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A procedure for testing the significance of themain random effect is proposed under amodel which does not require the traditional
assumptions of symmetry, homoscedasticity, and normality for the error term and random effects. To accommodate this level of
model generality, and also unbalanced designs, suitable adjustments to the F-test are made. The extensive simulations performed
under the random effects model, and the unrestricted and restricted versions of the mixed effects model, indicate that the classical
F procedure is extremely liberal under heteroscedasticity and unbalancedness. The proposed test procedure performs well in all
settings and is comparable to the classical F-test when the classical assumptions are met. An analysis of a dataset from the Mussel
Watch Project is presented.

1. Introduction

Consider a two-factor mixed or random effects design, and
let 𝑌
𝑖𝑗𝑘

denote the 𝑘th observation at level 𝑖 of the row factor
and level 𝑗 of the column factor. In the case of a mixed effects
design we assume that the row factor is fixed.

The classical two-way model, compare [1–5], uses the
decomposition

𝑌
𝑖𝑗𝑘

= 𝜇 + 𝛼
𝑖
+ 𝛽
𝑗
+ 𝛾
𝑖𝑗
+ 𝜖
𝑖𝑗𝑘
. (1)

For the random effects model, the 𝛼
𝑖
’s, 𝛽
𝑗
’s, 𝛾
𝑖𝑗
’s, and 𝜖

𝑖𝑗𝑘
’s

are mutually independent, the 𝛼
𝑖
’s are iid 𝑁(0, 𝜎

2

𝛼
), the 𝛽

𝑗
’s

are iid𝑁(0, 𝜎
2

𝛽
), the 𝛾

𝑖𝑗
’s are iid𝑁(0, 𝜎

2

𝛾
), and the 𝜖

𝑖𝑗𝑘
’s are iid

𝑁(0, 𝜎
2

𝜖
).

For the mixed effects model, there are two common
definitions of the effects.Theunrestricted version of themodel
assumes

∑

𝑖

𝛼
𝑖
= 0, 𝛽

𝑗
are iid 𝑁(0, 𝜎

2

𝛽
) , 𝛾

𝑖𝑗
are iid 𝑁(0, 𝜎

2

𝛾
) ,

(2)

and the 𝛽
𝑗
, 𝛾
𝑖𝑗
are all independent. The restricted version of

the model keeps the above assumptions but requires that

∑

𝑖

𝛾
𝑖𝑗
= 0, (3)

implying that 𝛾
𝑖𝑗
, 𝛾
𝑖

𝑗
are correlated. Both versions assume the

𝜖
𝑖𝑗𝑘

to be iid𝑁(0, 𝜎
2

𝜖
) and independent from the other random

effects. There is a dichotomy of opinion in the statistical
literature as to which model should be used. Cornfield and
Tukey [6], Scheffé [1], Winer [7], and Khuri et al. [5],
among others, advocate the restricted version. Searle [2],
Hocking [8], and Searle et al. [4] advocate the unrestricted
version. While the statistic for testing for no main random
effect differs in the two versions, both use what Scheffé [1,
page 264] calls the symmetry assumption. Basically, this is
the assumption of independence of the random main and
interaction effects. This assumption was criticized in [9, 10]
as unrealistic in most practical situations. More importantly,
simulations demonstrated that the classical 𝐹-test for testing
the significance of the main fixed effect is very sensitive to
departures from the symmetry assumption even in balanced
designs with homoscedastic errors. Additional simulations
showed the classical 𝐹-test for testing the significance of the
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interaction effect to also be very sensitive to unbalancedness
and heteroscedasticity.

This paper deals with testing the significance of the
main random effect in two-factor mixed and random effects
designs. Simulations suggest that the classical 𝐹-test for
this hypothesis is also very sensitive to departures from
the symmetry assumption, as well as to unbalancedness
and heteroscedasticity. New test procedures are presented
under fully nonparametric models for the two-factor mixed
and random effects designs. Unbalanced mixed and ran-
dom effects designs are incorporated in the modeling by
considering the sample sizes 𝑛

𝑖𝑗
to be random. The models

and test procedures pertain to both continuous and discrete
data and allow heteroscedasticity in the error and interaction
terms, as well as nonnormality. The interaction term is not
assumed independent from the main effect (so the symmetry
assumption is not made), though, under the random effects
model, the two are shown to be uncorrelated.

The asymptotic theory of the test statistics is derived
under the Neyman-Scott framework, in the sense that the
number of levels of both factors is large but the group sizes
can remain fixed. In such cases, test statistics are constructed
by taking the difference (as opposed to the ratio) of the
appropriate mean squares; compare [9–12] and references
therein. In accordance to this literature, the proposed test
statistics for testing for no main random effects are scaled
versions of MSB-MSE∗ and MSB-MSAB, for the mixed
and random effects designs, respectively, where the precise
definition of these mean squares is given in Section 3.

The novelty of the proposed test statistics is twofold.
First, themean squares are based on unweighted cell averages
to accommodate unbalanced designs. Second, in order to
accommodate heteroscedasticity, MSE is replaced by a differ-
ent linear combination of the cell sample variances, denoted
by MSE∗, which, under the null hypothesis, has the same
expected value as MSB (ensuring zero mean value of the
test statistic under the null hypothesis). A modified version
of the MSE for accommodating heteroscedasticity was first
used in Akritas and Papadatos [13] in the context of a high-
dimensional one-way fixed effects design.

The rest of the paper is organised as follows. Section 2
reviews the fully nonparametric random and mixed effects
models. In Section 3 we derive the test statistics and present
their asymptotic distributions. Proofs of the propositions in
Section 3 appear in the appendix. Section 4 discusses the
estimation of the limiting null distributions and also presents
results of simulations comparing our testing procedures to
the usual 𝐹-tests. Finally, in Section 5 we present the analysis
of a dataset from NOAA’s NS&T Mussel Watch Program.

2. Fully Nonparametric Models

Here we review the fully nonparametric random and mixed
effects models developed in [9, 10].

2.1. The Random Effects Model. Consider a two-way random
effects design. The random levels of the row factor are
obtained by random sampling from the populationA

𝑆
, while

the random levels of the column factor are obtained by
random sampling from the population A

𝑇
. Let 𝑆 denote

a row level randomly selected from A
𝑆
, and 𝑇 denote a

column level randomly selected from A
𝑇
. Assume that the

selections are independent. For each factor-level combination
(𝑆, 𝑇), observations 𝑌

𝑆𝑇𝑘
, 𝑘 = 1, . . . , 𝑛

𝑆𝑇
, are generated

from a distribution function, 𝐹
𝑆𝑇
. 𝐹
𝑆𝑇

can be any arbitrary
distribution function, which depends only on the factor levels
𝑆, 𝑇.

