
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2013, Article ID 170967, 13 pages
http://dx.doi.org/10.1155/2013/170967

Research Article
Masses of Negative Multinomial Distributions:
Application to Polarimetric Image Processing

Philippe Bernardoff,1 Florent Chatelain,2 and Jean-Yves Tourneret3
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This paper derives new closed-form expressions for the masses of negative multinomial distributions. These masses can be
maximized to determine the maximum likelihood estimator of its unknown parameters. An application to polarimetric image
processing is investigated. We study the maximum likelihood estimators of the polarization degree of polarimetric images using
different combinations of images.

1. Introduction

The univariate negative binomial distribution is uniquely
defined in many statistical textbooks. However, extensions
defining multivariate negative multinomial distributions
(NMDs) are more controversial. Most definitions are based
on the probability generating function (PGF) of these distri-
butions. Doss [1] proposed to define the PGF of an NMD as
the inverse 𝜆th power of a polynomial linear in each of its
variables. This definition can also be found in the famous
textbook [2, page 93] and the computation of its modes
has been investigated in [3]. A more general class of NMDs
introduced in [4] was characterized by PGFs of the form|I − Q|𝜆|I − QZ|−𝜆, where 𝜆 > 0, Q is an 𝑛 × 𝑛 matrix,
and Z = diag(𝑧1, . . . , 𝑧𝑛). In particular, matrices Q yielding
infinitely divisible PGFs were derived. Finally, Bar-Lev et al.
[5] introduced NMDs whose PGFs are defined as the inverse𝜆th power of any affine polynomial. Necessary and sufficient
conditions on the coefficients of this affine polynomial were
derived to obtain the PGF of a multivariate distribution
defined on N𝑛

0 (where N0 is the set of nonnegative integers)
[6].These very generalmultivariateNMDswere recently used
for image processing applications in [7].

The family of NMDs introduced in [5] can be defined
as follows. Let us denote [𝑛] = {1, . . . , 𝑛} the set of the𝑛 first nonzero integers. We denote z𝑇 = ∏𝑡∈𝑇𝑧𝑡 as the
monomial obtained bymultiplying all the entries of the vector
z = (𝑧1, . . . , 𝑧𝑛) ∈ R𝑛 whose indexes belong to 𝑇, where𝑇 ⊂ [𝑛] stands for any subset of the indexes. Let 𝑃𝑛(z) =∑𝑇⊂[𝑛],𝑇 /=0 𝑝𝑇z𝑇 be an affine polynomial with respect to the𝑛 variables (𝑧1, . . . , 𝑧𝑛) such that 1 − 𝑃𝑛(1) /= 0. The NMD
distribution defined at pair (𝑛, 𝑃𝑛) is represented by its PFG
which is given by

GNM(𝑛,𝑃𝑛)
(z) = (1 − 𝑃𝑛 (z))−𝜆(1 − 𝑃𝑛 (1))𝜆. (1)

Such laws are denoted asNM(𝑛, 𝑃𝑛). However, as explained
in [6], all couples (𝑛, 𝑃𝑛) do not provide a valid NMD.
More specifically, Bernardoff has derived a finite number of
conditions over 𝑃𝑛 such that (1 − 𝑃𝑛(z))−𝜆(1 − 𝑃𝑛(1))𝜆 is the
PGF of an NMD for all positive integer 𝑛. The corresponding
expression of the coefficient of z𝛼 in the Taylor expansion of(1 − 𝑃𝑛(z))−𝜆 is given by the formula

𝑐𝛼 (𝜆, 𝑃𝑛) = ∑
𝑘∈𝐾𝛼

(𝜆)|𝑘| p𝑘𝑘! , (2)
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where 𝐾𝛼 = {𝑘 : P𝑛 → N} andP𝑛 is the set of all subsets of[𝑛]. However, this expression of 𝑐𝛼(𝜆, 𝑃𝑛) does not allow us to
explicitly compute the masses of NMDs in the general case.

As a first goal of this paper, we propose a way of com-
puting the masses of multivariate NMDsNM(𝑛, 𝑃𝑛) defined
above. A specific attention is devoted to bivariate and trivari-
ate cases. In particular, it allows us to retrieve the results of [7]
obtained for bivariate NMDs. The second part of the paper
is devoted to the application of NMDs to image processing,
more specifically to polarimetric image processing [8, 9].
Polarimetric image processing has received a considerable
attention in the image processing and optical communities
(see for instance [10–12] and references therein). The state of
polarization of a polarimetric image is classically character-
ized by the degree of polarization (DoP) whose estimation is
of major importance [13, 14].TheDoP of polarimetric images
can be classically estimated by using four images associated
to four different polarizations [15]. However, estimating the
DoP using less than four images is interesting since it allows
one to reduce the acquisition time and the resulting cost of
the imaging system. As a consequence, there has been
recently an increasing interest in deriving estimators of the
DoP based on a reduced number of polarimetric images.
Depending on the intensity of the acquired images, polari-
metric images are referred to as low flux or high flux images
(low flux corresponding to a small intensity and high flux to a
larger intensity). DoP estimation based on a single polari-
metric image was considered in [16, 17] under high flux and
low flux assumptions. DoP estimators derived from two
intensity images degraded by fully developed speckle noise
were studied in [18, 19]. Finally, imaging systems using three
polarimetric images were studied in [20, 21], under high flux
and low flux assumptions.

This paper studies the maximum likelihood estimators
(MLEs) of the square DoP based on two or three polarimetric
images. These estimators are computed by maximizing the
masses of bivariate or trivariateNMDsderived in the first part
of this work.

The paper is organized as follows. Section 2 recalls impor-
tant results on NMDs. Section 3 proposes a new way of com-
puting masses of NMDs. A particular attention is devoted
to bivariate and trivariate cases. Section 4 addresses the
problem of estimating the square DoP of low flux polarimet-
ric images using the maximum likelihood (ML) principle.
Different MLEs are constructed depending on the number
of available polarimetric images. Simulation results are pre-
sented in Section 5.

2. Negative Multinomial Distributions

An 𝑛-variate NMD is the distribution of a random vectorN =(𝑁1, . . . , 𝑁𝑛) taking its values in N𝑛
0 whose PGF is

𝐺N (z) = E( 𝑛∏
𝑘=1

𝑧𝑁𝑘
𝑘
) = [𝑃𝑛 (z)]−𝜆, (3)

where E denotes the mathematical expectation, z = (𝑧1, . . . ,𝑧𝑛), 𝜆 > 0, and 𝑃𝑛(z) is an affine polynomial of order 𝑛. (A
polynomial 𝑃𝑛(z) with respect to z = (𝑧1, . . . , 𝑧𝑛) is affine if

the one variable polynomial 𝑧𝑗 ∣→ 𝑃𝑛(z) can be written as𝐴(−𝑗)𝑧𝑗+𝐵(−𝑗) (for any 𝑗 = 1, . . . , 𝑑), where𝐴(−𝑗) and 𝐵(−𝑗) are
polynomials with respect to the 𝑧𝑖’s with 𝑖 /= 𝑗.)These discrete
distributions have received much interest in the literature
(see for instance [2] and the references therein). Of course,
the affine polynomial 𝑃𝑛 has to satisfy appropriate conditions
to ensure that 𝐺N(z) is a PGF. These conditions include the
trivial equality 𝑃𝑛(1, . . . , 1) = 1. However, determining all
pairs (𝑃𝑛, 𝜆) such that𝐺N(z) is a PGF is still an open problem
(see [6], for discussions related to this problem). As explained
in [6], the affine polynomial 𝑃𝑛(z) can be rewritten

