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The negative binomial distribution becomes highly skewed under extreme dispersion. Even at moderately large sample sizes, the
sample mean exhibits a heavy right tail. The standard normal approximation often does not provide adequate inferences about the
data’s expected value in this setting. In previous work, we have examined alternative methods of generating confidence intervals
for the expected value.These methods were based upon Gamma and Chi Square approximations or tail probability bounds such as
Bernstein’s inequality. We now propose growth estimators of the negative binomial mean. Under high dispersion, zero values are
likely to be overrepresented in the data. A growth estimator constructs a normal-style confidence interval by effectively removing
a small, predetermined number of zeros from the data. We propose growth estimators based upon multiplicative adjustments of
the sample mean and direct removal of zeros from the sample. These methods do not require estimating the nuisance dispersion
parameter. We will demonstrate that the growth estimators’ confidence intervals provide improved coverage over a wide range of
parameter values and asymptotically converge to the sample mean. Interestingly, the proposed methods succeed despite adding
both bias and variance to the normal approximation.

1. Introduction

Confidence intervals are routinely applied to limited samples
of data based upon their asymptotic properties. For instance,
the central limit theorem states that the sample mean 𝑋 will
have an approximately Normal distribution for large sample
sizes provided that the data’s second moment is finite. This
Normal approximation is a fundamental tool for inferences
about the data’s expected value in a wide variety of settings.
Confidence intervals for the mean are often based upon
Normal quantiles even when the sample size is verymoderate
(e.g. 30 or 50). However, the Normal approximation’s quality
cannot be ensured for highly skewed distributions [1]. In this
setting, the sample mean may converge to the Normal in
distribution at a much slower rate. The Negative Binomial
distribution is known to have an extremely heavy right tail,
especially under high dispersion.

In previous work [2], we established that the Normal
confidence interval significantly undercovers the mean at

moderate sample sizes. We also suggested alternatives based
upon Gamma and Chi Square approximations along with tail
probability bounds such as Bernstein’s inequality. We now
propose growth estimators for the mean. These estimators
seek to account for the relative overrepresentation of zero
values in highly dispersed negative binomial data. This may
be accomplished by imposing a correction factor as an adjust-
ment to the mean or by directly removing a small number of
zero values from the sample. We will demonstrate that these
alternative procedures provide a confidence interval with
improved coverage. Estimators based on the growth method
can also be shown to asymptotically converge in sample size
to the Normal approximation.

Section 2 reviews the negative binomial distribution and
provides somediscussion of parameter estimation under high
dispersion. Section 3 reviews existing methods of construct-
ing confidence intervals for the mean of negative binomial
random variables. In Section 4, we introduce the growth
method and propose two new confidence intervals for the



2 Journal of Probability and Statistics

negative binomial mean. Section 5 conducts a simulation
experiment to compare these methods to existing procedures
in terms of coverage probability. Finally, we will conclude the
paper with a discussion in Section 6.

2. The Negative Binomial Distribution

The Negative Binomial distribution models the probability
that a total of 𝑘 ∈ Z+ failures will result before 𝜃 ∈ R+

successes are observed. Each count 𝑋 is constructed from
(possibly unobserved) independent trials that each result in
success with a fixed probability 𝑝 ∈ (0, 1). The expected value
of 𝑋 is 𝜇 = 𝜃(1/𝑝 − 1). The Negative Binomial distribution
may be alternatively parameterized in terms of the mean 𝜇

and dispersion 𝜃 directly [3]. For any 𝜇 ∈ R+ and 𝜃 ∈ R+,
a Negative Binomial random variable 𝑋 ∼ NB(𝜇, 𝜃) has the
probability mass function

𝑃 (𝑋 = 𝑥) =
𝜇
𝑥

𝑥!