Decompose 𝑌
𝑆𝑇𝑘

into a random mean and error term as
follows:

𝑌
𝑆𝑇𝑘

= 𝐸 (𝑌
𝑆𝑇𝑘

| 𝑆, 𝑇) + [𝑌
𝑆𝑇𝑘

− 𝐸 (𝑌
𝑆𝑇𝑘

| 𝑆, 𝑇)]

= 𝜇
𝑆𝑇

+ 𝜖
𝑆𝑇𝑘

,

(4)

where 𝜇
𝑆𝑇

and 𝜖
𝑆𝑇𝑘

are defined implicitly in (4). The defini-
tions of 𝜇

𝑆𝑇
and 𝜖
𝑆𝑇𝑘

imply

𝐸 (𝜖
𝑆𝑇𝑘

) = 0, 𝐸 (𝜖
𝑆𝑇𝑘

| 𝑆) = 0,

𝐸 (𝜖
𝑆𝑇𝑘

| 𝑇) = 0, 𝐸 (𝜖
𝑆𝑇𝑘

| 𝑆, 𝑇) = 0.

(5)

Conditioning on 𝑆, 𝑇 and using the last relation in (5) it
further follows that

𝐸 (𝜇
𝑆𝑇
𝜖
𝑆𝑇𝑘

) = 0, 𝐸 (𝜇
𝑆𝑇
𝜖
𝑆𝑇𝑘

| 𝑆) = 0,

𝐸 (𝜇
𝑆𝑇
𝜖
𝑆𝑇𝑘

| 𝑇) = 0.

(6)

Next, decompose the random means as

𝜇
𝑆𝑇

= 𝜇 + 𝛼
𝑆
+ 𝛽
𝑇
+ 𝛾
𝑆𝑇
, (7)

where the overall mean and the random effects 𝛼
𝑆
, 𝛽
𝑇
, and

𝛾
𝑆𝑇

are defined as

𝜇 = 𝐸 (𝑌
𝑆𝑇𝑘

) = 𝐸 (𝜇
𝑆𝑇
) ,

𝛼
𝑆
= 𝐸 (𝑌

𝑆𝑇𝑘
| 𝑆) − 𝜇 = 𝐸 (𝜇

𝑆𝑇
| 𝑆) − 𝜇,

𝛽
𝑇
= 𝐸 (𝑌

𝑆𝑇𝑘
| 𝑇) − 𝜇 = 𝐸 (𝜇

𝑆𝑇
| 𝑇) − 𝜇,

𝛾
𝑆𝑇

= 𝜇
𝑆𝑇

− 𝜇 − 𝛼
𝑆
− 𝛽
𝑇
.

(8)

Combining (4) and (7) we obtain

𝑌
𝑆𝑇𝑘

= 𝜇 + 𝛼
𝑆
+ 𝛽
𝑇
+ 𝛾
𝑆𝑇

+ 𝜖
𝑆𝑇𝑘

, (9)

where the random effects have zero means, are both
marginally and conditionally on 𝑆 and 𝑇 uncorrelated from
the error terms (this follows from (6)), and satisfy

𝐸 (𝛼
𝑆
| 𝑇) = 𝐸 (𝛽

𝑇
| 𝑆) = 𝐸 (𝛾

𝑆𝑇
| 𝑆) = 𝐸 (𝛾

𝑆𝑇
| 𝑇) = 0,

𝐸 (𝛼
𝑆
𝛽
𝑇
) = 𝐸 (𝛼

𝑆
𝛾
𝑆𝑇
) = 𝐸 (𝛽

𝑇
𝛾
𝑆𝑇
) = 0,

(10)

as is easily seen using the independence of 𝑆, 𝑇. Note that even
though the main and interaction effects are uncorrelated, in
general they will not be independent. This is because the
interaction term is typically related to the two main effects
by a multiplicative relation rendering the interaction effect
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nonnormal even in the presence of normal main effects.
Therefore the symmetry assumption is typically violated in
random effects designs.

Relation (9) with the associated properties (5), (6), and
(10) is derived using only the assumption that 𝑆 and 𝑇

are independent. Thus, it is a nonparametric version of
the classical random effects model, in the sense that it
allows for arbitrary (rather than normal) distributions of the
random effects and error term, the variance (as well as the
entire distribution) of the error term can depend on the
random factor levels, and the effects are uncorrelated, and
uncorrelated to the error term, as opposed to the assumed
independence of the classical model.

2.2. The Mixed Effects Model. Consider a design where the
rows correspond to the fixed effects and the columns corre-
spond to the random effects. The levels of the random effects
are obtained by simple random sampling from a population
A. Let𝑇 denote a randomly selected element fromA, 𝑖 a fixed
effect level, and 𝑌

𝑖𝑇
an observation obtained from the cell

(𝑖, 𝑇). We place no restrictions on the form of the distribution
function, 𝐹

𝑖𝑇
, of 𝑌
𝑖𝑇
other than the obvious restriction that it

has to depend on 𝑖 and 𝑇. In particular, 𝐹
𝑖𝑇
can be a discrete

distribution function. Since 𝑇 is obtained from a random
selection, 𝐹

𝑖𝑇
, its mean 𝜇

𝑖𝑇
and variance 𝜎

2

𝑖𝑇
are all random.

The nonparametric model consists of a decomposition of 𝑌
𝑖𝑇

in terms of 𝜇
𝑖𝑇
plus an error term, and further decomposition

of 𝜇
𝑖𝑇

to define the main effects and interaction terms. In
particular, write

𝑌
𝑖𝑇

= 𝐸 (𝑌
𝑖𝑇

| 𝑇) + (𝑌
𝑖𝑇

− 𝐸 (𝑌
𝑖𝑇

| 𝑇))

= 𝜇
𝑖𝑇

+ (𝑌
𝑖𝑇

− 𝜇
𝑖𝑇
) = 𝜇
𝑖𝑇

+ 𝜖
𝑖𝑇
,

(11)

where the error term 𝜖
𝑖𝑇

is defined implicitly in the above
relation. An easy consequence of the definition of 𝜖

𝑖𝑇
is

𝐸 (𝜖
𝑖𝑇
) = 𝐸 (𝜖

𝑖𝑇
| 𝑇) = 0, 𝐸 (𝜖

𝑖𝑇
𝜇
𝑖𝑇
)=𝐸 (𝜖

𝑖𝑇
𝜇
𝑖𝑇

| 𝑇) = 0.

(12)

Next decompose 𝜇
𝑖𝑇
into main and interaction effects as

𝜇
𝑖𝑇

= 𝜇 + 𝛼
𝑖
+ 𝛽
𝑇
+ 𝛾
𝑖𝑇
, (13)

where 𝜇 = (1/𝑎)∑
𝑖
𝐸(𝜇
𝑖𝑇
) is the overall mean and

𝛼
𝑖
= 𝐸 (𝜇

𝑖𝑇
) − 𝜇, 𝛽

𝑇
=

1

𝑎
∑

𝑖

𝜇
𝑖𝑇

− 𝜇,

𝛾
𝑖𝑇

= 𝜇
𝑖𝑇

− 𝜇 − 𝛼
𝑖
− 𝛽
𝑇
,

(14)

are the main and interaction effects. An immediate implica-
tion of (14) is

∑

𝑖

𝛼
𝑖
= 0, 𝐸 (𝛽

𝑇
) = 0, ∑

𝑖

𝛾
𝑖𝑇

= 0, 𝐸 (𝛾
𝑖𝑇
) = 0.

