3.029657) (1.562379, 3.527874) (1.8589, 2.4405) (1.8589, 2.4243) (1.8591, 2.4382)

3, 3

𝛼

2.32879 2.743817 [2.44709] 0.6713 0.6509 0.6685
(2.114429, 4.443215) (2.482841, 5.226658) (2.9086, 3.5799) (2.9071, 3.5580) (2.9090, 3.5775)

𝛽

2.53128 2.910998 [2.225123] 0.7242 0.6965 0.7202
(1.994582, 4.525857) (2.357619, 5.268617) (2.8734, 3.5976) (2.8744, 3.5709) (2.8739, 3.5941)

Step 5. If |𝛼0 − �̂�| > 𝜖 and |𝛽0 − ̂𝛽| > 𝜖, then set 𝛼0 = �̂� and
𝛽
0
=
̂
𝛽 and repeat Steps 2–5, until tolerance limit is achieved.

3. Confidence Intervals

3.1. Asymptotic Confidence Intervals. The exact distribution
of MLEs cannot be obtained explicitly. Therefore, the asymp-
totic properties of MLEs can be used to construct the
confidence intervals for theparameters. Under some regular-

ity conditions, the MLEs (�̂�, ̂𝛽) are approximately bivariate
normalwithmean (�̂�, ̂𝛽) and variancematrix 𝐼−1(�̂�, ̂𝛽), where
𝐼(�̂�,

̂
𝛽) is the observed Fishers information matrix and is

defined as

𝐼 (�̂�,
̂
𝛽) =

[

[

[

[

[

−

𝜕 log 𝐿
𝜕𝛼
2

−

𝜕 log 𝐿
𝜕𝛽𝜕𝛼

−

𝜕 log 𝐿
𝜕𝛼𝜕𝛽

−

𝜕 log 𝐿
𝜕𝛽
2

]

]

]

]

](𝛼=�̂�,𝛽=𝛽)

, (11)
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Table 7: Average 95% confidence/HPD intervals (in brackets) and bootstrap method along with their width and shape (in square brackets)
for bootstrap method for complete sample 𝑛 = 20, 𝑟 = 16 with varying parameters.

(𝛼,𝛽) Asymptotic Bootstrap Bayes
Jeffrey Gamma-1 Gamma-2

1, 1

𝛼

1.13535 1.441475 [3.029834] 0.6736 0.6537 0.6704
(0.5924266, 1.7277759) (0.802400, 2.243875) (0.7505, 1.4241) (0.7568, 1.4105) (0.7517, 1.4221)

𝛽

1.0079 1.195897 [2.431916] 0.5714 0.5585 0.5693
(0.6011738, 1.6090738) (0.756660, 1.952557) (0.7766, 1.3480) (0.7786, 1.3371) (0.7772, 1.3465)

1, 2

𝛼

1.03659 1.290073 [2.861497] 0.5053 0.4943 0.5036
(0.6210150, 1.6576012) (0.805222, 2.095295) (0.8404, 1.3457) (0.8421, 1.3364) (0.8409, 1.3445)

𝛽

1.96599 2.336601 [2.444149] 0.9327 0.8825 0.9249
(1.226844, 3.192829) (1.531410, 3.868011) (1.6816, 2.6143) (1.6950, 2.5775) (1.6844, 2.6093)

1, 3

𝛼

1.00217 1.238806 [2.801578] 0.4245 0.4145 0.423
(0.6305741, 1.632746) (0.805794, 2.044599) (0.8848, 1.3093) (0.8848, 1.2993) (0.8849, 1.3079)

𝛽

2.91598 3.471131 [2.45426] 1.2101 1.10717 1.194
(1.856743, 4.772727) (2.309851, 5.780982) (2.6382, 3.8483) (2.66343, 3.7706) (2.6429, 3.8369)

2, 1

𝛼

2.07318 2.580142 [2.861492] 1.0107 0.9546 1.0023
(1.242028, 3.315206) (1.610445, 4.190587) (1.6808, 2.6915) (1.6934, 2.6480) (1.6835, 2.6858)

𝛽

0.983 1.168299 [2.444144] 0.4663 0.4571 0.4646
(0.6134203, 1.5964171) (0.765705, 1.934004) (0.8408, 1.3071) (0.8407, 1.2978) (0.8413, 1.3059)

2, 2

𝛼

1.96999 2.426357 [2.768508] 0.7477 0.7211 0.7439
(1.270139, 3.240126) (1.611282, 4.037639) (1.8255, 2.5732) (1.8280, 2.5491) (1.8264, 2.5703)

𝛽

1.93131 2.301952 [2.461984] 0.7208 0.6938 0.7162
(1.244336, 3.175642) (1.545066, 3.847018) (1.8113, 2.5321) (1.8151, 2.5089) (1.8123, 2.5285)

2, 3

𝛼

1.93619 2.37571 [2.731208] 0.6222 0.6938 0.6192
(1.278243, 3.214431) (1.609624, 3.985334) (1.8946, 2.5168) (1.8942, 2.4972) (1.8948, 2.5140)

𝛽

2.87555 3.434175 [2.475603] 0.9124 0.8621 0.9042
(1.877916, 4.753462) (2.327609, 5.761784) (2.8180, 3.7304) (2.8259, 3.6880) (2.8200, 3.7242)

3, 1

𝛼

3.00653 3.716418 [2.801586] 1.2737 1.172 1.258
(1.891721, 4.898246) (2.417387, 6.133805) (2.6544, 3.9281) (2.6668, 3.8388) (2.6585, 3.9165)

𝛽

0.972 1.157043 [2.454261] 0.40339 0.39493 0.40167
(0.6189131, 1.5909124) (0.769952, 1.926994) (0.8794, 1.28279) (0.8769, 1.27183) (0.8794, 1.28107)

3, 2

𝛼

2.90428 3.56358 [2.73123] 0.9335 0.8884 0.9265
(1.917364, 4.821645) (2.414436, 5.978016) (2.8418, 3.7753) (2.8420, 3.7304) (2.8427, 3.7692)