Γ (𝜃 + 𝑥)

Γ (𝜃) [𝜇 + 𝜃]
𝑥

1

(1 + 𝜇/𝜃)
𝜃
, 𝑥 ∈ Z

+

. (1)

The variance of𝑋 is given by 𝜎2 = 𝜇+𝜇
2
/𝜃. As 𝜃 grows large,

(1) converges to the probability mass function of a Poisson
random variable. Smaller values of 𝜃 lead to larger variances,
so the selection of 𝜃 controls the degree of dispersion in
the data. At very small values of 𝜃, the dispersion becomes
extreme, and the data may be relatively sparse. Because the
Negative Binomial distribution has a heavy right tail, the
small number of nonzero values may be spread over an
extremely wide range. In light of these concerns, it is not
surprising that the normal approximation exhibits a slow
convergence as a function of sample size.

For allmethods, we assume that the data consist of 𝑛 ∈ Z+

independent, identically distributed (i.i.d.) NB(𝜇, 𝜃) random
variables, where 𝜇 and 𝜃 are unknown. We seek to generate
accurate and reliable inferences about𝜇.Thedispersion 𝜃may
be considered a nuisance parameter. In the previous work
of Shilane et al. [2], some methods relied upon estimates
of 𝜃 while others directly estimated the variance 𝜎

2 with
the unbiased estimator 𝑠

2. In general, we prefer to estimate
the variance directly where possible. A variety of research
suggests that estimating small values of 𝜃 is especially difficult
in small sample sizes. Some existing procedures include the
method of moments estimator 𝜃 = 𝑋/((𝑠

2
/𝑋) − 1) and

an iterative maximum likelihood estimator (MLE) [4, 5].
Aragón et al. [6] and Ferreri [7] provide conditions for the
existence and uniqueness of the MLE. Meanwhile, Pieters
et al. [8] compare an MLE procedure to the method of
moments at small sample sizes. These procedures encounter
difficulties when the variance estimate 𝑠

2 is less than the
sample mean 𝑋. The method of moments estimator will
provide an implausible negative number, while maximum
likelihood procedures will produce highly variable results by
constraining 𝑠

2 to be at least as large as 𝑋. (Additionally, the
glm.nb method in the R Statistical programming language
will often produce computational errors in this setting rather
than return an MLE for 𝜃.)

For any 𝛼 ∈ (0, 1), we seek to construct high-quality 1−𝛼

confidence intervals for the mean 𝜇 based upon a sample

𝑋
1
, . . . , 𝑋

𝑛
of i.i.d. NB(𝜇, 𝜃) random variables. A method’s

coverage probability is the chance that the interval will contain
the parameter of interest 𝜇 as a function of the sample size 𝑛
and the parameters 𝜇 and 𝜃. We will primarily judge the qual-
ity of a confidence interval in terms of its coverage probability,
which ideallywould be exactly 1−𝛼 across all sample sizes and
parameter values. However, there aremany secondary factors
that can impact the selection of methods. Shorter intervals
provide greater precision and insight about the underlying
scientific problem. The variability of this length should also
beminimized.When this variability is too great, the resulting
interval may significantly understate or overstate the degree
of certainty about the parameter range. Where possible, we
prefer methods that can be assured of producing plausible
parameter ranges. Since the Negative Binomial distribution
draws from a nonnegative sample space, we therefore pre-
fer methods that will result in a nonnegative confidence
interval.

3. Prior Methods

The normal approximation and the bootstrap Bias Correct
and accelerated (BCA) method [9] are considered standard
techniques for the construction of 1 − 𝛼 confidence intervals
for the mean. Shilane et al. [2] found that these procedures
perform similarly over a wide variety of sample sizes and
parameter values in negative binomial models. They also
proposed several alternative methods, including Gamma and
Chi square approximations alongwith tail probability bounds
such as Bernstein’s inequality. These methods improved
upon the standard techniques in terms of coverage proba-
bilities over complimentary subspaces of parameter values.
We will briefly review these techniques in the following
subsections.