(15)

Using (12) it further follows that

𝐸 (𝜖
𝑖𝑇
𝛽
𝑇
) = 𝐸 (𝜖

𝑖𝑇
𝛽
𝑇
| 𝑇) = 0,

𝐸 (𝜖
𝑖𝑇
𝛾
𝑖𝑇
) = 𝐸 (𝜖

𝑖𝑇
𝛾
𝑖𝑇

| 𝑇) = 0.

(16)

Combining (11) and (13) we have

𝑌
𝑖𝑇

= 𝜇 + 𝛼
𝑖
+ 𝛽
𝑇
+ 𝛾
𝑖𝑇

+ 𝜖
𝑖𝑇
. (17)

While model (17) has the appearance of the usual mixed
effects model, it does not require normality (or even con-
tinuity) of the observations, the variance of the random
interaction effects can depend on 𝑖, and the random effects
𝛽
𝑇
and 𝛾
𝑖𝑇
are not uncorrelated without further assumptions

(which we do not make) about constant variance of the
random means and constant covariance for any two distinct
random means.

Suppose now that there are 𝑎 fixed levels, so 𝑖 = 1, . . . , 𝑎,
and let 𝑇

𝑗
, 𝑗 = 1, . . . , 𝑏, denote the levels of the random

effect. Recall that the 𝑇
𝑗
are obtained by simple random

sampling from A. Also let 𝑌
𝑖𝑇
𝑗
𝑘
, 𝑘 = 1, . . . , 𝑛

𝑖𝑗
, denote the

replications (iid observations) in factor-level combination
(𝑖, 𝑇
𝑗
). For notational simplicity we write 𝑌

𝑖𝑗𝑘
for 𝑌
𝑖𝑇
𝑗
𝑘
and 𝑗

for 𝑇
𝑗
. Thus, conditionally on 𝑗 (or 𝑇

𝑗
), the 𝑌

𝑖𝑗𝑘
are iid 𝐹

𝑖𝑗
.

From (17) we have

𝑌
𝑖𝑗𝑘

= 𝜇 + 𝛼
𝑖
+ 𝛽
𝑗
+ 𝛾
𝑖𝑗
+ 𝜖
𝑖𝑗𝑘
, (18)

where the effects and error terms satisfy (14), (15), and (16).
In addition, 𝛾

𝑖𝑗
1

and 𝛾
𝑖𝑗
2

are independent for 𝑗
1

̸= 𝑗
2
, 𝜖
𝑖𝑗𝑘
,

𝑘 = 1, . . . , 𝑛
𝑖𝑗
, are iid conditionally on 𝑗, 𝜖

𝑖
1
𝑗
1
𝑘
1

, and 𝜖
𝑖
2
𝑗
2
𝑘
2

are
independent for 𝑗

1
̸= 𝑗
2
, and 𝜖

𝑖
1
𝑗𝑘
1

and 𝜖
𝑖
2
𝑗𝑘
2

are uncorrelated
for 𝑖
1

̸= 𝑖
2
. These imply

𝐸 (𝜖
𝑖
1
𝑗𝑘
1

𝜖
𝑖
2
𝑗𝑘
2

) = 0, for 𝑘
1

̸= 𝑘
2
,

𝐸 (𝜖
𝑖
1
𝑗
1
𝑘
1

𝜖
𝑖
2
𝑗
2
𝑘
2

) = 0, for 𝑗
1

̸= 𝑗
2
,

𝐸 (𝜖
𝑖
1
𝑗𝑘
1

𝜖
𝑖
2
𝑗𝑘
2

) = 0, for 𝑖
1

̸= 𝑖
2
,

𝐸 (𝛾
𝑖𝑗
1

𝛾
𝑖𝑗
2

) = 0, for 𝑗
1

̸= 𝑗
2
.

(19)

We note that relation (14) implies that 𝛾
𝑖𝑗
is a function of the

random level 𝑇
𝑗
. Since the random levels are iid, we have that

the variances of 𝛾
𝑖𝑗
, 𝑗 = 1, . . . , 𝑏, are equal. Arguing similarly,

we have that the variances of the 𝜖
𝑖𝑗𝑘
, 𝑗 = 1, . . . , 𝑏, are equal.

However the model allows heteroscedasticity across different
levels of the fixed effect, that is, 𝜎

2
(𝛾
𝑖
1
𝑗
1

) ̸= 𝜎
2
(𝛾
𝑖
2
𝑗
2

) and
𝜎
2
(𝜖
𝑖
1
𝑗
1
𝑘
1

) ̸= 𝜎
2
(𝜖
𝑖
2
𝑗
2
𝑘
2

), for 𝑖
1

̸= 𝑖
2
. Moreover, the conditional

variances of the error term given different levels of the
random effect can be different. Summarizing, we have

𝜎
2
(𝛾
𝑖𝑗
1

) = 𝜎
2
(𝛾
𝑖𝑗
2

) , 𝜎
2
(𝜖
𝑖𝑗
1
𝑘
1

) = 𝜎
2
(𝜖
𝑖𝑗
2
𝑘
2

) , (20)

but the model allows

𝜎
2
(𝛾
𝑖
1
𝑗
1

) ̸= 𝜎
2
(𝛾
𝑖
2
𝑗
2

) , for 𝑖
1

̸= 𝑖
2
,

𝜎
2
(𝜖
𝑖
1
𝑗
1
𝑘
1

) ̸= 𝜎
2
(𝜖
𝑖
2
𝑗
2
𝑘
2

) , for 𝑖
1

̸= 𝑖
2
,

Var (𝜖
𝑖𝑗
1
𝑘
1

| 𝑇
𝑗
1

) ̸= Var (𝜖
𝑖𝑗
2
𝑘
2

| 𝑇
𝑗
2

) .

(21)
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3. The Test Statistics and Their
Asymptotic Distributions

Before proceeding, we first define our notation:

𝑌
𝑖𝑗⋅

=
1

𝑛
𝑖𝑗

𝑛
𝑖𝑗

∑

𝑘=1

𝑌
𝑖𝑗𝑘
, �̃�

𝑖⋅⋅
=

1

𝑏

𝑏

∑

𝑗=1

𝑌
𝑖𝑗⋅
, �̃�

⋅𝑗⋅
=

1

𝑎

𝑎

∑

𝑖=1

𝑌
𝑖𝑗⋅
,

�̃�
⋅⋅⋅
=

1

𝑎

𝑎

∑

𝑖=1

�̃�
𝑖⋅⋅
=

1

𝑏

𝑏

∑

𝑗=1

�̃�
⋅𝑗⋅
, 𝛽

⋅
=

1

𝑏

𝑏

∑

𝑗=1

𝛽
𝑗
,

𝛾
𝑖⋅
=

1

𝑏

𝑏

∑

𝑗=1

𝛾
𝑖𝑗
, 𝜖

𝑖𝑗⋅
=

1

𝑛
𝑖𝑗

𝑛
𝑖𝑗

∑

𝑘=1

𝜖
𝑖𝑗𝑘
, �̃�

𝑖⋅⋅
=

1

𝑏

𝑏

∑

𝑗=1

𝜖
𝑖𝑗⋅
,

�̃�
⋅𝑗⋅

=
1

𝑎

𝑎

∑

𝑖=1

𝜖
𝑖𝑗⋅
, �̃�

⋅⋅⋅
=

1

𝑏

𝑏

∑

𝑗=1

�̃�
⋅𝑗⋅

=
1

𝑎

𝑎

∑

𝑖=1

�̃�
𝑖⋅⋅
.