𝑃𝑛 (z) = 𝐴𝑛 (𝑎1𝑧1, . . . , 𝑎𝑛𝑧𝑛)𝐴𝑛 (𝑎1, . . . , 𝑎𝑛) , (4)

where 𝑎1, . . . , 𝑎𝑛 are positive numbers and 𝐴𝑛 is an affine
polynomial such that𝐴𝑛(0, . . . , 0) = 1.TheTaylor expansions
of [𝐴𝑛(z)]−𝜆 and [𝑃𝑛(z)]−𝜆 in the neighborhood of (0, . . . , 0)
will be denoted as follows:

[𝐴𝑛(z)]−𝜆 = ∑
𝛼∈N𝑛
0

𝑐
𝛼
(𝜆, 𝐴𝑛) z𝛼,

[𝑃𝑛(z)]−𝜆 = ∑
𝛼∈N𝑛
0

𝑐
𝛼
(𝜆, 𝑃𝑛) z𝛼,

(5)

where 𝛼 = (𝛼1, . . . , 𝛼𝑛) and z𝛼 = ∏𝑛
𝑖=1𝑧𝛼𝑖𝑖 . Equations (3)

and (4) clearly show that the masses of multivariate NMDs
denoted as 𝑐

𝛼
(𝜆, 𝑃𝑛) can be expressed as follows:

𝑐
𝛼
(𝜆, 𝑃𝑛) = 𝑐

𝛼
(𝜆, 𝐴𝑛) ∏𝑛

𝑖=1𝑎𝛼𝑖𝑖𝐴𝑛(𝑎1, . . . , 𝑎𝑛)−𝜆 . (6)

3. Masses of Negative
Multinomial Distributions

In this section, we derive new expressions for the coefficients𝑐
𝛼
(𝜆, 𝐴𝑛) that will be used to compute the masses of NMDs.

The particular cases of bivariate and trivariate NMDs will
play an important role for the estimation of the DoP on
polarimetric images. In order to compute the 𝑐

𝛼
(𝜆, 𝐴𝑛), we

derive several results summarized in this section whereas all
demonstrations are reported in the appendix.

Theorem 1. DenoteP∗
𝑛 as the set of nonempty subsets of [𝑛] ={1, . . . , 𝑛}. Any affine polynomial 𝐴𝑛 such that 𝐴𝑛(0) = 1

denoted as

𝐴𝑛 (z) = 1 − ∑
𝑇∈P∗
𝑛

𝑎𝑇z𝑇 (7)

can be expressed as follows:

𝐴𝑛 (z) = ∏
𝑖∈[𝑛]

(1 − 𝑎𝑖𝑧𝑖) − ∑
𝑇∈P∗
𝑛
,|𝑇|⩾2

𝑑𝑛𝑇z𝑇 ∏
𝑖∈[𝑛]\𝑇

(1 − 𝑎𝑖𝑧𝑖) ,
(8)
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where |𝑇| is the cardinal of the set 𝑇. Moreover

𝐴𝑛 (z) = [∏
𝑖∈[𝑛]

(1 − 𝑎𝑖𝑧𝑖)]

× (1 − ∑
𝑇∈P∗
𝑛
,|𝑇|⩾2

𝑑𝑛𝑇 z𝑇∏𝑖∈𝑇 (1 − 𝑎𝑖𝑧𝑖))
(9)

= [∏
𝑖∈[𝑛]

(1 − 𝑎𝑖𝑧𝑖)]
× (1 − 𝑄𝑛 ( 𝑧11 − 𝑎1𝑧1 , . . . ,

𝑧𝑛1 − 𝑎𝑛𝑧𝑛)) ,
(10)

where 𝑄𝑛 is the polynomial defined by 𝑄𝑛(z) =∑𝑇∈P∗
𝑛
,|𝑇|⩾2 𝑑𝑛𝑇z𝑇 and 𝑑𝑛𝑇 is related to the 2|𝑇| − 1 variables𝑎𝑆, 𝑆 ∈ P∗

𝑇 as follows:

𝑑𝑛𝑇 = |𝑇|∑
𝑇∈P𝑛
|𝑇|>1

𝑎𝑇𝑎[𝑛]\𝑇 + (|𝑇| − 1)∏
𝑖∈𝑇

𝑎𝑖. (11)

Remark 2. In the trivariate case defined by 𝑛 = 3, the poly-
nomial 𝐴3(z) can be expressed as

𝐴3(z) = (1 − 𝑎1𝑧1) (1 − 𝑎2𝑧2) (1 − 𝑎3𝑧3)
× [1 − 𝑄3 ( 𝑧11 − 𝑧1 ,

𝑧21 − 𝑧2 ,
𝑧31 − 𝑧3)] ,

(12)

where the coefficients of the polynomial

𝑄3(z) = 𝑏1,2𝑧1𝑧2 + 𝑏1,3𝑧1𝑧3 + 𝑏2,3𝑧2𝑧3 + 𝑏1,2,3𝑧1𝑧2𝑧3 (13)

can be determined using the relations

𝑏𝑖,𝑗 = 𝑎𝑖,𝑗 + 𝑎𝑖𝑎𝑗, 𝑖, 𝑗 ∈ {1, 2, 3} , 𝑖 /= 𝑗,
𝑏1,2,3 = 𝑎1,2,3 + 𝑎1𝑎2,3 + 𝑎2𝑎1,3 + 𝑎3𝑎1,2 + 2𝑎1𝑎2𝑎3. (14)

The next theorem provides a relation between the coefficients
of the polynomials 𝐴𝑛(z) and 𝑄𝑛(z) introduced above.

Theorem 3. Let 𝐴𝑛(z) = 1 − ∑𝑇∈P∗
𝑛

𝑎𝑇𝑧𝑇, a = (𝑎1, . . . , 𝑎𝑛),
and 𝑄𝑛 be the affine polynomial defined in (10) and (11). For
any 𝛼 and 𝛾 in N𝑛, denote as 𝑐𝛾(𝜆, 𝐴𝑛) the coefficient of z𝛾

in the Taylor expansion of [𝐴𝑛(z)]−𝜆 and as 𝑐𝛼(𝜆, 1 − 𝑄𝑛) the

coefficient of z𝛼 in the Taylor expansion [1 − 𝑄𝑛(z)]−𝜆. The
following relation can be obtained:

𝑐𝛾 (𝜆, 𝐴𝑛) = ∑
𝛼+𝛽=𝛾

𝑐𝛼 (𝜆, 1 − 𝑄𝑛) (𝜆1 + 𝛼)𝛽 a𝛽𝛽! (15)

= ∑
0⩽𝛽𝑖⩽𝛾𝑖 , 𝑖=1,...,𝑛

𝑐𝛾−𝛽 (𝜆, 1 − 𝑄𝑛)

× 𝑛∏
𝑖=1

(𝜆 + 𝛾𝑖 − 𝛽𝑖)𝛽𝑖 𝑎
𝛽𝑖
𝑖𝛽𝑖!