3.1. The Gamma Approximation. Shilane et al. [2] proved a
limit theorem stating that 𝑋 converges to a Gamma distri-
bution as the sample size 𝑛 grows large and the dispersion
parameter 𝜃 approaches zero. The shape parameter is 𝜃𝑛,
and the rate parameter is given by 𝜃𝑛/𝜇. The Gamma
approximation therefore requires estimates of 𝜇 and 𝜃. The
sample mean 𝑋 may be plugged in for 𝜇 directly. Due to the
difficulties previously discussed with MLE methods under
high dispersion, we will rely upon a method of moments
estimator of 𝜃 as a default. (In practice, an MLE may be
substituted where possible). To account for the possibility of
negative values, we recommend truncating all values below
a small number (such as 10−5 by default) to ensure positive
estimates. Once the shape and rate parameters are estimated,
a 1 − 𝛼 confidence interval for 𝜇 is given by the (𝛼/2)nd and
(1 − 𝛼/2)th quantiles of the Gamma distribution.

The Gamma approximation generally performs best
when 𝑛 is large and 𝜃 is small. In this setting, the Gamma
method improves upon the Normal approximation by a
coverage probability of about 1-2%. Atmoremoderate sample
sizes and dispersions, the Gamma approximation is not espe-
cially accurate and often performs worse than the Normal
approximation.
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3.2. The Chi Square Approximation. A special case of the
Gamma approximation of Section 3.1 occurs when 𝜇 = 2𝑛𝜃.
In this setting, the Gamma parameters correspond to a Chi
Square distribution with 𝜇 degrees of freedom. This Chi
Square approximationworks especially well when the param-
eter relationship is approximately equivalent. The param-
eter relationship may also be phrased in terms of a ratio
statistic 𝜇/(2𝑛𝜃). Simulation studies conducted by Shilane et
al. [2] demonstrate that the Chi Square approximation will
provide reasonably good coverage when the ratio statistic
is reasonably close to 1, such as values between 2/3 and
1.5. Moreover, the ratio statistic provides information about
whether the Chi Square interval is too narrow or too wide.
When the ratio statistic exceeds 1, the interval is toowide, and
when the ratio is less than 1, it is too narrow.This information
may be used to compare the results of other procedures even
when the Chi Square method performs poorly. However, it
should be emphasized that the Chi Square approximation
should be limited in its applications, and asymptotically it will
severely overcover the mean.

3.3. Bernstein’s Inequality. At small sample sizes and high
dispersion, parametric methods that construct confidence
intervals by inverting hypothesis testing procedures [10–
13] may be inadequate. Tail probability bounds provide an
alternative methodology that typically relies upon more mild
assumptions about the data. Bounds such as Bernstein’s
inequality [14], Bennett’s inequality [15, 16], ormethods based
on the work of Hoeffding [17] and Berry-Esseen [18–21]
may be employed. Rosenblum and van der laan [22] apply
these bounds to produce confidence intervals based on the
estimators’ empirical influence curves.

In theNegative Binomial setting, Shilane et al. [2] adapted
Bernstein’s inequality to provide an improvement over a naive
confidence interval. The method requires only independent
data with finite variance and imposes a heuristic assumption
of boundedness in a range (𝑎, 𝑏) ∈ R. Under these conditions,
a variant [23] of Bernstein’s inequality may be applied to
generate the following confidence interval for 𝜇:

𝑋 ± (
−2

3
(𝑏 − 𝑎) log (𝛼/2)

+√
4

9
(𝑏 − 𝑎)

2

[log (𝛼/2)]2 − 8𝑛𝜎2 log (𝛼/2))

× (2𝑛)
−1

.

(2)

In addition to estimating the variance 𝜎
2 with 𝑠

2, the
Bernstein confidence interval requires the selection of a
bounding range (𝑎, 𝑏). Since Negative Binomial variables are
nonnegative, 𝑎 = 0 is a natural choice. However these data
are unbounded above, so any finite selection of 𝑏 will impose
a heuristic bound on the data. As a default, onemay select the
sample’s maximum value or some multiple thereof. Shilane
et al. [2] also considered a variant of Bernstein’s Inequality
for unbounded data. However, they found the method to be
impractical due to the extremely conservative nature of the
tail bound in this setting.

The bounded variant of Bernstein’s Inequality improved
upon the alternative methods in coverage for small sample
sizes and high dispersions. However, its confidence intervals
were far wider and more variable than the other candidates’
results. While this is an improvement over a naive interval
for the data’s mean (e.g., all values between zero and the
sample’s maximum), the Bernstein method lacks the inter-
pretative quality provided by parametric approximations.
Furthermore, Bernstein’s Inequality is a conservative bound,
so asymptotically the method will significantly overcover the
mean.