𝛽

1.91703 2.289456 [2.475615] 0.6083 0.5889 0.6047
(1.251943, 3.168972) (1.551738, 3.841194) (1.8787, 2.4870) (1.8784, 2.4673) (1.8795, 2.4842)

3, 3

𝛼

2.87151 3.514358 [2.704448] 0.7726 0.7435 0.7682
(1.924054, 4.795567) (2.411125, 5.925483) (2.9299, 3.7025) (2.9263, 3.6698) (2.9299, 3.6981)

𝛽

2.8594 3.42188 [2.488985] 0.7619 0.7293 0.7564
(1.886973, 4.746374) (2.335907, 5.757787) (2.9074, 3.6693) (2.9074, 3.6367) (2.9086, 3.6650)

where

𝜕 log 𝐿
𝜕𝛼
2
= −

𝑟

∑

𝑖=1

1

(𝛼 + 𝛽/𝑥
2

(𝑖)
)

2

−

𝑟

∑

𝑖=1

𝑥
2

(𝑖)
𝑒
(𝛼𝑥(𝑖)−𝛽/𝑥(𝑖))

− (𝑛 − 𝑟) 𝑥
2

(𝑟)
𝑒
(𝛼𝑥(𝑟)−𝛽/𝑥(𝑟))

,

𝜕 log 𝐿
𝜕𝛽
2

= −

𝑟

∑

𝑖=1

(1/𝑥
2

(𝑖)
)

2

(𝛼 + 𝛽/𝑥
2

(𝑖)
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2
+

𝑟

∑

𝑖=1

𝑒
(𝛼𝑥(𝑖)−𝛽/𝑥(𝑖))

𝑥
2

(𝑖)

+ (𝑛 − 𝑟)

𝑒
(𝛼𝑥(𝑟)−𝛽/𝑥(𝑟))

𝑥
2

(𝑟)

,

𝜕 log 𝐿
𝜕𝛽𝜕𝛼

=

𝜕 log 𝐿
𝜕𝛼𝜕𝛽

= −

𝑟

∑

𝑖=1

(1/𝑥
2

(𝑖)
)

(𝛼 + 𝛽/𝑥
2

(𝑖)
)

2

+

𝑟

∑

𝑖=1

𝑒
(𝛼𝑥(𝑖)−𝛽/𝑥(𝑖))

+ (𝑛 − 𝑟) 𝑒
(𝛼𝑥(𝑟)−𝛽/𝑥(𝑟))

.
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Table 8: Average 95% confidence/HPD intervals (in brackets) and bootstrap method along with their width and shape (in square brackets)
for bootstrap method for complete sample 𝑛 = 20, 𝑟 = 12 with varying parameters.

(𝛼,𝛽) Asymptotic Bootstrap Bayes
Jeffrey Gamma-1 Gamma-2

1, 1

𝛼

1.80922 2.494413 [3.704015] 1.04609 0.96179 1.03549
(0.3894311, 2.1986549) (0.763769, 3.258183) (0.58521, 1.63130) (0.65815, 1.61994) (0.60219, 1.63768)

𝛽

1.1317 1.440344 [2.899471] 0.58801 0.57383 0.58606
(0.5780497, 1.7097506) (0.774531, 2.214875) (0.79841, 1.38642) (0.80093, 1.37476) (0.79897, 1.38503)

1, 2

𝛼

1.5505 2.090383 [3.461255] 0.7101 0.6779 0.7043
(0.4658775, 2.0163793) (0.772565, 2.862947) (0.8058, 1.5159) (0.8171, 1.4950) (0.8094, 1.5137)

𝛽

2.26918 2.903446 [2.942088] 0.974 0.9167 0.9661
(1.159005, 3.428187) (1.557071, 4.460517) (1.7172, 2.6912) (1.7286, 2.6453) (1.7188, 2.6849)

1, 3

𝛼

1.45582 1.948467 [3.381644] 0.5674 0.5473 0.5638
(0.4942760, 1.9500981) (0.777498, 2.725965) (0.8813, 1.4487) (0.8819, 1.4292) (0.8827, 1.4465)

𝛽

3.41489 4.381877 [2.966392] 1.2838 1.1625 1.265
(1.738521, 5.153412) (2.341215, 6.723092) (2.7184, 4.0022) (2.7368, 3.8993) (2.7219, 3.9869)

2, 1

𝛼

3.10101 4.180747 [3.461238] 1.4143 1.2678 1.3829
(0.9317525, 4.0327632) (1.545131, 5.725878) (1.6060, 3.0203) (1.6496, 2.9174) (1.6259, 3.0088)

𝛽

1.1346 1.451719 [2.942077] 0.4892 0.4771 0.4871
(0.5795007, 1.7140960) (0.778536, 2.230255) (0.8650, 1.3542) (0.8622, 1.3393) (0.8651, 1.3522)

2, 2

𝛼

2.81147 3.749764 [3.341453] 0.9754 0.9233 0.9672
(1.018547, 3.830021) (1.560572, 5.310336) (1.8490, 2.8244) (1.8515, 2.7748) (1.8513, 2.8185)

𝛽

2.28314 2.936211 [2.984448] 0.771 0.737 0.7653
(1.158481, 3.441619) (1.563132, 4.499343) (1.8684, 2.6394) (1.8681, 2.6051) (1.8694, 2.6347)

2, 3

𝛼

2.7054 3.594662 [3.297717] 0.7911 0.7575 0.786
(1.050075, 3.755473) (1.566362, 5.161024) (1.9465, 2.7376) (1.9422, 2.6997) (1.9466, 2.7326)

𝛽

3.44036 4.436749 [3.006102] 0.9862 0.9225 0.976
(1.735746, 5.176104) (2.348427, 6.785176) (2.9134, 3.8996) (2.9127, 3.8352) (2.9144, 3.8904)

3, 1

𝛼

4.36047 5.837303 [3.381616] 1.7022 1.493 1.6623
(1.479581, 5.840054) (2.327943, 8.165246) (2.6367, 4.3389) (2.6489, 4.1419) (2.6515, 4.3138)