(16)

= ∑
0⩽𝛼𝑖⩽𝛾𝑖, 𝑖=1,...,𝑛

𝑐𝛼 (𝜆, 1 − 𝑄𝑛)

× 𝑛∏
𝑖=1

(𝜆 + 𝛼𝑖)𝛽𝑖 𝑎𝛾𝑖−𝛼𝑖𝑖(𝛾𝑖 − 𝛼𝑖)! .
(17)

The masses of NMDs can be directly obtained from
this theorem. The particular cases of bivariate and trivariate
NMDs are considered in the following subsections since
the corresponding masses will be useful in the application
considered in the second part of this paper.

3.1. Bivariate NMDs

Theorem 4. Consider the affine polynomial of order 2 with
variables z = (𝑧1, 𝑧2) defined by
𝐴2(z) = 1 − ∑

𝑇∈P∗
2

𝑎𝑇𝑧𝑇 = 1 − 𝑎1𝑧1 − 𝑎2𝑧2 − 𝑎1,2𝑧1𝑧2. (18)

The coefficient of z𝛾 in the Taylor expansion of [𝐴2(z)]−𝜆, can
be computed as follows

𝑐𝛾 (𝜆, 𝑃2) = (𝜆)max(𝛾1,𝛾2)

min(𝛾1,𝛾2)∑
ℓ=0

(𝜆 + ℓ)min(𝛾1 ,𝛾2)−ℓ(𝛾1 − ℓ)! (𝛾2 − ℓ)!ℓ!
× 𝑎𝛾1−ℓ1 𝑎𝛾2−ℓ2 𝑏ℓ1,2.

(19)

Remark 5. The result (A.11) was mentioned in [7] without
the factorization leading to (19). If 𝑎1 /= 0 and 𝑎2 /= 0, an
equivalent formulation of (19) is

𝑐𝛾 (𝜆, 𝑃2) = 𝑎𝛾11 𝑎𝛾22𝛾1!𝛾2! (𝜆)max(𝛾1,𝛾2)

× min(𝛾1 ,𝛾2)∑
ℓ=0

(𝜆 + ℓ)min(𝛾1 ,𝛾2)−ℓ

× (𝛾1ℓ )(𝛾2ℓ ) ℓ!( 𝑏1,2𝑎1𝑎2)
ℓ.

(20)

3.2. Trivariate NMDs

Theorem 6. Consider the affine polynomial with the three
variables z = (𝑧1, 𝑧2, 𝑧3) defined by

𝐴3 (z) = 1 − ∑
𝑇∈P∗
3

𝑎𝑇𝑧𝑇. (21)
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The coefficient of z𝛾 in the Taylor expansion of [𝐴3(z)]−𝜆 are

𝑐𝛾 (𝜆, 𝑃3) = 𝛾1∑
𝛽1=0

𝛾2∑
𝛽2=0

𝛾3∑
𝛽3=0

⌊|𝛾−𝛽|/2⌋∑
𝑣=‖𝛾−𝛽‖(𝜆)𝑣

× 𝑏𝑣−𝛾1+𝛽12,3 𝑏𝑣−𝛾2+𝛽21,3 𝑏𝑣−𝛾3+𝛽31,2∏3
𝑖=1 (𝑣 − 𝛾𝑖 + 𝛽𝑖)!

𝑏|𝛾−𝛽|−2𝑣1,2,3(󵄨󵄨󵄨󵄨𝛾 − 𝛽󵄨󵄨󵄨󵄨 − 2𝑣)!
× (𝜆 + 𝛾1 − 𝛽1)𝛽1𝛽1!

(𝜆 + 𝛾2 − 𝛽2)𝛽2𝛽2!
× (𝜆 + 𝛾3 − 𝛽3)𝛽3𝛽3! 𝑎𝛽11 𝑎𝛽22 𝑎𝛽33 .

(22)

When 𝑎𝑖 /= 0, 𝑏𝑖,𝑗 /= 0, 𝑖 /= 𝑗, 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3, and𝑏1,2,3 /= 0, an equivalent expression is

𝑐𝛾 (𝜆, 𝑃3) = 𝑎𝛾11 𝑎𝛾22 𝑎𝛾33 𝛾1∑
𝛽1=0

𝛾2∑
𝛽2=0

𝛾3∑
𝛽3=0

⌊|𝛾−𝛽|/2⌋∑
𝑣=‖𝛾−𝛽‖(𝜆)𝑣

× (𝑏2,3𝑏1,3𝑏1,2/𝑏21,2,3)𝑣(󵄨󵄨󵄨󵄨𝛾 − 𝛽󵄨󵄨󵄨󵄨 − 2𝑣)!∏3
𝑖=1 (𝑣 − 𝛾𝑖 + 𝛽𝑖)!

× [ 3∏
𝑖=1

(𝜆 + 𝛾𝑖 − 𝛽𝑖)𝛽𝑖𝛽𝑖! ]( 𝑏1,2,3𝑎1𝑏2,3)
𝛾1−𝛽1

× ( 𝑏1,2,3𝑎2𝑏1,3)
𝛾2−𝛽2( 𝑏1,2,3𝑎3𝑏1,2)

𝛾3−𝛽3

(23)

= (𝜆)‖𝛾‖ a𝛾𝛾!
𝛾1∑

𝛼1=0

𝛾2∑
𝛼2=0

𝛾3∑
𝛼3=0

⌊|𝛼|/2⌋∑
𝑣=‖𝛼‖

(𝜆 + ‖𝛼‖)𝑣−‖𝛼‖(|𝛼| − 2𝑣)!∏3
𝑖=1 (𝑣 − 𝛼𝑖)!

×(𝑏2,3𝑏1,3𝑏1,2𝑏21,2,3 )𝑣𝛼!(𝑏1,2,3𝑎1𝑏2,3)
𝛼1(𝑏1,2,3𝑎2𝑏1,3)

𝛼2(𝑏1,2,3𝑎3𝑏1,2)
𝛼3

× 3∏
𝑖=1

[(𝜆 + 𝛼𝑖)𝛾𝑖−𝛼𝑖 (𝛾𝑖𝛼𝑖)] .
(24)

4. Estimating the Polarization Degree of
Low Flux Polarimetric Images Using
Maximum Likelihood Methods

4.1. Low Flux Polarimetric Images. The state of the polariza-
tion of the light can be described by the random behavior of a
complex vectorA = (𝐴𝑋, 𝐴𝑌), called the Jones vector, whose
covariance matrix, called the polarization matrix, is

Γ = (E [𝐴𝑋𝐴∗
𝑋] E [𝐴𝑋𝐴∗

𝑌]
E [𝐴𝑌𝐴∗

𝑋] E [𝐴𝑌𝐴∗
𝑌]) ≜ ( 𝑎1 𝑎3 + 𝑖𝑎4𝑎3 − 𝑖𝑎4 𝑎2 ) ,

(25)

where ∗ denotes the complex conjugate. The covariance
matrix Γ is a nonnegative Hermitian matrix whose diagonal
terms are the intensity components in the𝑋 and𝑌 directions.
The cross terms of Γ are the correlations between the Jones
components. If we assume a fully developed speckle, the
Jones vectorA is distributed according to a complexGaussian
distribution whose probability density function (pdf) is [15]:

𝑝 (A) = 1𝜋2 |Γ| exp (−A†Γ−1A) , (26)

where |Γ| is the determinant of the matrix Γ and † denotes
the conjugate transpose operator. As a consequence, the
statistical properties of A are fully characterized by the
covariance matrix Γ. The different components of Γ can be
classically estimated by using four intensity images that are
related to the components of the Jones vector as follows (see
[20], for more details):

𝐼1 = 󵄨󵄨󵄨󵄨𝐴𝑋
󵄨󵄨󵄨󵄨2,

𝐼2 = 󵄨󵄨󵄨󵄨𝐴𝑌
󵄨󵄨󵄨󵄨2,

𝐼3 = 12 󵄨󵄨󵄨󵄨𝐴𝑋
󵄨󵄨󵄨󵄨2 + 12 󵄨󵄨󵄨󵄨𝐴𝑌

󵄨󵄨󵄨󵄨2 + Re (𝐴𝑋𝐴∗
𝑌) ,

𝐼4 = 12 󵄨󵄨󵄨󵄨𝐴𝑋
󵄨󵄨󵄨󵄨2 + 12 󵄨󵄨󵄨󵄨𝐴𝑌

󵄨󵄨󵄨󵄨2 + Im (𝐴𝑋𝐴∗
𝑌) .

(27)

The state of the polarization of the light is classically charac-
terized by the square DoP defined by [15, pages 134–136]

𝑃2 = 1 − 4 |Γ|[trace (Γ)]2 = 1 − 4 [𝑎1𝑎2 − (𝑎23 + 𝑎24)](𝑎1 + 𝑎2)2 , (28)

where trace(Γ) is the trace of the matrix Γ. The light is totally
depolarized for 𝑃 = 0, totally polarized for 𝑃 = 1, and par-
tially polarized when 𝑃 ∈ ]0, 1[. As a consequence, estimating
the square DoP of a polarimetric image is important in many
practical applications. Different estimation methods of 𝑃2

using several combinations of intensity images were studied
in [20]. Since only one realization of the random vector I =(𝐼1, . . . , 𝐼4)𝑇 was available for a given pixel of a polarimetric
image, the image was supposed to be locally stationary and
ergodic. These assumptions were used to derive square DoP
estimators using several neighbor pixels belonging to a so-
called estimation window.

This paper considers practical applications where the
intensity level of the reflected light is very low (low flux
assumption), which leads to an additional source of fluctu-
ations on the detected signal. Under the low flux assumption,
the quantum nature of the light leads to a Poisson-distributed
noise which can become very important relatively to the
mean value of the signal at a low photon level. As a conse-
quence, the observed pixels of the lowflux polarimetric image
are discrete random variables contained in the vector N =(𝑁1, . . . , 𝑁4) such that the conditional distributions of the
random variables𝑁𝑙 | 𝐼𝑙, for 𝑙 = 1, . . . , 4 are independent and
distributed according to Poisson distributions with means 𝐼𝑙,
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for 𝑙 = 1, . . . , 4. The resulting joint distribution of N is a
multivariate mixed Poisson distribution [22]:

𝑃 (N = k) = ∫ ⋅ ⋅ ⋅(R+)4 ∫
4∏
𝑙=1

𝐼𝑘𝑙
𝑙𝑘𝑙! exp (−𝐼𝑙) 𝑓(I) 𝑑I, (29)

where k = (𝑘1, . . . , 𝑘4), 𝑘𝑖 ∈ N, and 𝑓(I) is the joint pdf of the
intensity vector. This section studies estimators of the square
DoP 𝑃2 defined in (28) based on several vectors N1, . . . ,N𝑛

belonging to the estimation window. These estimators are
constructed from estimates of the covariancematrix elements𝑎𝑖, 𝑖 = 1, . . . , 4. As explained in the introduction, several
studies have been recently devoted to the estimation of the
square DoP using less than four polarimetric images. This
paper goes into this direction by deriving estimators based
on the observation of 2 or 3 polarimetric images.

The joint distribution of the intensity vector I is known to
be a multivariate gamma distribution whose Laplace trans-
form is [20]

𝐸[exp( 4∑
𝑘=1

𝑧𝑘𝐼𝑘)] = 1𝑃4 (z) , (30)

where the affine polynomial 𝑃4 is
𝑃4 (z) = 1 + z𝜇 + 𝑘𝑎 [2𝑧1𝑧2 + 𝑧3𝑧4 + (𝑧1 + 𝑧2) (𝑧3 + 𝑧4)]

(31)

with z = (𝑧1, . . . , 𝑧4) and
𝑘𝑎 = 12 (𝑎1𝑎2 − 𝑎23 − 𝑎24) ,

𝜇 = (𝑎1, 𝑎2, 𝑎3 + 𝑎1 + 𝑎22 , 𝑎4 + 𝑎1 + 𝑎22 )𝑇.
(32)

As a consequence, the distribution of N is an NMD whose
PGF can be written as (the interested reader is invited to
consult [22] for more details)

𝐺N (z) = 1𝑃4 (𝑧1 − 1, 𝑧2 − 1, 𝑧3 − 1, 𝑧4 − 1) . (33)

The results of Section 2 allow us to compute the masses of
N that will be useful for studying the maximum likelihood
estimator (MLE) of the square DoP.

4.2. MLE Using Three Polarimetric Images. The PGF of Ñ =(𝑁1, 𝑁2, 𝑁3) can be computed from (33) by setting 𝑧4 = 1.
The following result can be obtained:

𝐺Ñ (z) = 1𝑃3 (z) (34)

with

𝑃3 (z) = 𝑃3 (0) + 𝑧1 (𝜇1 − 3𝑘𝑎) + 𝑧2 (𝜇2 − 3𝑘𝑎)
+ 𝑧3 (𝜇3 − 2𝑘𝑎) + 𝑘𝑎 (2𝑧1𝑧2 + 𝑧1𝑧3 + 𝑧2𝑧3) , (35)

z = (𝑧1, 𝑧2, 𝑧3), and 𝑃3(0) = 1 − ∑3
𝑖=1 𝜇𝑖 + 4𝑘𝑎. The results of

Section 3.2 can then be used to express the masses of Ñ as a
function of 𝜃 = (𝑎1, 𝑎2, 𝑎3, 𝑎24)𝑇.