(22)

The usual 𝐹 statistic in the balanced case in the restricted
version of the mixed model is given by

𝐹 =
MSB
MSE

=

𝑎
2
𝑏𝑛 (𝑛 − 1)∑

𝑗
(𝑌
⋅𝑗⋅

− 𝑌
⋅⋅⋅
)
2

(𝑏 − 1)∑
𝑖
∑
𝑗
∑
𝑘
(𝑌
𝑖𝑗𝑘

− 𝑌
𝑖𝑗⋅
)
2
, (23)

while the usual 𝐹 statistic in the balanced case in the random
effects model is given by

𝐹 =
MSB
MSAB

=

𝑎 (𝑎 − 1)∑
𝑗
(𝑌
⋅𝑗⋅

− 𝑌
⋅⋅⋅
)
2

∑
𝑖
∑
𝑗
(𝑌
𝑖𝑗⋅
− 𝑌
𝑖⋅⋅
− 𝑌
⋅𝑗⋅

+ 𝑌
⋅⋅⋅
)
2
. (24)

In the unbalanced case there is no theoretically justified
procedure, but Searle [14] does have a number of recommen-
dations which are implemented in software packages.

The test statistics we propose for testing the hypothesis
of no main random effect, 𝐻

0
(𝐵) : 𝜎

2
(𝛽
𝑗
) = 0, 𝑗 =

1, . . . , 𝑏, are modeled after the usual 𝐹 statistics given in (23)
and (24), except that we take the difference rather that the
ratio, as explained in the Introduction. Moreover, in order
to accommodate unbalanced designs, 𝑌

𝑖..
, 𝑌
.𝑗.
, and 𝑌

...
are

replaced by �̃�
𝑖⋅⋅
, �̃�
⋅𝑗⋅
, and �̃�

⋅⋅⋅
, respectively. As mentioned in

the Introduction, our asymptotic theory requires that the
difference has mean value zero. While this is the case for the
random effects design, the expected value ofMSB-MSE is not
zero for the mixed effects design with heteroscedastic errors.
Therefore we replaceMSEwith a different linear combination
of the cell sample variances:

MSE∗ = 1

𝑎3𝑏

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

𝑛
⋅𝑗

𝑛
𝑖𝑗

1

𝑛
𝑖𝑗
− 1

𝑛
𝑖𝑗

∑

𝑘=1

(𝑌
𝑖𝑗𝑘

− 𝑌
𝑖𝑗⋅
)
2

. (25)

Thus, the proposed test statistics for themixed effects and
random effects models are, respectively,

𝑆
𝐵,mixed =

1

𝑎 (𝑏 − 1)

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

𝑛
𝑖𝑗

∑

𝑘=1

(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2

−MSE∗, (26)

𝑆
𝐵, rand =

1

𝑎2𝑏

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

[(𝑎 − 1) (�̃�⋅𝑗⋅ − �̃�
⋅⋅⋅
)
2

− 𝑅
2

𝑖𝑗
] , (27)

where 𝑅
𝑖𝑗
= 𝑌
𝑖𝑗⋅
− �̃�
⋅𝑗⋅

− �̃�
𝑖⋅⋅
+ �̃�
⋅⋅⋅
.

Proposition 1. Let 𝑆
𝐵,mixed be as defined in (26) and let 𝑆𝐵, rand

be as defined in (27), with the observations 𝑌
𝑖𝑗𝑘

generated
according to the model of Section 2. Then,

(i) if the null hypothesis 𝐻
0
(𝐵) : 𝜎

2
(𝛽
𝑗
) = 0, 𝑗 = 1, . . . , 𝑏

holds,

𝐸 (𝑆
𝐵,mixed) = 𝐸 (𝑆

𝐵, rand) = 0, (28)

(ii) if the null hypothesis 𝐻
0
(𝐵) : 𝜎

2
(𝛽
𝑗
) = 0, 𝑗 = 1, . . . , 𝑏

does not hold,

𝐸 (𝑆
𝐵,mixed) > 0, 𝐸 (𝑆

𝐵, rand) > 0. (29)

The second item in Proposition 1 suggests that the null
hypothesis should be rejected at level 𝛼 whenever the test
statistic takes a value larger than the 100(1 − 𝛼)th percentile
of the null distribution. The next proposition establishes
asymptotic representations of 𝑆

𝐵,mixed and 𝑆
𝐵, rand that are

useful for establishing their asymptotic distributions.

Proposition 2. Under𝐻
0
(𝐵),

(i)

√𝑏𝑆
𝐵,mixed =

1

𝑎√𝑏

∑

𝑗

𝑛
⋅𝑗
[(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2

− 𝐸(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2

]

+ 𝑜
𝑝 (1) ,

(30)

(ii)

𝑎𝑆
𝐵, rand =

1

𝑎𝑏
∑

𝑖

∑

𝑖
1
̸= 𝑖

∑

𝑗

𝛾
𝑖𝑗
𝛾
𝑖
1
𝑗
+ 𝑜
𝑝 (1) . (31)

Theorem 3. Let 𝑠
2

𝑏
= Var ((1/√𝑏)∑

𝑗
𝑛
𝑖𝑗
[(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2

−

𝐸(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2
]). Then under𝐻

0
(𝐵)

√𝑏
𝑆
𝐵,mixed

𝑠
𝑏

→ 𝑁(0, 1) , (32)

in distribution as 𝑎, 𝑏 → ∞.

Proof. Letting 𝑇
𝑏
= (1/√𝑏)∑

𝑗
𝑛
𝑖𝑗
[(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2
− 𝐸(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2
],

then, as stated above,

√𝑏
𝑆
𝐵,mixed

𝑠
𝑏

≈
𝑇
𝑏

𝑠
𝑏

. (33)



Journal of Probability and Statistics 5

The proof that 𝑇
𝑏
/𝑠
𝑏

→ 𝑁(0, 1) in distribution follows
from an application of the Lindeberg-Feller CLT. We first
rewrite our statement in the notation of the Lindeberg-Feller
CLT and then show that the Lindeberg condition holds
after a straightforward application of the Dominated Con-
vergence Theorem. Now let 𝑌𝑎,𝑏

𝑗
= (1/√𝑏)𝑛

𝑖𝑗
[(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2
−

𝐸(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2
], so that𝑇

𝑏
= ∑
𝑗
𝑌
𝑎,𝑏

𝑗
. Also note thatwe canwrite

𝑠
2

𝑏
= Var (𝑇

𝑏
) =

1

𝑏
∑

𝑗

𝑛
2

𝑖𝑗
Var ((�̃�

⋅𝑗⋅
− �̃�
⋅⋅⋅
)
2

) , (34)

which is finite because we have assumed a finite fourth
moment for the 𝜖 terms. Moreover, this implies that