𝛽

1.13673 1.458758 [2.966365] 0.4279 0.4164 0.4257
(0.5787959, 1.7155273) (0.779418, 2.238177) (0.9046, 1.3325) (0.8975, 1.3139) (0.9042, 1.3299)

3, 2

𝛼

4.05809 5.391884 [3.297632] 1.1866 1.108 1.1739
(1.575106, 5.633193) (2.349532, 7.741416) (2.9198, 4.1064) (2.9066, 4.0146) (2.9209, 4.0948)

𝛽

2.29357 2.957763 [3.006009] 0.6575 0.6326 0.653
(1.157161, 3.450727) (1.565612, 4.523375) (1.9423, 2.5998) (1.9347, 2.5673) (1.9421, 2.5951)

3, 3

𝛼

3.9438 5.227407 [3.269421] 1.0633 1.0157 1.0556
(1.608629, 5.552424) (2.356143, 7.583550) (2.9352, 3.9985) (2.9191, 3.9348) (2.9352, 3.9908)

𝛽

3.45715 4.469468 [3.026892] 0.9317 0.889 0.901
(1.733091, 5.190240) (2.351761, 6.821229) (2.9117, 3.8434) (2.9027, 3.7917) (2.9352, 3.8362)

The diagonal elements of 𝐼−1(�̂�, ̂𝛽) provide the asymp-
totic variances for the parameters 𝛼, 𝛽 and respectively. A
two-sided 100(1 − 𝛾)% normal approximation confidence
interval of 𝛼 can be obtained as

{�̂� ∓ 𝑍
𝛾/2
√var (�̂�)} . (13)

Similarly, a two-sided 100(1 − 𝛾)% normal approximation
confidence interval of 𝛽 can be obtained as

{
̂
𝛽 ∓ 𝑍

𝛾/2
√var ( ̂𝛽)} , (14)

where 𝑍 is the standard normal variate (SNV).

3.2. Bootstrap Confidence Intervals. In this subsection, we
have discussed another method for obtaining the confi-
dence intervals proposed by [14]. They have developed the
computer-based technique that can be routinely applied
without any heavy theoretical consideration. The bootstrap
method is very useful when an assumption regarding the nor-
mality is invalid. For bootstrap procedure, the computational
algorithm is given as follows:

Step 1. Generate sample {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} of size 𝑛 form (1)

by using inversion method. Then estimated distribution
function is given by 𝐹(𝑥, Θ̂), where Θ = {𝛼, 𝛽; 𝛼, 𝛽 > 0}.
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Table 9: Estimates and confidence/HPD/bootstrap intervals for real data set.

𝑟 MLE Bootstrap Bayes

Complete
𝛼

0.2071 Shape = 3.316171 0.19774
0.1225917, 0.2916155 (0.1534971, 0.3848719) 0.1384182, 0.2585010

𝛽

0.25876 Shape = 2.136357 0.24668
0.1300606, 0.3874579 (0.1746025, 0.4385483) 0.1613039, 0.3347743

18
𝛼

0.27514 Shape = 7.412105 0.22501
0.07038155, 0.4799067 (0.1595285, 1.1320991) 0.0554001, 0.4020123

𝛽

0.2557 Shape = 2.094187 0.24559
0.1253812, 0.3860173 (0.1708061, 0.4334815) 0.1562725, 0.3323715

15
𝛼

0.38256 Shape = 9.825055 0.26299
−0.01972 = 0, 0.7848314 (0.1684655, 2.4860048) 0.0002199, 0.5562250

𝛽

0.25644 Shape = 2.330094 0.24741
0.1237523, 0.3891245 (0.1741460, 0.4481874) 0.1567716, 0.3352633

Table 10: The summary of the one sample predictive densities for
real data set when 𝑟 = 20.

s Mode Mean SE 95% predictive bounds
Lower Upper

1 4.08201 4.98539 0.63119 4.08213 6.18207
2 5.06696 5.86145 1.15616 4.1365 8.08115
3 6.50403 7.42144 1.78186 4.49902 10.8474

Step 2. Generate a bootstrap sample {𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
} of size 𝑛

from 𝐹(𝑥, Θ̂). Obtain bootstrap estimates Θ̂∗ = {�̂�
∗
,
̂
𝛽
∗
} of

Θ = {𝛼, 𝛽} using bootstrap sample.

Step 3. Repeat Step 2,𝐵-times.Obtain the bootstrap estimates
{�̂�
∗

1
, �̂�
∗

2
, . . . , �̂�

∗

𝐵
} and { ̂𝛽∗

1
,
̂
𝛽
∗

2
, . . . ,

̂
𝛽
∗

𝐵
}.

Step 4. Let {̂𝜃∗
(1)
,
̂
𝜃
∗

(2)
, . . . ,

̂
𝜃
∗

(𝐵)
} be the ordered values of a

sequence {̂𝜃∗
1
,
̂
𝜃
∗

2
, . . . ,

̂
𝜃
∗

𝐵
} of a variable 𝜃. Then, the empirical

distribution function (EDF) of {̂𝜃∗
1
,
̂
𝜃
∗

2
, . . . ,

̂
𝜃
∗

𝐵
} is given by

𝐺(𝑡) = {Number of (̂𝜃∗ < 𝑡)/𝐵}. The 100(1 − 𝛾)% boot-p
confidence intervals for 𝜃 can be obtained by the following
formula: (̂𝜃∗

𝐵𝛾/2
,
̂
𝜃
∗

𝐵(1−𝛾/2)
). By using the above definition, the

two-sided 100(1 − 𝛾)% boot-p confidence intervals for �̂�
and ̂

𝛽 are given by (�̂�∗
𝐵𝛾/2

, �̂�
∗

𝐵(1−𝛾/2)
) and ( ̂𝛽∗

𝐵𝛾/2
,
̂
𝛽
∗

𝐵(1−𝛾/2)
),

respectively.