The ML estimator of 𝜃 based on several vectors Ñ𝑘

belonging to the estimation window (where 𝑘 = 1, . . . , 𝐾
and 𝐾 is the number of pixels of the observation window)
is obtained by maximizing the log-likelihood

𝑙3 (Ñ1, . . . , Ñ𝐾 | 𝜃) = 𝐾∑
𝑘=1

log [𝑃 (Ñ𝑘)] (36)

with respect to 𝜃 (note again that 𝑃(Ñ𝑘) is the mass of a
trivariate NMD that has been computed in Section 3.2). The
practical determination of the ML estimator of 𝜃 is achieved
by using aNewton-Raphson procedure.TheML estimators of
the vector 𝜃, denoted as 𝜃̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎24)𝑇, are then plugged
into (28) to provide theML estimator of the squareDoPbased
on three polarimetric images:

𝑃̃2 = 1 − 4 [𝑎1𝑎2 − (𝑎23 + 𝑎24)]
(𝑎1 + 𝑎2)2 . (37)

4.3. MLE Using Two Polarimetric Images. The PGF of N =(𝑁1, 𝑁2) can be computed from (34) by setting 𝑧3 = 1. The
following result can be obtained:

𝐺N (z) = 1𝑃2(z) (38)

with

𝑃2(z) = 𝑃2(0) + 𝑧1(𝜇1 − 2𝑘𝑎) + 𝑧2(𝜇2 − 2𝑘𝑎) + 2𝑘𝑎𝑧1𝑧2,
(39)

z = (𝑧1, 𝑧2) and 𝑃2(0) = 1 − ∑2
𝑖=1 𝜇𝑖 + 2𝑘𝑎. The results of

Section 3.1 can then be used to express the masses of N as a
function of 𝜃 = (𝑎1, 𝑎2, 𝑘𝑎)𝑇.

The MLE of 𝜃 based on several vectors N𝑘 belonging to
the estimation window is obtained by maximizing the log-
likelihood

𝑙2 (N1, . . . ,N𝐾 | 𝜃) = 𝐾∑
𝑘=1

log [𝑃 (N𝑘)] (40)

with respect to 𝜃 (note that 𝑃(N𝑘) is the mass of a bivariate
NMD that has been computed in Section 3.1). The practical
determination of theML estimator of 𝜃 is achieved by using a
Newton-Raphson procedure.TheML estimators of the vector
𝜃 elements, denoted as 𝜃 = (𝑎1, 𝑎2, 𝑘𝑎)𝑇, are then plugged
into (28) to provide the MLE of the square DoP based on two
polarimetric images:

𝑃2 = 1 − 8𝑘𝑎
(𝑎1 + 𝑎2)2 . (41)
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Table 1: Covariance matrix elements and square DoP values for the Jones vector.

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10𝑎1 2.00 1.71 2.40 1.82 2.00 2.67 2.40 2.24 2.74 2.00 2.00𝑎2 2.00 2.29 1.60 2.18 2.00 1.33 1.60 1.76 1.26 2.00 2.00𝑎3 0.00 0.40 0.48 0.91 0.89 0.96 1.07 1.05 1.46 0.60 1.41𝑎4 0.00 0.40 0.64 0.58 0.89 0.80 1.05 1.28 0.73 1.80 1.41𝑃2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Table 2: Simulation results for the estimation of 𝑃2 using 2 or 3 images, obtained from 1000Monte-Carlo runs (𝑛 = 51 × 51).

2 images MLE 3 images MLE
Bias std MSE avar Bias std MSE avarΓ0 3.57𝑒 − 03 1.31𝑒 − 02 1.85𝑒 − 04 — 4.12𝑒 − 03 9.08𝑒 − 03 9.93𝑒 − 05 —Γ1 4.28𝑒 − 04 3.14𝑒 − 02 9.83𝑒 − 04 9.78𝑒 − 04 1.71𝑒 − 03 2.57𝑒 − 02 6.62𝑒 − 04 7.25𝑒 − 04Γ2 9.49𝑒 − 04 3.23𝑒 − 02 1.04𝑒 − 03 9.82𝑒 − 04 1.20𝑒 − 03 2.86𝑒 − 02 8.18𝑒 − 04 7.83𝑒 − 04Γ3 −2.15𝑒 − 04 3.13𝑒 − 02 9.81𝑒 − 04 9.67𝑒 − 04 4.84𝑒 − 04 2.88𝑒 − 02 8.28𝑒 − 04 8.07𝑒 − 04Γ4 2.49𝑒 − 03 3.02𝑒 − 02 9.19𝑒 − 04 8.91𝑒 − 04 1.71𝑒 − 03 2.81𝑒 − 02 7.91𝑒 − 04 7.67𝑒 − 04Γ5 2.86𝑒 − 04 2.85𝑒 − 02 8.10𝑒 − 04 7.54𝑒 − 04 4.80𝑒 − 04 2.65𝑒 − 02 7.03𝑒 − 04 6.69𝑒 − 04Γ6 5.25𝑒 − 04 2.59𝑒 − 02 6.72𝑒 − 04 6.58𝑒 − 04 6.32𝑒 − 04 2.47𝑒 − 02 6.11𝑒 − 04 5.95𝑒 − 04Γ7 1.05𝑒 − 03 2.37𝑒 − 02 5.60𝑒 − 04 5.43𝑒 − 04 1.04𝑒 − 03 2.26𝑒 − 02 5.11𝑒 − 04 4.95𝑒 − 04Γ8 1.59𝑒 − 04 2.01𝑒 − 02 4.03𝑒 − 04 4.12𝑒 − 04 3.17𝑒 − 04 1.90𝑒 − 02 3.60𝑒 − 04 3.73𝑒 − 04Γ9 −2.88𝑒 − 04 1.76𝑒 − 02 3.10𝑒 − 04 3.20𝑒 − 04 −4.46𝑒 − 04 1.65𝑒 − 02 2.73𝑒 − 04 2.86𝑒 − 04Γ10 −5.98𝑒 − 03 8.98𝑒 − 03 1.16𝑒 − 04 — −5.73𝑒 − 03 8.58𝑒 − 03 1.06𝑒 − 04 —

5. Simulation Results

5.1. Estimation Performance. The performance of the ML
estimators of the square DoP based on two or three polari-
metric images has been evaluated via several experiments.
The first simulations compare the log Mean Square Errors
(MSEs) of the square DoP estimators constructed from two
or three images. Eleven different covariance matrices of the
Jones vector have been considered in order to define typical
values of the DoP. The values of 𝑎𝑖, for 𝑖 = 1, . . . , 4, (defining
the covariance matrix elements of the Jones vector) and the
corresponding values of the square DoPs are reported in
Table 1. Note that all the covariance matrices Γ𝑗, 𝑗 = 0, . . . , 10,
have been normalized so that the mean of the total intensity
E[𝐼1 + 𝐼2] = E[𝑁1 + 𝑁2] = 𝑎1 + 𝑎2 is equal to 4. Thus, the
average number of photons collected on each pixel equals
4 for each matrix of the considered set. This point is in
agreement with the low flux assumption.

Figure 1(a) display the empirical log MSEs of the square
DoP estimators for the set of covariance matrices defined
in Table 1 as a function of the true square DoP value. The
red plus markers + correspond to the estimators obtained
for two polarimetric images (2D MLE), whereas the blue
cross markers × correspond to the MLE obtained for three
polarimetric images (3D MLE). Note that these empirical
MSEs have been computed for a square observation window
of size 𝑛 = 51 × 51 pixels, based on 1000 Monte-Carlo runs.
The theoretical asymptotic log MSEs of the MLE are also dis-
played in Figure 1(a) with continuous lines.These asymptotic
values correspond to the Cramer-Rao Lower Bound (CRLB)
for the parameter 𝑃2.TheMLE is known to be asymptotically
unbiased and efficient under mild regularity conditions (that

are satisfied for 𝑃2). Thus, the MSE of the estimates can be
approximated a for large sample by the CRLB. More details
about the way of computing the square DoP CLRBs can be
found in [23]. Figure 1(a) indicates that the empirical MSEs
are in good agreement with the corresponding CRLBs, except
for the matrices Γ0 and Γ10. Indeed, the CRLBs for these
two matrices cannot be computed since the true value of the
parameters belongs to the boundary of its definition domain.
The empirical bias, standard deviations (“std”), MSEs, and
asymptotic variances (“avar”) of the estimators of 𝑃2 are also
reported in Table 2. It is interesting to note that the MLE
obtained using 3 images is slightly more biased than the
one obtained using 2 images. However, the MLE based on 3
images provides lower MSEs than the estimator based on 2
images, as expected.