4. Growth Estimators for 𝜇

The Gamma, Chi Square, and Normal approximations all
seek to utilize the existing data to generate an inference
for 𝜇 under parametric assumptions about the distribution
of 𝑋. However, none of these techniques directly considers
the data’s relative sparsity under high dispersion. When the
probability of a zero value is high, many samples of data
will include more than this expected proportion due to
chance error.This overrepresentation of zeros exacerbates the
difficulty of estimation inwhat is already a sparse data setting.
For instance, in the case of 𝜇 = 10 and 𝜃 = 0.025, we expect
85.3% of the sample to be zeros. If the underlying experiment
was repeated a large number of times, then roughly half of the
samples would have more than 85.3% zeros. Furthermore, if
𝑛 = 30 samples are drawn, a simulation experiment suggests
that the resulting samplemeanwill be less than𝜇 roughly 66%
of the time.

We propose growth estimators for 𝜇 as a method of
accounting for the potential overrepresentation of zeros in
the data set. We will construct growth estimators using
two separate procedures: adjusting the mean through a
multiplicative growth factor and direct removal of some zero
values from the data. The details of these procedures are
provided in Sections 4.2 and 4.1.

These growth procedures are motivated by shrinkage
estimators. For instance, in constructing a confidence interval
for the Binomial proportion𝑝, Agresti and Coull [24] suggest
augmenting the existing data with two additional successes
and two additional failures. A Normal approximation con-
fidence interval for 𝑝 based on these augmented data can
be shown to perform measurably better than the Normal
approximation alone. The method of Agresti and Coull [24]
effectively shrinks the estimate of 𝑝 toward the value 0.5 by
adding a small amount of data. By contrast, we seek to grow
the estimate of the Negative Binomial mean 𝜇 by removing a
small amount of zero-valued data.

4.1. Growth by Adjustment (GBA). Suppose we believe that
the data set contains approximately 𝑘 ∈ R+ too many
zero values. The removal of these zeros is tantamount to
reweighting the sample mean by the growth factor

𝐺 =
𝑛

𝑛 − 𝑘
. (3)
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Therefore, we estimate 𝜇 with the value

𝑋 =
1

𝑛 − 𝑘

𝑛

∑

𝑖=1

𝑋
𝑖
=

𝑛

𝑛 − 𝑘
𝑋 = 𝐺𝑋. (4)

This growth estimator𝑋 has the expected value

𝐸 [𝑋] =
𝑛

𝑛 − 𝑘
𝜇 = 𝐺𝜇, (5)

and the standard error is

SDGBA (𝑋) =
√𝑛

𝑛 − 𝑘
𝜎 = [

𝑛

𝑛 − 𝑘
]

𝜎

√𝑛
= 𝐺 ⋅ SD (𝑋) . (6)

4.2. Growth by Removal (GBR). TheGBAmethod artificially
inflates the sample mean by the growth factor 𝐺. However,
this growth may also be achieved through direct removal of
𝑘 zeros. We will refer to this procedure asGrowth by Removal
(GBR). As in the GBAmethod, this procedure depends upon
the value of 𝑘. In general, 𝑘 should be selected according to a
predetermined rule, and itmaynot exceed the overall number
of zeros in the data set. In practice, 𝑘 should be less than this
maximum because it is intended to remove only extraneous
values.

In the original sample, the data’s sum had the expected
value 𝑛𝜇. Since removing zero values does not change this
sum, the mean of the 𝑛 − 𝑘 remaining values has the
expected value𝐺𝜇, as in (5).However, the associated standard
error is computed differently from in the GBA method. The
standard deviation of the remaining data is centered around
𝐺𝑋 rather than 𝑋. The standard error then divides this
quantity by√𝑛 − 𝑘. Assuming the data𝑋

1
, . . . , 𝑋

𝑛
are sorted

in decreasing order, this is given by

SDGBR (𝑋) =
√

∑
𝑛−𝑘

𝑖=1
(𝑋
𝑖
− (𝑛/(𝑛 − 𝑘))𝑋)

2

(𝑛 − 𝑘 − 1) (𝑛 − 𝑘)
.