Step 5. Thebootstrapmeasure of symmetry can be defined as

Shape = [

[

̂
𝜃
∗

𝐵(1−𝛾/2)
−
̂
𝜃
∗

̂
𝜃
∗
−
̂
𝜃
∗

𝐵(𝛾/2)

]

]

. (15)

Using the above formula, we can also easily obtain the
measure of symmetry (Shape) for 𝛼 and 𝛽. For standard
normal approximate confidence intervals, the shape is always
equals to one.

4. Bayes Estimation

In Bayesian scenario, we need to assume the prior distribu-
tion of the unknown model parameters to take into account
uncertainty of the parameters.The prior densities for 𝛼 and 𝛽
are given as

𝑔
1
(𝛼) ∝ 𝛼

𝑏−1
𝑒
−𝛼𝑎
, 𝑎, 𝑏, 𝛼 > 0,

𝑔
2
(𝛽) ∝ 𝛽

𝑑−1
𝑒
−𝛽𝑐
, 𝑐, 𝑑, 𝛽 > 0.

(16)

Further, it is assumed that the parameters 𝛼 and 𝛽 are
independent. Therefore, the joint prior of 𝛼 and 𝛽 is given
by

𝑔 (𝛼, 𝛽) ∝ 𝑔
1
(𝛼) × 𝑔

2
(𝛽) , (17)

where 𝑎, 𝑏, 𝑐, and 𝑑 are the hyperparameters. Then, the joint
posterior PDF of 𝛼 and 𝛽 can be readily defined as

𝜋 (𝛼, 𝛽 | 𝑥

̃

) =

𝐿 (𝑥

̃

| 𝛼, 𝛽) 𝑔 (𝛼, 𝛽)

∫

∞

0
∫

∞

0
𝐿 (𝑥

̃

| 𝛼, 𝛽) 𝑔 (𝛼, 𝛽) 𝑑𝛼 𝑑𝛽

. (18)

If 𝜆(𝛼, 𝛽) is the function of 𝛼 and 𝛽, then the Bayes estimates
of 𝜆(𝛼, 𝛽) are given by

̂
𝜆 (𝛼, 𝛽 | 𝑥

̃

) =

∫

∞

0
∫

∞

0
𝜆 (𝛼, 𝛽) 𝐿 (𝑥

̃

| 𝛼, 𝛽) 𝑔 (𝛼, 𝛽) 𝑑𝛼 𝑑𝛽

∫

∞

0
∫

∞

0
𝐿 (𝑥

̃

| 𝛼, 𝛽) 𝑔 (𝛼, 𝛽) 𝑑𝛼 𝑑𝛽

.

(19)

The above expression cannot be obtained in nice closed
form.The evaluation of the posterior mean of the parameters
will be complicated and it will be the ratio of two intractable
integrals. In such situations, Monte Carlo Markov chain
(MCMC)method, namely, Gibbs sampling techniques can be
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Table 11: The summary of the two sample predictive densities for
real data set.

r k Mode Mean SE 95% predictive bounds
Lower Upper

23

1 0.06074 0.06507 0.01882 0.03105 0.10218
2 0.0831 0.08968 0.02478 0.04469 0.13839
3 0.10216 0.11247 0.03223 0.05422 0.17551
4 0.12085 0.13377 0.03811 0.06713 0.20994
23 6.19579 6.54602 1.7254 3.26888 9.81353

20

1 0.06155 0.06477 0.01884 0.03084 0.10226
2 0.08422 0.08932 0.02484 0.04549 0.13953
3 0.10355 0.11353 0.03237 0.05431 0.17682
4 0.1225 0.1351 0.0385 0.06572 0.21009
23 6.68878 7.39385 2.22182 3.2862 11.7307

effectively used. For implementing the Gibbs algorithm, the
full conditional posterior densities of 𝛼 and 𝛽 are given by

𝜋
1
(𝛼 | 𝛽, 𝑥

̃

)

= 𝑒
−𝛼(∑

𝑟
𝑖=1 𝑥(𝑖)+𝑎)

𝑟

∏

𝑖=1

(𝛼 +

𝛽

𝑥
2

(𝑖)

)

× exp(−
𝑟

∑

𝑖=1

exp(𝛼𝑥
(𝑖)
−

𝛽

𝑥
(𝑖)

))

× 𝛼
𝑏−1 exp(− (𝑛 − 𝑟) exp(𝛼𝑥

(𝑟)
−

𝛽

𝑥
(𝑟)

)) ,

𝜋
2
(𝛽 | 𝛼, 𝑥

̃

)

= 𝑒
−𝛽(∑

𝑟
𝑖=1(1/𝑥(𝑖)+𝑐))

𝑟

∏

𝑖=1

(𝛼 +

𝛽

𝑥
2

(𝑖)

)

× exp(−
𝑟

∑

𝑖=1

exp(𝛼𝑥
(𝑖)
−

𝛽

𝑥
(𝑖)

))

× 𝛽
𝑑−1 exp(− (𝑛 − 𝑟) exp(𝛼𝑥

(𝑟)
−

𝛽

𝑥
(𝑟)

)) .

(20)

The simulation algorithm consists of the following steps.

Step 1. Start with 𝑗 = 1 and the initial values of {𝛼(0), 𝛽(0)}.

Step 2. Using the initial values {𝛼
(0)
, 𝛽
(0)
}, generate

candidate points {𝛼
(𝑗)

𝑐
, 𝛽
(𝑗)

𝑐
} from proposal densities

{𝑞
1
(𝛼
(𝑗)
, 𝛼
(𝑗)
), 𝑞
2
(𝛽
(𝑗)
, 𝛽
(𝑗−1)

)}, where, 𝑞(𝛼
(𝑗)
, 𝛼
(𝑗−1)

) =

𝑞(𝛼
(𝑗)
→ 𝛼
(𝑗−1)

) is the probability of returning a value of 𝛼(𝑗)

given a previous value of 𝛼(𝑗−1).