In order to appreciate the influence of the Poisson noise
due to the low flux assumption, experiments have been
conducted using the high flux assumption. In this case, the
intensity vector I is assumed to be known.Thus, the high flux
MLEs using two and three images can be derived from the
intensity vectors I𝑘 = (𝐼𝑘1 , 𝐼𝑘2 )𝑇 and Ĩ𝑘 = (𝐼𝑘1 , 𝐼𝑘2 , 𝐼𝑘3 )𝑇 [20].
The results are depicted in Figure 1(b). A comparison between
Figures 1(a) and 1(b) allows one to appreciate a similar global
behaviour for all the estimators, with a maximum MSE near𝑃2 = 1/3 and decreasing MSEs as 𝑃2 goes to 0 or 1. The
degradation of the estimation performance due to the pres-
ence of Poisson noise (due to the low flux assumption) can
also be clearly noticed.

The next set of simulations studies the performance of
the different estimators as a function of the sample size 𝑛.
Figures 2(a) and 2(b) show the log MSEs of the square DoP
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Figure 1: log MSEs of the square DoP estimates using 2 and 3
images versus 𝑃2 for the set of polarization matrices defined in
Table 1 under (a) low flux and (b) high flux assumptions (𝑛 = 51 ×51, ML: maximum likelihood estimators, and Asympt.: theoretical
asymptotic value of the log MSE for a given estimator).

estimates obtained for 2 and 3 images (for the two particular
matrices Γ2 and Γ8). The empirical bias, standard deviations
(“std”), MSEs, and asymptotic variances (“avar”) are also
reported in Tables 3 and 4. One can see that the empirical
MSEs are in good agreementwith their theoretical asymptotic
values for a large enough sample size, that is, 𝑛 > 25 × 25.
Moreover, the gain of a performance using 3 images instead
of 2 is more significant for small values of 𝑃2 (indeed, the
difference between the different curves is more pronounced
in the left figure corresponding to 𝑃2 = 0.2 than in the right
figure corresponding to 𝑃2 = 0.8.)

Figures 3(a) and 3(b) display the MSEs of the MLE under
the high flux assumption. By comparing Figures 2 and 3,
one can observe that the gain of performance using 3 images
instead of 2 is more important in the high flux scenario than
under a low flux assumption.
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Figure 2: log MSE of the estimated square DoP 𝑃2 using 2 or 3
intensity images versus the logarithm of the sample size for the
matrices (a) Γ2 and (b) Γ8 (ML: maximum likelihood estimators,
and Asympt. theoretical asymptotic value of the log MSE for a given
estimator).

5.2. Application to Synthetic Polarimetric Images. In order
to appreciate the estimation performance on polarimetric
images, we consider a synthetic polarimetric image of size512 × 512 composed of three distinct objects located on
a homogeneous background depicted in Figure 4 (see also
[20]). The polarimetric properties of these objects and back-
ground (i.e., the covariance matrix of the Jones vector and
the square DoPs) are reported in Table 5. The polarimetric
low flux images generated according to this model are also
represented in Figure 5 in negative colors (bright pixels corre-
spond to a small number of photons, dark ones correspond to
a large number of photons). Note that these images represent
the values of the vectorN = (𝑁1, 𝑁2, 𝑁3, 𝑁4)𝑇 for each pixel.
The square DoP of each pixel x(𝑖,𝑗) (for 𝑖, 𝑗 = 1, . . . , 512) has
been estimated from vectors belonging to windows of size𝑛 = 15 × 15 centered around the pixel of coordinates (𝑖, 𝑗) in
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Figure 3: log MSE of the estimated square DoP 𝑃2 using 2 or 3 intensity images versus the logarithm of the sample size for the matrices (a)Γ2 and (b) Γ8 under high flux assumption (ML: maximum likelihood estimators, Asympt.: theoretical asymptotic value of the log MSE for a
given estimator).
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Figure 4: Composition of the scene used to generate synthetic polarimetric low flux images and associated theoretical squared DoP.

the analyzed image. The estimated square DoPs are depicted
in Figures 6(a) and 6(b) for the MLEs using 2 and 3 images,
respectively. One can see that the ML method for 3 images
gives more homogeneous results on each object than the ML
method derived for 2 images. This result confirms that the
MLE using 3 images performs better than theMLE using only
2 images. However, the polarimetric properties of a scene can
be clearly recovered with 2 or 3 low flux images.

5.3. Estimation Results on Real-Word Polarimetric Images.
Finally, the ML estimator based on three images is applied
on real polarimetric data.These images are acquired by using
a laser as a coherent illumination source. The scene consists
of two disks. The first one, intended to provide low DoP, is
a grey diffuse material (left object in Figure 7). The second

one is made of sand blasted aluminium providing high DoP
(right object in Figure 7).Due to the experimental conditions,
the measured intensities are quite low. As a consequence,
these intensities are assumed to be distributed according to an
NMD.The intensity images corresponding to𝑁1,𝑁2,𝑁3, and𝑁4 are depicted in Figure 7. The interested reader is invited
to read [20] for more details on these data. It is important
to note that the two disks exhibit the similar level of total
reflectivity𝑁1 + 𝑁2 and can hardly be distinguished without
a polarimetric processing.

Figure 8 shows the ML estimates of the square DoPs 𝑃2

for 3 images and an estimationwindow of size 𝑛 = 9×9 pixels.
As expected, the values of the estimates are quite different
on each disk: quite higher on the metal than on the plastic
disk. This result is in good agreement with the theoretical
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Table 3: Simulation results for the estimation of 𝑃2 using 2 or 3 images, obtained from 1000Monte-Carlo runs (matrix Γ2).
𝑛 2 images MLE 3 images MLE

Bias std MSE avar Bias std MSE avar52 9.03𝑒 − 02 2.49𝑒 − 01 7.01𝑒 − 02 1.02𝑒 − 01 1.20𝑒 − 01 2.20𝑒 − 01 6.27𝑒 − 02 8.15𝑒 − 0272 5.10𝑒 − 02 1.97𝑒 − 01 4.13𝑒 − 02 5.21𝑒 − 02 7.04𝑒 − 02 1.69𝑒 − 01 3.36𝑒 − 02 4.16𝑒 − 02112 2.60𝑒 − 02 1.39𝑒 − 01 2.01𝑒 − 02 2.11𝑒 − 02 3.22𝑒 − 02 1.14𝑒 − 01 1.39𝑒 − 02 1.68𝑒 − 02152 7.68𝑒 − 03 1.02𝑒 − 01 1.04𝑒 − 02 1.14𝑒 − 02 1.59𝑒 − 02 8.48𝑒 − 02 7.43𝑒 − 03 9.05𝑒 − 03252 −7.42𝑒 − 04 6.25𝑒 − 02 3.90𝑒 − 03 4.09𝑒 − 03 2.16𝑒 − 03 5.36𝑒 − 02 2.87𝑒 − 03 3.26𝑒 − 03372 −5.19𝑒 − 04 4.32𝑒 − 02 1.87𝑒 − 03 1.87𝑒 − 03 6.87𝑒 − 05 3.79𝑒 − 02 1.44𝑒 − 03 1.49𝑒 − 03512 9.49𝑒 − 04 3.23𝑒 − 02 1.04𝑒 − 03 9.82𝑒 − 04 1.20𝑒 − 03 2.86𝑒 − 02 8.18𝑒 − 04 7.83𝑒 − 04
Table 4: Simulation results for the estimation of 𝑃2 using 2 or 3 images, obtained from 1000Monte-Carlo runs (matrix Γ8).