(7)

4.3. Convergence to the Normal Approximation. Whether we
employ the GBR or GBAmethods, the meanmay be adjusted
by the growth factor 𝐺. For any fixed value of 𝑘, the growth
estimator 𝐺𝑋 will asymptotically converge in sample size
to 𝑋. Since the central limit theorem applies, we propose a
Normal approximation based upon this adjustment. We will
rely upon the unbiased estimate 𝑠2 of the variance 𝜎2 from the
full data set (with no zeros removed). With 𝑧 defined as the
(1 − 𝛼/2)th quantile of the standard Normal distribution, the
GBA confidence interval will have the form

GBA : 𝐺𝑋 ± 𝑧𝐺
𝑠

√𝑛
=

𝑛

𝑛 − 𝑘
𝑋 ± 𝑧

√𝑛

𝑛 − 𝑘
𝑠. (8)

Meanwhile, the GBR method’s interval applies its alternative
computation of the standard error. That is,

GBR : 𝐺𝑋 ± 𝑧 ⋅ SDGBR (𝑋)

=
𝑛

𝑛 − 𝑘
𝑋 ± 𝑧

√
∑
𝑛−𝑘

𝑖=1
(𝑋
𝑖
− (𝑛/(𝑛 − 𝑘))𝑋)

2

(𝑛 − 𝑘 − 1) (𝑛 − 𝑘)
.

(9)

4.4. Selection of 𝑘. Interestingly, the growth estimator adds
both bias and variance to the Normal approximation of 𝜇.
The degree of additional error may be controlled through
the selection of 𝑘, the number of zeros to remove from the
data set. We emphasize that this selection should be made
with extreme caution. In Section 5, we will explore how
the Growth method’s coverage probability is impacted by
the choice of 𝑘. Based upon the results of these simulation
experiments, we recommend the following default choices of
𝑘:

𝑘 =

{{{{

{{{{

{

min(15,
𝑛

10
) , if 𝜃 ≤ 0.5

min(5,
𝑛

10
) , if 𝜃 > 0.5.

(10)

The intuition behind these choices is as follows: at small
sample sizes, no more than one zero may be removed per ten
data points. When the dispersion is high (𝜃 ≤ 0.5), we allow
for more aggressive removal of zeros—up to a maximum of
15—to account for a higher degree of overrepresentation. At
more moderate dispersions, we limit this removal to nomore
than 5 zeros.The value of 𝜃may be estimated usingmaximum
likelihood estimation or the method of moments when the
former is not available.

Equation (10)may also be refined to incorporate a contin-
uous function of 𝜃. A simple linear interpolation between the
respective maxima could be considered. However, deriving
a more analytic relationship between 𝑘, 𝑛, and 𝜃 to optimize
the coverage of the resulting confidence interval encounters
a number of difficulties. The analytic distribution of growth
method confidence intervals is a function of the negative
binomial likelihood, which already has an extremely complex
form.Additionally, the difficulty of estimating 𝜃 in small sam-
ple sizes may lead to misspecification of 𝑘. In combination,
it would be very challenging to extrapolate the functional
form of 𝑘 to extremely small values of 𝜃. In light of these
concerns, we recommend using (10) as a default choice,
and modifications may be considered in specific cases with
additional simulation studies.

5. Simulation Studies

5.1. Experimental Design. We designed a simulation exper-
iment to compare the Growth methods to the Bernstein,
Gamma, Chi Square, and Normal confidence intervals. We
did not include the bootstrap BCAmethod in the experiment
due to its computational requirements and similarity to the
Normal approximation in the simulations of Shilane et al. [2].
We selected an extensive set of parameters and sample sizes,
with values displayed in Table 1. The most extreme case of
𝜇 = 10 and 𝜃 = 0.025 would roughly correspond to flipping
a coin with a one-fourth of one percent chance of landing
heads.Meanwhile, themostmoderate case of 𝜇 = 2 and 𝜃 = 1

is equivalent to flipping a coin with a 1/3 chance of heads.
Each combination of 𝜇, 𝜃, and 𝑛 led to a unique and

independent simulation experiment. Each experiment gener-
ated 10000 independent size 𝑛 sets of i.i.d. NB(𝜇, 𝜃) random
variables in the R statistical programming language. On each
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Table 1: Parameter values for the simulation experiments of
Section 5.