Step 3. Generate 𝑈 uniform variate on range 0-1; that is, 𝑢 ∼
𝑈(0, 1).

Step 4. Calculate the ratios at the candidate point 𝛼(𝑗)
𝑐

and
previous point 𝛼(𝑗)

𝑅
1
= (

𝜋
1
(𝛼
(𝑗)

𝑐
| 𝛽
(𝑗−1)

, 𝑥

̃

) 𝑞
1
(𝛼
(𝑗)

𝑐
, 𝛼
(𝑗−1)

)

𝜋
1
(𝛼
(𝑗−1)

| 𝛽
(𝑗−1)

, 𝑥

̃

) 𝑞
1
(𝛼
(𝑗−1)

, 𝛼
(𝑗)

𝑐 )

) . (21)

Step 5. If 𝑢 ≤ min(1, 𝑅
1
), accept the candidate point with

probability min(1, 𝑅
1
), that is, 𝛼(𝑗) = 𝛼

(𝑗)

𝑐
. Otherwise set

𝛼
(𝑗)
= 𝛼
(𝑗−1).

Step 6. Similarly from Step 4, the ratio

𝑅
2
= (

𝜋
2
(𝛽
(𝑗)

𝑐
| 𝛼
(𝑗)
, 𝑥

̃

) 𝑞
2
(𝛽
(𝑗)

𝑐
, 𝛽
(𝑗−1)

)

𝜋
2
(𝛽
(𝑗−1)

| 𝛼
(𝑗)
, 𝑥

̃

) 𝑞
2
(𝛽
(𝑗−1)

, 𝛽
(𝑗)

𝑐 )

) . (22)

Step 7. If 𝑢 ≤ min(1, 𝑅
2
), accept the candidate point with

probability min(1, 𝑅
2
), that is, 𝛽(𝑗) = 𝛽

(𝑗)

𝑐
. Otherwise set

𝛽
(𝑗)
= 𝛽
(𝑗−1).

Step 8. Repeat Steps 2–7 for all 𝑗 = 1, 2, . . . ,𝑀 and obtain
(𝛼
1
, 𝛽
1
), (𝛼
2
, 𝛽
2
), . . . , (𝛼

𝑀
, 𝛽
𝑀
).

Note that if the candidate point is independent on previous
point, that is, if 𝑞(𝑥 → 𝑦) = 𝑞(𝑥), then theM-H algorithm is
called independence M-H sampler. The acceptance function
becomes

min(1,(
𝜋
1
(𝛼
(𝑗)

𝑐
| 𝛽
(𝑗−1)

, 𝑥

̃

) 𝑞
1
(𝛼
(𝑗)

𝑐
)

𝜋
1
(𝛼
(𝑗−1)

| 𝛽
(𝑗−1)

, 𝑥

̃

) 𝑞
1
(𝛼
(𝑗−1)

)

)) . (23)

The Bayes estimates under SELF of the parameters can
be obtained as the mean of the generated samples from
the posterior densities by using the algorithm discussed
previously. The formulae are given by

�̂� = 𝐸
𝜋
(𝛼 | 𝑥

̃

) ≈

1

𝑀 −𝑀
0

𝑀

∑

𝑘=𝑀0+1

𝛼
𝑘
, (24)

̂
𝜆 = 𝐸

𝜋
(𝜆 | 𝑥

̃

) ≈

1

𝑀 −𝑀
0

𝑀

∑

𝑘=𝑀0+1

𝜆
𝑘
, (25)

where𝑀
0
is the burn-in-period of Markov Chain. The HPD

credible intervals for 𝛼 and 𝜆 can be constructed by using
the algorithm given in [15]. Let {(𝛼

(𝑖)
, 𝛽
(𝑖)
); 𝑖 = 1, 2, . . . ,𝑀}

be the corresponding ordered MCMC sample of {(𝛼
𝑖
, 𝛽
𝑖
), 𝑖 =

1, 2, . . . ,𝑀}. Then construct all the 100(1 − 𝜓)% credible
intervals of 𝛼 and 𝜆 as

(𝛼
[1]
, 𝛼
[𝑀(1−𝜓)]

) , . . . , (𝛼
[𝑀𝜓]

, 𝛼
[𝑀]
) ,

(𝛽
[1]
, 𝛽
[𝑀(1−𝜓)]

) , . . . , (𝛽
[𝑀𝜓]

, 𝛽
[𝑀]
) .

(26)

Here, [𝑥] denotes the largest integer less than or equal to 𝑥.
Then, the HPD credible interval is that interval which has the
shortest length.
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5. One-Sample Prediction

In a Type-II censoring scheme, the life test consists only
of few observed items (say 𝑟) out of all units/items (say 𝑛)
under study due to time and cost constraints. In practice,
the experimenter may be interested to know the life time
of the (𝑛 − 𝑟) removed surviving units on the basis of
informative units. In such a situation, one-sample prediction
technique may be helpful to give an idea about the expected
life of the removed units. Let 𝑥

(1)
, 𝑥
(2)
, . . . , 𝑥

(𝑟)
; (𝑟 ≤ 𝑛)

the observed censored sample and 𝑦
(1)
, 𝑦
(2)
, . . . , 𝑦

(𝑛−𝑟)
be the

unobserved future ordered sample from the same population.
Let 𝑌

(𝑠)
= 𝑋

(𝑟+𝑠)
represent the failure lifetimes of the

remaining surviving units. From [16], the conditional PDF of
𝑌
(𝑠)

given𝑋 = 𝑥 can be obtained as

𝑓 (𝑦
(𝑠)
| 𝑥
(𝑟)
)

=

(𝑛 − 𝑟)!

(𝑠 − 1)! (𝑛 − 𝑟 − 𝑠)!

×

[1 − 𝐹 (𝑦
(𝑠)
)]
𝑛−𝑟−𝑠

[𝐹 (𝑦
(𝑠)
) − 𝐹 (𝑥

(𝑟)
)]
𝑠−1

𝑓 (𝑦
(𝑠)
)

[1 − 𝐹 (𝑥
(𝑟)
)]
𝑛−𝑟

.