Var (√𝑏𝑌
𝑎,𝑏

𝑗
) = 𝑛
2

𝑖𝑗
Var ((�̃�

⋅𝑗⋅
− �̃�
⋅⋅⋅
)
2

) , (35)

which is again finite. Now in order to use the Lindeberg-Feller
CLT, we need to verify the Lindeberg condition:

∀𝜖 > 0,
1

𝑠
2

𝑏

𝑏

∑

𝑗=1

𝐸 [(𝑌
𝑎,𝑏

𝑗
)
2

𝐼 {

𝑌
𝑎,𝑏

𝑗


> 𝜖𝑠
𝑏
}] → 0. (36)

Note that

1

𝑠
2

𝑏

𝑏

∑

𝑗=1

𝐸 [(𝑌
𝑎,𝑏

𝑗
)
2

𝐼 {

𝑌
𝑎,𝑏

𝑗


> 𝜖𝑠
𝑏
}]

=
1

𝑏𝑠
2

𝑏

𝑏

∑

𝑗=1

𝐸 [(√𝑏𝑌
𝑎,𝑏

𝑗
)
2

𝐼 {

√𝑏𝑌
𝑎,𝑏

𝑗


> √𝑏𝜖𝑠

𝑏
}]

=
1

𝑠
2

𝑏

𝐸 [(√𝑏𝑌
𝑎,𝑏

1
)
2

𝐼 {

√𝑏𝑌
𝑎,𝑏

1


> √𝑏𝜖𝑠

𝑏
}] .

(37)

Because 𝐸(√𝑏𝑌
𝑎,𝑏

1
) = 0 and Var(√𝑏𝑌

𝑎,𝑏

1
) is finite, the

Dominated ConvergenceTheorem implies that 𝐸[(√𝑏𝑌
𝑎,𝑏

1
)
2

𝐼

{|√𝑏𝑌
𝑎,𝑏

1
| > √𝑏𝜖𝑠

𝑏
}] → 0, and hence the Lindeberg condi-

tion is verified. This completes the proof of the theorem.

Theorem 4. Define the operator 𝐻
𝑏

: 𝑔 → 𝐻
𝑏
𝑔, for 𝑔 ∈

𝐿
2
([0, 1],B

[0,1]
, 𝜆
[0,1]

), whereB
[0,1]

is the class of Borel subsets
of [0, 1] and 𝜆

[0,1]
is the Lebesgue measure onB

[0,1]
, by

(𝐻
𝑏
𝑔) (𝑠) = ∫ ℎ

𝑏 (𝑠, 𝑡) 𝑔 (𝑡) 𝑑𝑡, (38)

where ℎ
𝑏
(𝑠, 𝑡) = (1/𝑏)∑

𝑏

𝑗=1
𝛾
𝑠𝑗
𝛾
𝑡𝑗
. Let 𝜆𝑏], 𝑓

𝑏

] , ] = 1, 2, . . ., be
the eigenvalues and eigenfunctions of the integral equation

(𝐻
𝑏
𝑓) (𝑠) = 𝜆𝑓 (𝑠) , (39)

and assume that the eigenvalues satisfy

∞

∑

]=1

(sup
𝑏

𝜆
𝑏

])

2

< ∞. (40)

Then, if 𝛾
𝑖𝑗

and 𝜖
𝑖𝑗

have finite fourth moments and the
covariances Cov (𝛾

𝑖𝑗
, 𝛾
𝑖𝑗
), Cov (𝛾

2

𝑖𝑗
, 𝜖
2

𝑖𝑗.
), Cov (𝛾

2

𝑖𝑗
, 𝛾
2

𝑖𝑗
), and

Cov (𝜖
2

𝑖𝑗
, 𝜖
2

𝑖𝑗
) are bounded uniformly in 𝑗, 𝑗

, the asymptotic
null distribution of 𝑆

𝐵, rand, as 𝑎 → ∞, 𝑏 → ∞, is the
same as the asymptotic distribution of ∑∞]=1 𝜆

𝑏

](𝑍
2

] − 1), as
𝑏 → ∞, where 𝑍], ] = 1, 2, . . ., are independent standard
normal random variables.

Proof. The proof proceeds by first conditioning on the levels
of the column factor T = (𝑇

1
, . . . , 𝑇

𝑏
) and then applying

the arguments used in the proof of Theorem 3.3 of [9].
Indeed, the proof of the aforementioned theorem uses an
expansion similar to (31) of Proposition 2 (with the indices
𝑖, 𝑗 interchanged) which is modeled as a 𝑈-statistic with
kernel depending on 𝑎. The same arguments establish the
limiting distribution of the test statistic conditionally on T =

(𝑇
1
, . . . , 𝑇

𝑏
). As 𝑏 → ∞, the strong law of large numbers

guarantees that the kernel ℎ
𝑏
(𝑠, 𝑡) converges to the same

limit, and thus the conditional limiting distribution does not
depend on T = (𝑇

1
, . . . , 𝑇

𝑏
). Thus, the test statistic converges

to the same distribution unconditionally.

4. Test Procedures and Simulation Results

In testing for the random main effect in the mixed effects
model, we only need to estimate the variance term 𝑠

2

𝑏
in

Theorem 3. According to (30) of Proposition 2 we need to
estimate the variance of

1

√𝑏

∑

𝑗

𝑛
𝑖𝑗
(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2

. (41)

It is easy to see that

1

√𝑏

∑

𝑗

𝑛
𝑖𝑗
(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)
2

−
1

√𝑏

∑

𝑗

𝑛
𝑖𝑗
�̃�
2

⋅𝑗⋅
→ 0, (42)

in probability. Thus, we need to estimate the variance of
the independent terms �̃�

2

⋅𝑗⋅
. By the Central Limit Theorem,

as 𝑎 → ∞, �̃�
⋅𝑗⋅

is approximately Normally distributed
with mean zero and variance (1/𝑎

2
) ∑
𝑖
(𝜎
2

𝑖𝑗
/𝑛
𝑖𝑗
). Therefore,

the approximate variance of �̃�2
⋅𝑗⋅

is 2((1/𝑎
2
) ∑
𝑖
(𝜎
2

𝑖𝑗
/𝑛
𝑖𝑗
))
2. As

a result, we estimate 𝑠2
𝑏
by

�̂�
2

𝑏
=

2

𝑎6𝑏
∑

𝑗

(𝑛
⋅𝑗
∑

𝑖

𝑠
2

𝑖𝑗

𝑛
𝑖𝑗

)

2

. (43)

Then, according to Proposition 1 and Theorem 3, 𝐻
0
(𝐵) is

rejected at level 𝛼 when

𝑏
1/2

𝑆
𝐵,mixed

�̂�
𝑏

> 𝑧
𝛼
, (44)

where 𝑧
𝛼
is the (1−𝛼)100th percentile of the standard normal

distribution.
Testing for main effects in the random effects model

involves estimation of the asymptotic distribution of
Theorem 4. Koltchinskii and Giné [15] show that the
infinite spectrum of a Hilbert-Schmidt operator 𝐻 can
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be approximated by the finite spectrum of the empirical
matrix version of the operator. We will use this result to
approximate the spectrum of the operator 𝐻