Parameter Values
𝜇 {2, 5, 10}
𝜃 {0.025, 0.05, 0.075, 0.1, 0.2, 0.3, . . ., 1}
𝑛 {5, 10, 15, 20, . . ., 250, 300, 400, . . ., 1000}
𝛼 0.05
Trials 10000

size 𝑛 data set, 95% confidence was generated according to
each proposed method. We then approximated the coverage
probability of each method by the empirical proportion of
confidence intervals containing the true value of 𝜇.

5.2. Coverage Probability Results. Figures 1, 2, and 3 provide
examples of the simulation results at high, medium, and low
dispersions. Each figure displays estimated coverage proba-
bilities for the Normal, Gamma, Chi Square, Bernstein, GBA,
and GBR methods as a function of sample size at particular
combinations of 𝜇 and 𝜃. Figure 1 depicts the case of 𝜇 = 10

and 𝜃 = 0.025, where the dispersion is the most extreme.
Here even the Bernstein method requires a significantly large
sample size to reach the desired 95% coverage probability.The
Chi Square approximation performs as expected by reaching
95% coverage almost exactly when 𝜇 = 2𝑛𝜃 and overcovering
𝜇 for larger sample sizes. Because 𝜃 is very small, we
expect the Gamma approximation to outperform the normal.
However, because of the extreme dispersion, both methods
require an extremely large sample size to appropriately cover
the mean. Even at 𝑛 = 250, the Gamma method only covers
𝜇 87.91% of the time, and the Normal only reaches a rate of
85.92%. Meanwhile, the Growth methods provide small but
steady improvements over the Gamma approximation.

Figure 2 displays coverage probabilities for 𝜇 = 5 and
𝜃 = 0.2, where the dispersion is moderate and more typical
of a Negative Binomial study. Both the Bernstein and Chi
Square methods quickly overcover the mean, surpassing 95%
by 𝑛 = 30 and 𝑛 = 15, respectively. The Gamma and Normal
approximations are roughly in equipoise at this moderate
level of dispersion.The Growth method improves upon their
coverage by about 3% at sample sizes up to 100 andmaintains
at least a 1% improvement even out to 𝑛 = 250. Despite
the fairly moderate dispersion, the Normal and Gamma
approximations appear to require 250 or more data points to
approach convergence, whereas the Growth method reaches
this point at about 𝑛 = 100.

Figure 3 displays coverage probabilities in the case of 𝜇 =

2 and 𝜃 = 1. Because the dispersion is quite small, the
Negative Binomial model is reasonably close to the Poisson
distribution. We therefore expect the Normal approximation
to perform quite well. Even in this case, the GBA method
provides small improvements over the Normal at small and
moderate sample sizes. The GBR method also provides early
improvements. However, its coverage briefly dips below that
of the Normal approximation at about 𝑛 = 50. With relatively
few zeros removed from the data, the Growth methods
and Normal approximation quickly fall into agreement. By
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𝜃 = 0.025
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Figure 1: Simulation coverage probabilities for the proposed meth-
ods. With 𝜇 = 10 and 𝜃 = 0.025, this represents the most extreme
dispersion among all simulation examples.
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Figure 2: Simulation coverage probabilities for the proposed meth-
ods. With 𝜇 = 5 and 𝜃 = 0.2, this represents an intermediate
dispersion among the range of simulation examples.

contrast, the Gamma approximation does not perform well
n this scenario because its underlying limit theorem requires
high dispersion relative to the sample size. Similarly, the Chi
Square andBernsteinmethods almost immediately overcover
the mean.
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Figure 3: Simulation coverage probabilities for the proposed meth-
ods. With 𝜇 = 2 and 𝜃 = 1, this represents the most moderate
dispersion among all simulation examples.