(27)

Putting (1) and (2) in (27), we get

𝑓 (𝑦
(𝑠)
| 𝑥
(𝑟)
)

=

(𝑛 − 𝑟)!

(𝑠 − 1)! (𝑛 − 𝑟 − 𝑠)!

(𝛼 +

𝛽

𝑦
2

(𝑠)

)

×

𝑠−1

∑

𝑗=0

∞

∑

𝑖=0

𝑖

∑

𝑙=0

−1
(𝑖+𝑗)

𝑖!

(

𝑠 − 1

𝑗
)(

𝑖

𝑙
) (𝑛 − 𝑟 − 𝑠 + 𝑗 + 1)

𝑖

× exp[(𝑖 + 𝑙 − 1) (𝛼𝑦
(𝑠)
−

𝛽

𝑦
(𝑠)

) + 𝑙(𝛼𝑥
(𝑟)
−

𝛽

𝑥
(𝑟)

)] .

(28)

Then, the predictive posterior density of future observables
under Type-II censoring scheme is given by

𝑓
1
(𝑦
(𝑠)
| 𝑥

̃

) = ∫

∞

0

∫

∞

0

𝑓(𝑦
(𝑠)
| 𝛼, 𝛽, 𝑥

̃

) 𝜋 (𝛼, 𝛽 | 𝑥

̃

) 𝑑𝛼 𝑑𝛽.

(29)

Equation (29) cannot be evaluated analytically. Therefore,
to obtain the consistent estimator for 𝑓

1
(𝑦
(𝑠)
| 𝑥

̃

), MCMC
sample obtained through Gibbs algorithm is used. The
consistent estimate of 𝑓

1
(𝑦
(𝑠)
| 𝑥

̃

) is obtained as

𝑓
∗

1
(𝑦
(𝑠)
| 𝑥

̃

) =

1

𝑀 −𝑀
0

𝑀−𝑀0

∑

𝑖=1

𝑓(𝑦
(𝑠)
| 𝛼
𝑖
, 𝛽
𝑖
, 𝑥

̃

) . (30)

To obtain the estimate of future sample, we used the M-H
algorithm, to draw the sample from (29). Similarly, form (24),
we can estimate the future observations under SELF as the
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Figure 1: Likelihood profile with respect to parameters for real data
set.

mean of simulated sample drawn from (29). The survival
function of future sample can be simply defined as

𝑆
𝑦(𝑠)
(𝑇) = 1 − ∫

𝑇

𝑦(𝑠)=𝑥(𝑟)

𝑓
1
(𝑦
(𝑠)
| 𝑥

̃

) 𝑑𝑦
(𝑠)

= 1 − ∫

𝑇

𝑦(𝑠)=𝑥(𝑟)

∫

∞

0

∫

∞

0

𝑓(𝑦
(𝑠)
| 𝛼, 𝛽, 𝑥

̃

)

× 𝜋 (𝛼, 𝛽 | 𝑥

̃

) 𝑑𝛼𝑑𝛽𝑑𝑦
(𝑠)
.

(31)

We can also obtain the two-sided 100(1 − 𝛼)% prediction
intervals (𝐿

𝑠
, 𝑈
𝑠
) for 𝑦

(𝑠)
by solving the following two equa-

tions:

𝑃(𝑦
(𝑠)
> 𝑈
𝑠
| 𝑥

̃

) =

𝛼

2

,

𝑃 (𝑦
(𝑠)
> 𝐿
𝑠
| 𝑥

̃

) = 1 −

𝛼

2

.

(32)

Confidence intervals can be obtained by using any suitable
iterative procedure as the above equations cannot be solved
directly.

6. Two-Sample Prediction

In some situations, only lifetimemodel is given, and no priori
information is available then assumes 𝑝(𝑦

(𝑘)
| 𝛼, 𝛽, 𝑥

̃

) =

𝑝(𝑦
(𝑘)

| 𝛼, 𝛽). This leads to the two-sample prediction
problems. That is, the experimenters are interested in the 𝑘th
failure time in a future sample of size𝑁 following the same life
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Figure 2: Likelihood contour plot with respect to parameters for
real data set.

time distribution. From [16], the PDF of 𝑘th order statistics is
given by

𝑝 (𝑦
(𝑘)
| 𝛼, 𝛽) =

𝑁!

(𝑘 − 1)! (𝑁 − 𝑘)!

× [𝐹 (𝑦
(𝑘)
)]
𝑘−1

[1 − 𝐹 (𝑦
(𝑘)
)]
𝑁−𝑘

𝑓 (𝑦
(𝑘)
) .

(33)

Putting (1) and (2) in (29), we get

𝑝 (𝑦
(𝑘)
| 𝛼, 𝛽) =

𝑁!

(𝑘 − 1)! (𝑁 − 𝑘)!

(𝛼 +

𝛽

𝑦
2

(𝑘)

)

×

𝑘−1

∑

𝑗=0

∞

∑

𝑖=0

−1
𝑗

𝑖!

(

𝑠 − 1

𝑗
) (𝑁 − 𝑘 + 𝑗 + 1)

𝑖

× exp[(𝑖 + 1) (𝛼𝑦
(𝑘)
−

𝛽

𝑦
(𝑘)

)] .

(34)

The predictive posterior density of future observables under
Type-II censoring scheme is given by

𝑝
1
(𝑦
(𝑘)
| 𝑥

̃

) = ∫

∞

0

∫

∞

0

𝑝 (𝑦
(𝑘)
| 𝛼, 𝛽, 𝑥

̃

) 𝜋 (𝛼, 𝛽 | 𝑥

̃

) 𝑑𝛼 𝑑𝛽.