𝑛 2 images MLE 3 images MLE
Bias std MSE avar Bias std MSE avar52 −3.91𝑒 − 03 2.08𝑒 − 01 4.31𝑒 − 02 4.29𝑒 − 02 2.80𝑒 − 02 1.61𝑒 − 01 2.67𝑒 − 02 3.88𝑒 − 0272 4.04𝑒 − 03 1.44𝑒 − 01 2.08𝑒 − 02 2.19𝑒 − 02 1.89𝑒 − 02 1.24𝑒 − 01 1.56𝑒 − 02 1.98𝑒 − 02112 2.14𝑒 − 03 9.38𝑒 − 02 8.80𝑒 − 03 8.86𝑒 − 03 8.70𝑒 − 03 8.47𝑒 − 02 7.24𝑒 − 03 8.01𝑒 − 03152 −1.27𝑒 − 03 7.14𝑒 − 02 5.10𝑒 − 03 4.76𝑒 − 03 2.70𝑒 − 03 6.63𝑒 − 02 4.39𝑒 − 03 4.31𝑒 − 03252 5.23𝑒 − 04 3.98𝑒 − 02 1.58𝑒 − 03 1.71𝑒 − 03 6.87𝑒 − 04 3.75𝑒 − 02 1.40𝑒 − 03 1.55𝑒 − 03372 2.24𝑒 − 03 2.89𝑒 − 02 8.42𝑒 − 04 7.83𝑒 − 04 2.54𝑒 − 03 2.75𝑒 − 02 7.61𝑒 − 04 7.08𝑒 − 04512 1.59𝑒 − 04 2.01𝑒 − 02 4.03𝑒 − 04 4.12𝑒 − 04 3.17𝑒 − 04 1.90𝑒 − 02 3.60𝑒 − 04 3.73𝑒 − 04

properties of the considered material. This emphasizes the
interest in considering efficient estimators based on NMDs
for polarimetric images.

Appendix

Proofs of the Theorems

Proof of Theorem 1. The set of affine polynomials with real
coefficients and variables (𝑧1, . . . , 𝑧𝑛) is a vector space of
dimension 2𝑛 spanned by the basis (z𝑇)𝑇∈P𝑛 . The set of
polynomials (z𝑇∏𝑡∈[𝑛]\𝑇(1 − 𝑎𝑡𝑧𝑡))𝑇∈P𝑛 is another basis of
this vector space. The proof of the theorem is obtained
by expressing the coefficients of 𝐴𝑛 in this latter basis.
Considering the expansion

𝐴𝑛 (𝑧1, . . . , 𝑧𝑛) = 𝑑𝑛0∏
𝑖∈[𝑛]

(1 − 𝑎𝑖𝑧𝑖)
− ∑

𝑇∈P∗
𝑛

𝑑𝑛𝑇z𝑇 ∏
𝑖∈[𝑛]\𝑇

(1 − 𝑎𝑖𝑧𝑖) , (A.1)

the following results can be obtained.

(1) Substituting z = 0 in (A.1) leads to 𝑑𝑛0 = 1.
(2) Substituting z𝑖 = (𝛿𝑖(1), . . . , 𝛿𝑖(𝑛)) in (A.1), where𝛿𝑖(𝑗) = 1 if 𝑖 = 𝑗 and 𝛿𝑖(𝑗) = 0 else leads to

1 − 𝑎𝑖 = 1 − 𝑎𝑖 − 𝑑𝑛{𝑖}, (A.2)

or equivalently

𝑑𝑛{𝑖} = 0, 𝑖 ∈ [𝑛] . (A.3)

(3) Without loss of generality, if |𝑇| = 𝑘 > 1, the
coefficients 𝑑𝑛𝑇 can be computed for 𝑇 = {1, . . . , 𝑘}.
Indeed, consider a permutation 𝜎 such that 𝑇 ={𝜎(1), . . . , 𝜎(𝑘)}. If 𝑑𝑛{1,...,𝑘} = 𝑓({𝑎𝑆}𝑆∈P∗

𝑘

), we have𝑑𝑛𝑇 = 𝑓({𝑎𝜎(𝑆)}𝑆∈P∗
𝑘

). Using the relation
1 − 𝐴𝑛 (𝑧1, . . . , 𝑧𝑛−1, 0) = ∑

𝑇∈P∗
𝑛−1

𝑎𝑇𝑧𝑇
= 1 − 𝐴𝑛−1 (𝑧1, . . . , 𝑧𝑛−1) ,

(A.4)

the expansion

𝐴𝑛 (𝑧1, . . . , 𝑧𝑛) = ∏
𝑖∈[𝑛]

(1 − 𝑎𝑖𝑧𝑖)
− ∑

𝑇∈P∗
𝑛
,|𝑇|⩾2

𝑑𝑛𝑇z𝑇 ∏
𝑖∈[𝑛]\𝑇

(1 − 𝑎𝑖𝑧𝑖) , (A.5)

yields for any 𝑘 < 𝑛,
𝑑𝑛[𝑘] = 𝑑𝑛−1[𝑘] . (A.6)

In order to determine 𝑑𝑛[𝑛], we can assume 𝑎𝑖 /= 0, 𝑖 ∈[𝑛] and substitute 𝑧𝑖 = 1/𝑎𝑖, 𝑖 ∈ [𝑛] in (A.5). The
following result is obtained

1 − 𝑛 − ∑
𝑇∈P∗
𝑛
,|𝑇|⩾2

𝑎𝑇𝑎𝑇 = − 𝑑𝑛𝑇𝑎[𝑛] , (A.7)
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Table 5: Polarimetric properties of elements that compose the scene displayed in Figure 4.