𝑏
in Theorem 4

by its empirical version, �̃�
𝑎
, defined below. To this end, the

following representation of 𝑆
𝐵, rand as a 𝑈-statistic is useful:

𝑎𝑆
𝐵, rand =

1

𝑎𝑏
∑

𝑖
1

∑

𝑖
2
̸= 𝑖
1

∑

𝑗

(𝑌
𝑖
1
𝑗⋅
− 𝑌
𝑖
1
⋅⋅
) (𝑌
𝑖
2
𝑗⋅
− 𝑌
𝑖
2
⋅⋅
)=

𝑎 − 1

𝑏
𝑈
𝑎
,

(45)

where the 𝑈-statistic 𝑈
𝑎
is defined by the kernel

ℎ (𝑆
𝑖
1

, 𝑆
𝑖
2

) = ∑

𝑗

(𝑌
𝑖
1
𝑗⋅
− 𝑌
𝑖
1
⋅⋅
) (𝑌
𝑖
2
𝑗⋅
− 𝑌
𝑖
2
⋅⋅
) . (46)

Under the null hypothesis 𝐻
0
(𝐵), the empirical version, �̃�

𝑎
,

of the operator 𝐻
𝑏
is the 𝑎 × 𝑎 matrix with entries �̃�

𝑖,𝑖
 =

(1/𝑎)ℎ(𝑆
𝑖
, 𝑆
𝑖
). The 𝑎 eigenvalues 𝜆

𝑎

1
, . . . , 𝜆

𝑎

𝑎
of �̃�
𝑎
are then

used to estimate the asymptotic distribution of 𝑆
𝐵, rand as

∑
𝑎

𝑖=1
𝜆
𝑎

𝑖
(𝑍
2

𝑖
−1),where the𝑍2

𝑖
are randomly sampled from the

𝜒
2

1
distribution. To approximate the estimated distribution,

we randomly generate a large number 𝐵 of sets 𝑍
2

1
, . . . , 𝑍

2

𝑎
,

and use the formula above to obtain 𝐵 realizations from
the distribution. Using this approximate distribution, for a
level 𝛼 test we reject 𝐻

0
(𝐵) when 𝑆

𝐵, rand is greater than the
(1 − 𝛼)100th percentile.

We now present simulation results to compare our test
procedures for the main random effect in the mixed and
random effects models to the usual 𝐹-tests given by (23) and
(24). Note that these statistics are only valid for balanced
designs. In the unbalanced designs, the datasets used to
obtain the achieved size and power are written out to files and
input to SAS for the 𝐹-test to be carried out in SAS PROC
MIXED.The achieved size and power are calculated from the
𝑃 values given from SAS.

Using the decomposition in relation (18), we generate our
data for the mixed effects model as follows.

(1) Set 𝜇 equal to any constant.
(2) Generate a vector of main random effects 𝑇

𝑗
, 𝑗 =

1, . . . , 𝑏 from the standard normal distribution.
(3) Independently generate a vector of fixed “functions”

𝜆
𝑖
, 𝑖 = 1, . . . , 𝑎, from the standard exponential

distribution and set 𝛾∗
𝑖
= 𝜆
𝑖
− 𝜆.

(4) Generate 𝑌
𝑖𝑗𝑘

from a normal distribution with vari-
ance 𝜎

2

𝑖
and mean 𝜇 + 𝛼

𝑖
+ 𝑇
𝑗
+ 𝑇
𝑗
∗ 𝛾
∗

𝑖
, where the

last two terms are the main random and interaction
effects, respectively.

Similarly, using the decomposition in relation (9), we
generate our data for the random effects model as follows.

(1) Set 𝜇 equal to any constant.
(2) Generate a vector of main row random effects 𝑆

𝑖
, 𝑖 =

1, . . . , 𝑎 from the standard normal distribution.
(3) Independently generate a vector of main column

random effects 𝑇
𝑗
, 𝑗 = 1, . . . , 𝑏 from the standard

normal distribution, and set𝑇∗
𝑗
= 𝜏𝑇
𝑗
, where 𝜏 is used

to set the degree of deviation from the null hypothesis.

(4) Set the interaction effects 𝛾
𝑖𝑗
= 𝑆
𝑖
𝑇
𝑗
.

(5) Generate 𝑌
𝑖𝑗𝑘

from a normal distribution with vari-
ance 𝜎2

𝑖
and mean 𝜇 + 𝑆

𝑖
+ 𝑇
∗

𝑗
+ 𝑆
𝑖
𝑇
𝑗
.

In Table 1, each simulation used 𝑎 = 𝑏 = 20. For the
unbalanced setups, rows 𝑖 = 1, . . . , 15 had 4 observations
per cell, whereas rows 𝑖 = 16, . . . , 20 had 2 observations per
cell. For the heteroscedastic setups, the first 15 rows all had
variance 1, while the remaining rows had variance 5; that is,
𝜎
2

1
= ⋅ ⋅ ⋅ = 𝜎

2

15
= 1, 𝜎

2

16
= ⋅ ⋅ ⋅ = 𝜎

2

20
= 5.

5. Data Analysis

One real-world application for our methodology can be
found through the National Oceanic and Atmospheric
Administration’s National Status and Trends Program. In
1986, this division undertook a very large scale project
to monitor the levels of numerous chemical contami-
nants and organic chemical constituents in marine sed-
iment and bivalve (mollusk) tissue samples. This project
(http://ccma.nos.noaa.gov/about/coast/nsandt/musselwatch.
aspx), dubbed the Mussel Watch Project, is still on-going
and there are no apparent plans to discontinue it in the near
future. There are currently over 300 coastal sites at which
sediment and bivalve samples are collected and analysed
for the project. Each site is categorised as being within a
certain estuarine drainage area (EDA). For our data analysis,
we chose to analyse the Mercury concentrations in tissue
samples of the Crassostrea virginica, or Eastern Oyster. There
was a high degree of missingness of Mercury concentrations
in the dataset, so we used imputations to generate these
measurements. Because of how we performed our imputa-
tions, only EDAs that did not have missingmeasurements for
two consecutive years and EDAs that had measurements in
1986 were included in the analysis. Once we had a complete
imputed dataset, we employed our methodology to test for
effects due to EDA.