(35)

Equation (35) cannot be evaluated analytically. Therefore, to
obtain the consistent estimator for 𝑝

1
(𝑦
(𝑘)

| 𝑥

̃

), MCMC
sample obtained through Gibbs algorithm is used. The
consistent estimate of 𝑝

1
(𝑦
(𝑘)
| 𝑥

̃

) is given by

𝑝
∗

1
(𝑦
(𝑘)
| 𝑥

̃

) =

1

𝑀 −𝑀
0

𝑀−𝑀0

∑

𝑖=1

𝑝 (𝑦
(𝑘)
| 𝛼
𝑖
, 𝛽
𝑖
) . (36)

To obtain the estimate of future sample, againM-H algorithm
is used to draw the sample from (35). Similarly, form (24), we

can estimate the future observations under SELF as the mean
of simulated sample drawn from (35). The survival function
of future sample can be simply defined as

𝑆
𝑦(𝑘)
(𝑇) = 1 − ∫

𝑇

𝑦(𝑘)=0

𝑝
1
(𝑦
(𝑘)
| 𝑥

̃

) 𝑑𝑦
(𝑘)

= 1 − ∫

𝑇

𝑦(𝑘)=0

∫

∞

0

∫

∞

0

𝑝 (𝑦
(𝑘)
| 𝛼, 𝛽, 𝑥

̃

)

× 𝜋 (𝛼, 𝛽 | 𝑥

̃

) 𝑑𝛼 𝑑𝛽𝑑𝑦
(𝑘)
.

(37)

We can also obtain the two sided 100(1 − 𝛼)% prediction
intervals (𝐿

𝑘
, 𝑈
𝑘
) for 𝑦

(𝑘)
by solving the following two

nonlinear equations:

𝑃(𝑦
(𝑘)
> 𝑈
𝑘
| 𝑥

̃

) =

𝛼

2

,

𝑃 (𝑦
(𝑘)
> 𝐿
𝑘
| 𝑥

̃

) = 1 −

𝛼

2

.

(38)

Confidence intervals can be obtained by using any suitable
iterative procedure as the above equations cannot be solved
directly.

7. Simulation Study

This section consists of the simulation results to compare
the performance of the classical and Bayesian estimation
procedures under different Type-II censoring schemes and
parameter combinations.The comparison between theMLEs
and Bayes estimators of the model parameters made in terms
of their mean square errors (MSEs). We have also compared
the average lengths of the asymptotic confidence intervals,
bootstrap intervals and HPD credible intervals. For this
purpose, we generate the sample of sizes 𝑛 = 20 small, 30
medium, and 50 large from (1) for fixed values of 𝛼 = 2 and
𝛽 = 2. We have considered the different Type-II censoring
schemes for each sample size so that the sample contains
100%, 80%, and 60% of the available information.

The choice of the hyperparameters is themain concerning
issue in the Bayesian analysis. Reference [17] argues that when
information is not in compact form it is better to perform the
Bayesian analysis under the assumption of non-informative
prior. If we take 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0, then posterior
becomes as obtained under Jeffery’s scale invariant prior.
For the choice of hyper parameters under the subjectivism,
we have taken prior means equals to the true values of
the parameters with varying variances. The prior variance
indicates the confidence of our prior guess. A large prior
variance shows less confidence in prior guess and resulting
prior distribution is relatively flat. On other hand, small prior
variance indicates greater confidence in prior guess. In this
study, we have taken prior variance equals to 1 (small) and
8 (large), and we call these Gamma-1 and Gamma-2 priors,
respectively.
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Figure 3: MCMC runs and posterior density plot of 𝛼 and 𝛽 for complete real data set.

For obtaining the Bayes estimates, we generate posterior
deviates for the parameters𝛼 and𝛽using algorithmdiscussed
in Section 4. First thousand MCMC iterations (Burn-in
period) have been discarded from the generated sequence.
We have also checked the convergence of the sequences of
𝛼 and 𝛽 for their stationary distributions through different
starting values. It was observed that all the Markov chains
reached to the stationary condition very quickly.

For the unknown model parameters, we have com-
puted MLEs and Bayes estimates under informative and
non-informative priors along with their asymptotic confi-
dence/bootstrap/HPD intervals. We repeat the process 1000
times, and the average estimates with the corresponding
mean square errors (MSEs) of the estimators, and average
confidence/bootstrap/HPD intervals are recorded. The sim-
ulation results are summarized in Tables 1, 2, 3, 4, 5, 6, 7,
and 8. All necessary computational algorithms are coded in
R-environment [18] and codes are available with the authors.

On the basis of the results summarised inTables 1–8, some
conclusions can be drawn which are stated as follows:

(i) The MSE of all the estimators decreases as sample
increases (i.e., as 𝑛 and 𝑟 increases) for fixed values
of 𝛼 and 𝛽.

(ii) The MSE of all the estimators increases with increas-
ing the value of the parameters for any fixed values of
𝑛 and 𝑟.

(iii) The MSE of the maximum likelihood and Bayes
estimator of 𝛼 increases with increasing 𝛼 for given
values of 𝛽, 𝑛 and 𝑟.

(iv) The MSE of the maximum likelihood and Bayes
estimator of 𝛽 increases with increasing 𝛽 for given
values of 𝛼, 𝑛 and 𝑟.

(v) The Bayes estimators have the smaller risks than the
classical estimators for estimating the parameters in
all the considered cases. Although the Bayes estimates
obtained under Gamma-1 prior more efficient than
those obtained under Jeffery’s and Gamma-2 pri-
ors. This indicates that the Bayesian procedure with
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Figure 4: Two-sample predictive density function when 𝑘 = 1 for
complete real data set.

accurate prior information provides more precise
estimates.

(vi) The width of the HPD credible intervals is smaller
than the width of the asymptotic confidence/boot-
strap intervals.

(vii) In all the cases, the bootstrap procedure provides
largerwidth of the confidence intervals for the param-
eters and the wide range of the confidence intervals
helps to cover the asymmetry.

(viii) The shape is greater than one in all the considered
cases which indicates that the distribution of the
maximum likelihood estimators is positively skewed
and becomes more skewed with decreasing sample
size 𝑛.