5.3. The Effect of Misspecified Growth. The Growth Method
simulation results of Section 5.2 were obtained under the
default selections of 𝑘 given by (10). These recommended
settings were obtained through a process of trial and error
as applied to the simulation studies. The intuition of these
recommendations is that zero values may be removed more
aggressively under higher dispersions. We believe that the
extensive range of parameters tested in the simulation study
provide is reasonable evidence that these recommendations
will generalize well. Other approaches to selecting 𝑘may also
consider the observed sample mean or alter the gradations by
sample size.

We urge the practitioner to exercise caution in selecting
howmany zeros to remove. An overzealous selection of 𝑘may
lead to poor performance in the growth method’s coverage
probability. As an example, we repeated the simulation study
in the case of𝜇 = 2 and 𝜃 = 1with 𝑘 = min(15, 𝑛/5) instead of
the recommended value of 𝑘 = min(5, 𝑛/10). This aggressive
approach removes zeros at double the rate and allows for
a maximum that triples the recommendations for the low
dispersion case of 𝜃 = 1. Figure 4 displays the consequences
of misspecified growth. Rather than the small improvement
over or close agreement to the Normal approximation as
seen in Figure 3, the growth method decreases significantly
in coverage. This dip in performance continues until the
maximum removal is reached at 𝑛 = 75. For larger sample
sizes, the Growth Method begins to rebound toward the
Normal approximation. However, this case suggests that the
practitioner should be careful not to select a value of 𝑘 that is
too large, especially when the dispersion is mild.

By contrast, higher dispersion settings allow for far more
aggressive growth. We also repeated the simulation study in
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Figure 4: An example of misspecified growth. Despite low disper-
sion, zeros were aggressively removed at a rate of one for every 5 data
points up to amaximumof 15.TheGBA andGBRmethods’ coverage
probabilities dip significantly until this maximum value is reached
and then rebound toward the Normal approximation.

the case of 𝜇 = 10 and 𝜃 = 0.025, themost extreme dispersion
considered. Figure 5 depicts the Growth Method’s coverage
when 𝑘 = min(50, 𝑛/2), which effectively removes half the
data points until sample size 100. In this example, the Growth
method crosses the 90%coverage threshold by 𝑛 = 80, amark
not reached by the Gamma or Normal approximations by 𝑛 =

250. Indeed, the GrowthMethod accelerates in coverage even
faster than the Bernstein Method.

Overall, the GBAmethod appears to perform slightly bet-
ter than the GBR method across all simulation experiments.
This difference may be attributed to the selection of 𝑘. The
GBRmethod requires an integer value so that exactly 𝑘 zeros
may be removed. By contrast, the GBA method allows for
adjustments using continuous values of 𝑘.The recommended
selection procedure of (10) allows for fractional proportions
of the overall sample size. This additional fraction allows for
increased growth, which in turn leads to improved coverage.
The GBA and GBRmethods also differ in the computation of
their standard errors. It appears that these standard errors are
largely similar in value.Wewill substantiate this claim further
in Section 5.4.

5.4. Confidence Interval Length Considerations. We have
adopted coverage probability as our preferred metric of a
confidence interval’s quality. However, the length of these
intervals is an important secondary consideration. Shorter
intervals suggest greater precision in the estimator when the
coverage probability is approximately equal. Figures 6 and 7
provide a comparison of the proposed methods’ lengths.
In each simulation experiment, we recorded the median
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Figure 5: An example of aggressive growth. Under high dispersion,
zeros were aggressively removed at a rate of one for every 2 data
points up to amaximumof 50.TheGBAandGBRmethods’ coverage
probabilities accelerate quickly in this setting.

and standard deviation of length for the 10000 confidence
intervals generated by each method. We then computed the
ratio of each method’s median length to that of the Normal
approximation in each experiment. Figure 6 displays the
distribution of these ratios, and Figure 7 depicts the ratio of
the standard deviation of length.