5.1. Imputations. Because of the 1/(𝑛
𝑖𝑗
− 1) coefficient that is

used in the statistic 𝑆
𝐵,mixed, each cell needs to have at least

2 observations. To facilitate the imputations, we identified
195 instances of 2 consecutive measurements falling into the
following groupings: 1986-1987, 1988-1989, 1990-1991, 1992-
1993, 1994-1995, 1996-1997, 1998-1999, 2000-2001, 2002-2003,
and 2004-2005. If any cell had more than one observation,
they were averaged. We used these 195 pairs to build the
regression model 𝐶𝑉

𝑡,𝑗
= 0.046424 + 0.65852𝐶𝑉

𝑡−1,𝑗
, where

we predict a value of Mercury concentration at time 𝑡 from
the Mercury concentration at time 𝑡 − 1. For this model, the
𝑃 value for the test of 𝐻

0
: 𝛽
1

= 0 versus 𝐻
𝐴

: 𝛽
1

̸= 0

was 0.000 and the 𝑅
2
= 36.8%. When fitting the regression

model inMinitab, we also saved the residuals from themodel
and the actual imputations that we used were 𝐶𝑉

𝑡,𝑗
+ 𝑅
∗,

where 𝑅
∗ is a randomly selected residual from the fitting of

the model. We separately treat imputations for cells with only
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Table 1: Comparison of achieved type I error rates and power for 𝑆
𝐵,mixed, 𝑆𝐵,rand, and 𝐹with𝑁 = 1000 tests for the random andmixed effects

models.

Random effects model Mixed effects model
Balanced Unbalanced Balanced Unbalanced

𝛼 = .05 𝛼 = .10 𝛼 = .05 𝛼 = .10 𝛼 = .05 𝛼 = .10 𝛼 = .05 𝛼 = .10

𝑆
𝐵

𝐹 𝑆
𝐵

𝐹 𝑆
𝐵

𝐹 𝑆
𝐵

𝐹 𝑆
𝐵

𝐹 𝑆
𝐵

𝐹 𝑆
𝐵

𝐹 𝑆
𝐵

𝐹

Homo.
𝐻
0

.054 .220 .111 .247 .049 .167 .092 .198 .065 .047 .112 .099 .063 .045 .109 .086
𝐴
1

.053 .229 .123 .265 .069 NA .140 NA .227 .187 .318 .296 .184 .138 .260 .228
𝐴
2

.125 .337 .221 .367 .113 NA .201 NA .761 .719 .820 .804 .542 .489 .634 .638
𝐴
3

.236 .532 .369 .563 .234 NA .360 NA .975 .963 .982 .982 .888 .863 .920 .917
Hetero.

𝐻
0

.045 .150 .089 .182 .015 .230 .042 .303 .070 .056 .106 .100 .062 .935 .107 .952
𝐴
1

.045 .160 .088 .199 .021 NA .053 NA .077 .060 .129 .121 .074 NA .124 NA
𝐴
2

.114 .273 .190 .316 .047 NA .094 NA .151 .129 .221 .215 .104 NA .152 NA
𝐴
3

.195 .430 .318 .467 .117 NA .215 NA .270 .235 .353 .341 .131 NA .189 NA

one observation and imputations for empty cells. When cells
are empty, we use the regression equation

𝐶𝑉
𝑡,𝑗

= 0.046424 + 0.65852𝐶𝑉
𝑡−1,𝑗

+ 𝑅
∗
, (47)

twice to impute two values of Hg concentration at time 𝑡.
When a cell has only one observation, we use a different
technique.

(1) If the EDA has any cells with more than one observa-
tion in any year, we calculate residuals for each year
with more than one observation as 𝑒

𝑖𝑗𝑘
= 𝑌
𝑖𝑗𝑘

−

𝑌
𝑖𝑗⋅
, 𝑘 = 1, . . . , 𝑛

𝑖𝑗
. Then for the EDA and year of

interest, we impute a second observation as 𝑌
𝑖𝑗2

=

𝑌
𝑖𝑗1

+ 𝑒
∗

𝑖𝑗𝑘
, where 𝑒

∗

𝑖𝑗𝑘
denotes a randomly selected

residual.
(2) If the EDA of interest has at most one observation

in each cell, we identify the closest neighboring
EDA (denoted by level 𝑗∗) and calculate residuals
for each year with more than one observation in
the neighboring EDA as 𝑒

𝑖𝑗
∗
𝑘

= 𝑌
𝑖𝑗
∗
𝑘
− 𝑌
𝑖𝑗
∗
⋅
, 𝑘 =

1, . . . , 𝑛
𝑖𝑗
∗ . Then for the EDA and year of interest, we

impute a second observation as 𝑌
𝑖𝑗2

= 𝑌
𝑖𝑗1

+ 𝑒
∗

𝑖𝑗
∗
𝑘
,

where 𝑒∗
𝑖𝑗
∗
𝑘
denotes a randomly selected residual.

After performing the imputations, there are a total of
𝑁 = 1808 observations of Hg concentration in CV tissue
samples. The 20 years included are 1986–2005, and there
are 39 EDAs included in the dataset. The data are rather
unbalanced, with most EDAs having only two observations
per year, while others such as the Galveston Bay EDA have as
many as six observations per year.Moreover, the observations
do not seem to be homoscedastic.These points are illustrated
in Figure 1, where we show scatterplots of Hg concentrations
for six EDAs after imputation.

5.2. The Analysis. In our analysis of this dataset under the
mixed effects model, we take the years as the fixed effect and
the EDAs as the random effect. We can think of the EDAs as

a random effect because we are only analyzing a very small
subset of a much larger group of EDAs and the location effect
is not of specific interest. Some may view the time effect
as being of specific interest, while others may not. Whether
one views the time effect as a fixed or random factor would
precipitate analysis using a mixed or random effects model.

We want to model the Hg concentration with an interac-
tion effect between year and location, so we use the model
in relation (18). Because we are dealing with compositional
data, we employ the common practice of analyzing the data
after taking a log transformation; compare [16].

When we apply our proposed test procedure based on the
test statistic 𝑆

𝐶
, we obtain a 𝑃 value of 0.0588. When we apply

the 𝐹-test computed from SAS PROCMIXED, we obtain a 𝑃
value of 0.0016.

The 𝑃 value for the test using 𝑆
𝐶
is simply calculated

as 1 − Φ(⋅), where Φ is the distribution function of the
standard normal random variable. The 𝑃 value for the SAS
𝐹-test is calculated as 1 − 𝐹]

1
,]
2

(⋅), where ]
1
and ]

2
denote

the numerator and denominator degrees of freedom. In the
test for the random interaction effect, SAS uses ]

1
= 722,

]
2
= 1028. The simulation results shown in Table 1 suggest

that the significance of the interaction effect indicated by
the 𝐹-test cannot be trusted. Indeed, according to these
simulation results, we expect the 𝐹-test to detect interaction
in almost any unbalanced and heteroscedastic dataset. On the
other hand, the simulation results suggest that the marginal
significance indicated by the 𝑃 value obtained from the
proposed test procedure can be trusted. According to this
we recommend that the interaction effect be included in the
modeling of this dataset.

6. Summary

The classical 𝐹 statistic for testing the significance of main
random effects in two-factor mixed and random effects
model is shown to be very sensitive to violations of the
assumptions under which it is derived, in particular those
of symmetry, homoscedasticity, and balancedness. Two new
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Figure 1: Scatterplot of Mercury concentrations in Eastern Oysters by year after imputation for six EDAs.