8. Real Data Analysis

In this section, we analysed the data set of time between
failures of secondary reactor pumps. This data set has been
originally discussed in [19]. The chance of the failure of the
secondary reactor pump is of the increasing nature in early
stage of the experiment and after that it decreases. It has
been checked by [10] that flexible Weibull distribution is well
fitted model to this data set. The times between failures of 23
secondary reactor pumps are as follows: 2.160, 0.150, 4.082,
0.746, 0.358, 0.199, 0.402, 0.101, 0.605, 0.954, 1.359, 0.273,
0.491, 3.465, 0.070, 6.560, 1.060, 0.062, 4.992, 0.614, 5.320,
0.347, and 1.921.

For analysing this data set under Type-II censoring
scheme, we generate two artificial Type-II censored samples
from this real data set by considering two different values of
𝑟 (= 18, 15). In the real applications, we have nothing in our
hand other than few observations following any distribution
function. Let us sketch the likelihood profile with respect to
the parameters. The log-likelihood function is plotted over
the whole parameter space in Figure 1. The contour plots
of the likelihood function are also plotted in Figure 2. The
maximum likelihood estimates, Bayes estimates, and corre-
sponding confidence/bootstrap/HPD intervals are presented
in Table 9 for different values of 𝑛 and 𝑟. The simulation runs
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Figure 5: One-sample predictive density function when 𝑆 = 3 and
𝑟 = 20 for real data set.

and the histogram plot of simulated 𝛼 and 𝛽 are plotted in
Figure 3.

The summary of one-sample predictive densities of future
samples is presented in Table 10 for different values of 𝑠. Two-
sample predictive density functions for different values of 𝑟
and 𝑘 are summarised in Table 11. FromTables 10 and 11, it can
be observed that the standard error (SE) of future observables
increases as the values of 𝑠 and 𝑘 increase for one-sample and
two-sample prediction, respectively. Two-sample predictive
density of the first future ordered sample is plotted in Figure 4.
The density of 𝑦

(3)
th future sample in case of one-sample

prediction is plotted in Figure 5.
The expressions (31) and (37) do not seem to be possible to

compute analytically. Therefore, we prosed to use the Monte
Carlo technique to solve these two equations. To compute the
integral part

𝐼
1
= ∫

𝑇

𝑦=𝑥(𝑟)

∫

∞

0

∫

∞

0

𝑓(𝑦 | 𝛼, 𝛽, 𝑥

̃

) 𝜋 (𝛼, 𝛽 | 𝑥

̃

) 𝑑𝛼 𝑑𝛽𝑑𝑦,

𝐼
2
= ∫

𝑇

𝑦=0

∫

∞

0

∫

∞

0

𝑝 (𝑦 | 𝛼, 𝛽, 𝑥

̃

) 𝜋 (𝛼, 𝛽 | 𝑥

̃

) 𝑑𝛼 𝑑𝛽𝑑𝑦

(39)

appearing in the expressions, we follow the following steps.

Step 1. The approximate value of 𝐼
1
can be obtained as

𝐼
1
= ∫

𝑇

𝑦=𝑥(𝑟)

𝐸
𝜋
[𝑓 (𝑦 | 𝛼, 𝛽, 𝑥

̃

)] 𝑑𝑦

≈ (𝑇 − 𝑥
(𝑟)
)

1

𝑀

𝑀

∑

𝑖=1

𝐸
𝜋
[𝑓 (𝑦

𝑖
| 𝛼, 𝛽, 𝑥

̃

)] ,

𝑦 ∼ 𝑈 (𝑥
(𝑟)
, 𝑇) .

(40)

Similarly,

𝐼
2
≈ 𝑇

1

𝑀

𝑀

∑

𝑖=1

𝐸
𝜋
[𝑝 (𝑦

𝑖
| 𝛼, 𝛽, 𝑥

̃

)] , 𝑦 ∼ 𝑈 (0, 𝑇) . (41)
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Figure 6: One-sample predictive survival function for real data set
when 𝑟 = 20.
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Figure 7: Two-sample predictive survival function for real data set.

𝐸
𝜋
denotes the expectation of the function with respect

to the joint posterior pdf of 𝛼 and 𝜆.

Step 2. Simulate 𝛼 and 𝜆 from (19) by using the algorithm
discussed in Section 2.

Step 3. Generate𝑈
1
from uniform density of size𝑀 on range

(𝑥
(𝑟)
, 𝑇). That is, 𝑈

1
∼ 𝑈(𝑥

(𝑟)
, 𝑇).

Step 4. Generate𝑈
2
from uniform density of size𝑀 on range

(0, 𝑇). That is, 𝑈
2
∼ 𝑈(0, 𝑇).

Step 5. By using 𝑈
1
and 𝑈

2
, then calculate the approximate

values of integrals as

𝐼
1
≈ (𝑇 − 𝑥

(𝑟)
)

1

𝑀

𝑀

∑

𝑖=1

𝐸
𝜋
[𝑓 (𝑈

𝑖:1
| 𝛼, 𝛽, 𝑥

̃

)] ,

𝐼
2
≈ 𝑇

1

𝑀

𝑀

∑

𝑖=1

𝐸
𝜋
[𝑝 (𝑈

𝑖:2
| 𝛼, 𝛽, 𝑥

̃

)] .

(42)

By using the above-discussed algorithm, the survival func-
tions (31) and (37) of future samples are plotted in Figures 6
and 7, respectively.

9. Conclusion

In this paper, we have considered the problem of estima-
tion and prediction for flexible Weibull distribution in the
presence of Type-II censored sample. We have found that
Bayesian procedure provides the precise estimates of the
unknown parameters of flexible Weibull model with smaller
mean square error. The width of HPD intervals is smaller
than that of the asymptotic and the bootstrap confidence
intervals. Prediction has been applied in medicine, engineer-
ing, business, and other areas, and the Bayesian approach
using MCMC methods can be effectively used to solve the
prediction problems. The methodology developed in this
paper will be very useful to the researchers, engineers,
and statisticians where such type of life test is needed and
especially where the flexible Weibull distribution is used.
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