In general, it appears that the Bernsteinmethod produces
confidence intervals that are typically a factor of 1.8 longer
than the corresponding Normal approximation. Because the
GBA and GBR methods usually remove about one zero per
ten data points, their median lengths were typically a factor
of 10/9 larger than the Normal approximation’s interval.
Likewise, the same growth factor applies to the standard
deviations of length in Figure 7. The Bernstein Method has
a length variability that is roughly double that of the Normal
approximation. This increased variability of length leads to
the overcoverage in themethod, as extremely long confidence
intervals are far more likely to contain the mean. By contrast,
the Gamma method typically produces a confidence interval
that is 95% the length of the Normal approximation. This
length depends on the degree of dispersion, with higher
lengths (and improved coverage) occurring at smaller values
of 𝜃.

6. Discussion

The proposed growth methods provide improved confidence
intervals for themean ofNegative Binomial randomvariables
with unknown dispersion. Removing a small number of
zeros from the data set bolsters the coverage probability at
small and moderate sample sizes. Asymptotically, the GBA
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Figure 6: A comparison of median confidence interval length
standardized by the Normal approximation’s median values. Each
simulation experiment computed themedian interval length of each
method. The values depicted are the ratios of these medians to that
of the Normal approximation.
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Figure 7: A comparison of confidence interval length stability. Each
simulation experiment computed the standard deviation of interval
length of each method. The values depicted are the ratios of these
standard deviations to that of the Normal approximation.

and GBR methods converge to the Normal approximation.
Overall, applying a growth estimator produces intervals that
are longer andmore variable than theNormal approximation.
The degree of increase may be controlled through a selection
of the growth factor 𝐺, or, equivalently, the removal factor
𝑘. This selection depends on the sample size and degree of
dispersion in the data.We emphasize that the number of zeros
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𝑘 to remove should be selected cautiously to prevent coverage
drop-offs such as the example depicted in Figure 4.

The GBA and GBR methods often provide similar cov-
erage results, so other factors may be considered in selecting
between them. First, the GBA growth factor 𝐺 = 𝑛/(𝑛 − 𝑘)

(3) allows for noninteger values, while GBR must remove an
integer number of zeros. The GBA method’s possibility of
continuous adjustments may present an opportunity for finer
tuning of the method to the problem at hand. By contrast, a
manual removal of zeros is more intuitively appealing. The
remainder of the inference follows the same methods as the
Normal approximation, which will be more familiar to many
practitioners.When there are fewer than 𝑘 overall zeros in the
sample, it is also more reasonable to only remove the existing
zeros rather than to adjust by a growth factor dependent on
𝑘. With all of this in mind, the GBR method may be a more
practical choice even if the GBA method can provide slight
improvements in the results.

The previous work of Shilane et al. [2] provided a
piecewise solution to performing inference on the Negative
Binomial mean. The Gamma, Chi Square, and Normal
approximations performed well in largely complimentary
settings, andBernstein’s inequalitywas used at smaller sample
sizes and high dispersions. However, we have demonstrated
that the GBA and GBR methods can perform well in a
wide variety of settings. Using the relatively simple guidelines
for selecting 𝑘 in (10), these procedures outperformed the
parametric approximations at both high and low dispersions.
Because it allows for continuous values of 𝑘, the GBAmethod
generally provided small improvements over the GBR results.
A tail probability bound such as Bernstein’s Inequality may
still be considered at very small sample sizes and extremely
high dispersions, but the growth method accelerates quickly
as a function of sample size.

Future work on this problem may provide more solid
theory for how the value of 𝑘 should be selected. Growth
estimators add both bias and variance to the Normal approx-
imation, so a traditional bias-variance trade-off calculation
does not apply. Indeed, a criterion such as the mean squared
error would be optimized with the selection of 𝑘 = 0, which
is equivalent to the Normal approximation. The cautionary
tale depicted in Figure 4 suggests that coverage is optimized at
some intermediate value of 𝑘. However, the analytic coverage
probability calculation is intractable because it depends
upon the permutation distribution of the Negative Binomial
sample.

The Growth Method may be extended to other sparse
estimation problems. Shilane and Bean [25] previously exam-
ined the quality of the Normal approximation in two-sample
Negative Binomial inference, and growth estimators may be
easily adapted to this setting.We are also presently examining
an application of the growth method for estimating the mean
of Gamma random variables.
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