Journal of Probability and Statistics 9

test procedures for testing the hypothesis of no main random
effects are proposed under fully nonparametric modeling
of the mixed and random effects designs. The test statistics
are defined as differences (as opposed to ratios) of suitably
defined mean squares, and their asymptotic theory is derived
as the number of levels tends to infinity. Simulations suggest
that the newprocedures perform reasonablywell in situations
where the 𝐹 statistic breaks down and have comparable per-
formance to it when the assumptions it requires are met. The
practical value of the proposed procedures is demonstrated
with the analysis of a real dataset.

Appendices

A. Proof of Proposition 1

We first present the proof for the statistic under the mixed
effects model, and then for the statistic under the random
effects model.

Proof for 𝑆
𝐵,mixed. Using relations (15) and (18) we write

𝑆
𝐵,mixed =

1

𝑎 (𝑏 − 1)

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

𝑛
𝑖𝑗

∑

𝑘=1

[(𝛽
𝑗
− 𝛽
⋅
)+(�̃�
⋅𝑗⋅

− �̃�
⋅⋅⋅
)]
2

−MSE∗.

(A.1)

The conditional expectation of the first part given the vector
T of random column levels is

𝐸[

[

1

𝑎 (𝑏 − 1)

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

𝑛
𝑖𝑗
[(𝛽
𝑗
− 𝛽
⋅
) + (�̃�

⋅𝑗⋅
− �̃�
⋅⋅⋅
)]
2

| T]
]

=
1

𝑎 (𝑏 − 1)
∑

𝑖

∑

𝑗

𝑛
𝑖𝑗
[(𝛽
𝑗
− 𝛽
⋅
)
2

+ (1 −
1

𝑏
)Var (�̃�

⋅𝑗⋅
| 𝑇
𝑗
)]

=
1

𝑎 (𝑏 − 1)

×∑

𝑖

∑

𝑗

𝑛
𝑖𝑗
[(𝛽
𝑗
− 𝛽
⋅
)
2

+(1−
1

𝑏
)

1

𝑎2
∑

𝑖
1

Var (𝜖
𝑖
1
𝑗𝑘

| 𝑇
𝑗
)

𝑛
𝑖
1
𝑗

] .

(A.2)

Therefore, under the null hypothesis that 𝛽
𝑗
= 0, a.s., for all 𝑗,

the expected value of 𝑆
𝐵,mixed is zero conditionally on T, and

thus also unconditionally. Moreover, it is clear that under the
alternative the expected value of 𝑆

𝐵,mixed is positive.

Proof for 𝑆
𝐵, rand. Using relation (9), we write

𝑆
𝐵, rand =

1

𝑎2𝑏

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

(𝑎 − 1)

× ((𝛽
𝑗
− 𝛽
⋅
) + (𝛾

⋅𝑗
− �̃�
⋅⋅
) + (�̃�

⋅𝑗⋅
− �̃�
⋅⋅⋅
))
2

−
1

𝑎2𝑏

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

((𝛾
𝑖𝑗
− 𝛾
⋅𝑗
− 𝛾
𝑖⋅
+ �̃�
⋅⋅
)

+ (𝜖
𝑖𝑗⋅
− �̃�
⋅𝑗⋅

− �̃�
𝑖⋅⋅
+ �̃�
⋅⋅⋅
))
2

.

(A.3)

Thus, the proof of this part of the proposition will follow if we
show

𝐸[

[

1

𝑎2𝑏

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

(𝑎 − 1) (𝛾
⋅𝑗
− �̃�
⋅⋅
)
2
]

]

= 𝐸[

[

1

𝑎2𝑏

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

(𝛾
𝑖𝑗
− 𝛾
⋅𝑗
− 𝛾
𝑖⋅
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⋅⋅
)
2
]

]

,

(A.4)

𝐸[

[

1

𝑎2𝑏

𝑎

∑
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𝑏

∑

𝑗=1
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⋅⋅⋅
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1
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(A.5)

Relation (A.4) follows from

𝐸 [(𝑎 − 1) (𝛾
⋅𝑗
− �̃�
⋅⋅
)
2

] = 𝐸 {𝐸 [(𝑎 − 1) (𝛾
⋅𝑗
− �̃�
⋅⋅
)
2

| T]}

=
(𝑎 − 1) (𝑏 − 1)
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𝐸 [Var (𝛾
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𝑗
)] ,
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⋅𝑗
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𝑖⋅
)
2

]=
(𝑎 − 1) (𝑏 − 1)

𝑎𝑏
𝐸 [Var (𝛾

𝑖𝑗
| 𝑇
𝑗
)] ,

(A.6)

where the second equality follows from the fact that 𝐸(𝛾
𝑖
1
𝑗
−

𝛾
𝑖
1
⋅
)(𝛾
𝑖
2
𝑗
− 𝛾
𝑖
2
⋅
) = 0 for 𝑖

1
̸= 𝑖
2
. Relation (A.5) follows similarly.

B. Proof of Proposition 2

We first show the proof for the statistic under the mixed
effects model, and then for the statistic under the random
effects model.

Proof for 𝑆
𝐵,mixed. Because we have shown above in the

proof of Proposition 1 that, under 𝐻
0
(𝐵), the statistic has

mean value zero, it suffices to show that with data generated
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as in Section 2 and effects defined in (18), the following
convergence holds:

1

𝑎2√𝑏

𝑎

∑

𝑖=1

𝑏

∑

𝑗=1

𝑛
𝑖𝑗

∑

𝑘=1

[
1

𝑛
𝑖𝑗
− 1

(𝜖
𝑖𝑗𝑘

− 𝜖
𝑖𝑗⋅
)
2

−𝐸(
1

𝑛
𝑖𝑗
− 1

(𝜖
𝑖𝑗𝑘

− 𝜖
𝑖𝑗⋅
)
2

)] → 0,

(B.1)

in probability as 𝑎, 𝑏 → ∞. Now, first note that the
above expression is centered, so we only need to show
that its variance tends to zero as 𝑎, 𝑏 tend to ∞. This is
easily done using the facts, given in relation (19), that the 𝜖

terms are uncorrelated for different levels of the fixed effect,
independent for different levels of the random effect, and,
conditionally on the level of the random effect, iid for 𝑘 =

1, . . . , 𝑛
𝑖𝑗
. Note that, using these relations,

Var[

[

1
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(B.2)

Because we assume a finite fourth moment for the 𝜖 terms
and a finite covariance for any two distinct squared 𝜖

terms, this conditional variance tends to zero. Therefore,
by the Dominated Convergence Theorem, the unconditional
variance also tends to zero, thus proving the proposition.

Proof for 𝑆
𝐵, rand. First, note that after some straightforward

algebra we can write
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To complete the proof, we claim that (1/𝑎𝑏)∑
𝑖
∑
𝑖
1
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∑
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⋅⋅
) converges to zero after showing that

the leading term of this product tends to zero. We proceed
similarly for the last two terms in 𝑆

𝐵, rand. Finally, we show
that (1/𝑎𝑏)∑

𝑖
∑
𝑖
1
̸= 𝑖
∑
𝑗
𝛾
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⋅
tends to zero to finish the proof.

Note that each of these terms has expected value zero, so
to demonstrate these facts, we only need to show that the
variances tend to zero. To this end, note that
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(B.4)

This completes the proof of the proposition.
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