Object Polarization matrix Γ 𝑃2 Remarks

Background (0.79 00 0.98) 0.0115 Very depolarizing and dark background

1 (3.6 00 0.22) 0.783 Very bright and weakly depolarizing object (typically steel)

2 ( 3 0.10.1 0.6) 0.447 Bright object quite depolarizing

3 ( 0.7 0.5 + 0.2 𝑖0.5 − 0.2 𝑖 1.07 ) 0.414 Dark object whose mean total intensity is the same as the
background

(a) Low flux intensity𝑁1 (b) Low flux intensity𝑁2

(c) Low flux intensity𝑁3 (d) Low flux intensity𝑁4

Figure 5: Synthetic intensity images (negative colors) for the scene depicted in Figure 4 and described in Table 5.

hence

𝑑𝑛[𝑛] = [
[(𝑛 − 1) + ∑

𝑇∈P∗
𝑛
,|𝑇|⩾2

𝑎𝑇𝑎𝑇]]𝑎[𝑛]
= ∑

𝑇∈P∗
𝑛
,|𝑇|⩾2

𝑎𝑇𝑎[𝑛]\𝑇 + (𝑛 − 1) 𝑎[𝑛].
(A.8)

Proof of Theorem 3. The relation (10) leads to

[𝐴𝑛 (z)]−𝜆 = (1 − 𝑄𝑛 ( 𝑧11 − 𝑎1𝑧1 , . . . ,
𝑧𝑛1 − 𝑎𝑛𝑧𝑛))

−𝜆

× [ 𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧𝑖)]
−𝜆

= ( ∑
𝛼∈N𝑛

𝑐𝛼 (𝜆, 1 − 𝑄𝑛) ( z
1 − az

)𝛼)
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(a) MLE 2 images
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(b) MLE 3 images

Figure 6: Estimates of 𝑃2 using 2 or 3 low flux intensity images for
the synthetic polarimetric images for an estimation window of size𝑛 = 15 × 15. MLE: maximum likelihood estimator.

× [ 𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧𝑖)]
−𝜆

= ( ∑
𝛼∈N𝑛

𝑐𝛼 (𝜆, 1 − 𝑄𝑛) z𝛼(1 − az)−(𝜆1+𝛼))

= ∑
𝛼∈N𝑛

𝑐𝛼 (𝜆, 1 − 𝑄𝑛) z𝛼( ∑
𝛽∈N𝑛

(𝜆1 + 𝛼)𝛽 a𝛽z𝛽𝛽! )
= ∑

𝛼∈N𝑛
∑
𝛽∈N𝑛

𝑐𝛼 (𝜆, 1 − 𝑄𝑛) ((𝜆1 + 𝛼)𝛽 a𝛽𝛽!) z𝛼+𝛽

= ∑
𝛾∈N𝑛

( ∑
𝛼+𝛽=𝛾

𝑐𝛼 (𝜆, 1 − 𝑄𝑛) (𝜆1 + 𝛼)𝛽 a𝛽𝛽!) z𝛾

(A.9)

which proves (15). Straightforward computations allow us to
obtain the equalities (16) and (17) from (15).

(a) Low flux intensity𝑁1

(b) Low flux intensity𝑁2

(c) Low flux intensity𝑁3

(d) Low flux intensity𝑁4

Figure 7: Real-world polarimetric intensity images of a scene
composed of a plastic disk (left) and a steel disk (right).

Figure 8: Estimates of 𝑃2 using the 3 low flux intensity images𝑁1, 𝑁2, and 𝑁3 for the real polarimetric images for an estimation
window of size 𝑛 = 9 × 9. “MLE”: maximum likelihood estimator.

Proof of Theorem 4. Denote ‖𝛼‖ = max𝑖=1,...,𝑛(𝛼𝑖), |𝛼| =∑𝑛
𝑖=1 𝛼𝑖 and introduce the notation of [6]

𝑐𝛼 (𝜆, 𝑃𝑛) = ∑
𝑘∈𝐾𝛼

(𝜆)|𝑘| a𝑘𝑘! , (A.10)
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where (𝜆)𝑘 = 𝜆(𝜆+1) ⋅ ⋅ ⋅ (𝜆+𝑘−1) = Γ(𝜆+𝑘)/Γ(𝜆). By using
Theorem 3, the following results can be obtained

𝑐𝛾 (𝜆, 𝑃2) = ∑
𝛼+𝛽=𝛾

𝑐𝛼 (𝜆, 1 − 𝑄2) (𝜆1 + 𝛼)𝛽 a𝛽𝛽!
= min(𝛾1,𝛾2)∑

ℓ=0

(𝜆)ℓ(𝜆 + ℓ)𝛾1−ℓ(𝜆 + ℓ)𝛾2−ℓ
× 𝑎𝛾1−ℓ1 𝑎𝛾2−ℓ2 𝑏ℓ1,2(𝛾1 − ℓ)! (𝛾2 − ℓ)!ℓ!

= min(𝛾1,𝛾2)∑
ℓ=0

Γ (𝜆 + ℓ)Γ (𝜆) Γ (𝜆 + 𝛾1)Γ (𝜆 + ℓ) Γ (𝜆 + 𝛾2)Γ (𝜆 + ℓ)
× 𝑎𝛾1−ℓ1 𝑎𝛾2−ℓ2 𝑏ℓ1,2(𝛾1 − ℓ)! (𝛾2 − ℓ)!ℓ!

= Γ (𝜆 +max (𝛾1, 𝛾2))Γ (𝜆)
min(𝛾1,𝛾2)∑

ℓ=0

Γ (𝜆 +min (𝛾1, 𝛾2))Γ (𝜆)
× Γ (𝜆)Γ (𝜆 + ℓ) 𝑏

ℓ
1,2𝑙! ( 2∏

𝑖=1

𝑎𝛾𝑖−ℓ𝑖(𝛾𝑖 − ℓ)!)

= (𝜆)max(𝛾1 ,𝛾2)

min(𝛾1,𝛾2)∑
ℓ=0

(𝜆 + ℓ)min(𝛾1,𝛾2)−ℓ(𝛾1 − ℓ)! (𝛾2 − ℓ)!ℓ!
× 𝑎𝛾1−ℓ1 𝑎𝛾2−ℓ2 𝑏ℓ1,2.

(A.11)

Proof of Theorem 6. The relation (16) with 𝑄3(z) = 𝑏1,2𝑧1𝑧2 +𝑏1,3𝑧1𝑧3 + 𝑏2,3𝑧2𝑧3 + 𝑏1,2,3𝑧1𝑧2𝑧3 leads to (22). By using the
trivial equality

𝑏𝑣−𝛾1+𝛽12,3 𝑏𝑣−𝛾2+𝛽21,3 𝑏𝑣−𝛾3+𝛽31,2 𝑏|𝛾−𝛽|−2𝑣1,2,3 𝑎𝛽11 𝑎𝛽22 𝑎𝛽33
= (𝑏2,3𝑏1,3𝑏1,2𝑏21,2,3 )𝑣( 3∏

𝑖=1

𝑎𝛾𝑖𝑖 )( 𝑏1,2,3𝑎1𝑏2,3)
𝛾1−𝛽1

× ( 𝑏1,2,3𝑎2𝑏1,3)
𝛾2−𝛽2( 𝑏1,2,3𝑎3𝑏1,2)

𝛾3−𝛽3

(A.12)

we easily obtain (23). Note that for ‖𝛼‖ ⩽ 𝑣 ⩽ ⌊|𝛼|/2⌋, we
have (𝜆)𝑣 = (𝜆)‖𝛼‖(𝜆 + ‖𝛼‖)𝑣−‖𝛼‖. By substituting 𝛼𝑖 = 𝛾𝑖 − 𝛽𝑖,𝑖 = 1, 2, 3 in (23), the last result (24) can be obtained.
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