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We find a new formula for matrix averages over the Gaussian ensemble. LetH be an 𝑛 × 𝑛 Gaussian random matrix with complex,
independent, and identically distributed entries of zero mean and unit variance. Given an 𝑛 × 𝑛 positive definite matrix A and a
continuous function 𝑓 : R+ → R such that ∫∞

0

𝑒
−𝛼𝑡

|𝑓(𝑡)|
2

𝑑𝑡 < ∞ for every 𝛼 > 0, we find a new formula for the expectation
E[Tr(𝑓(HAH∗))]. Taking 𝑓(𝑥) = log(1 + 𝑥) gives another formula for the capacity of the MIMO communication channel, and
taking 𝑓(𝑥) = (1 + 𝑥)−1 gives the MMSE achieved by a linear receiver.

1. Introduction

Random matrix theory was introduced to the theoretical
physics community byWigner in his work on nuclear physics
in the 1950s [1, 2]. Since that time, the subject is an important
and active research area in mathematics, and it finds applica-
tions in fields as diverse as the Riemann conjecture, physics,
chaotic systems, multivariate statistics, wireless communica-
tions, signal processing, compressed sensing, and informa-
tion theory. In the last decades, a considerable amount of
work has emerged in the communications and information
theory on the fundamental limits of communication channels
that make use of results in random matrix theory [3–5].
For this reason, computing averages over certain matrix
ensembles becomes extremely important in many situations.
To be more specific, consider the well-known case of the
single user MIMO channel with multiple transmitting and
receiving antennas. Denoting the number of transmitting
antennas by 𝑡 and the number of receiving antennas by 𝑟, the
channel model is

y = Hu + n, (1)

where u ∈ C𝑡 is the transmitted vector, y ∈ C𝑟 is the received
vector, H is a 𝑟 × 𝑡 complex matrix, and n is the zero mean
complex Gaussian vector with independent, equal variance
entries. We assume that E(nn∗) = I

𝑟
, where (⋅)∗ denotes the

complex conjugate transpose. It is reasonable to put a power
constraint

E (u∗u) = E (Tr (uu∗)) ≤ 𝑃, (2)

where 𝑃 is the total transmitted power. The signal to noise
ratio, denoted by snr, is defined as the quotient of the signal
power and the noise power and in this case is equal to 𝑃/𝑟.

Recall that if A is an 𝑛 × 𝑛 Hermitian matrix, then there
exists U unitary and D = diag(𝑑

1
, . . . , 𝑑

𝑛
) such that A =

UDU∗. Given a continuous function 𝑓, we define 𝑓(A) as

𝑓 (A) = U diag (𝑓 (𝑑
1
) , . . . , 𝑓 (𝑑

𝑛
))U∗. (3)

Naturally, the simplest example is the one whereH has inde-
pendent and identically distributed (i.i.d.) Gaussian entries,
which constitutes the canonical model for the single user
narrow band MIMO channel. It is known that the capacity
of this channel is achieved when u is a complex Gaussian
zero mean and covariance snr I

𝑡
vector (see e.g., [4, 6]). For

the fast fading channel, assuming the statistical channel state
information at the transmitter, the ergodic capacity is given
by

E [log det (I
𝑟
+ snrHH∗)] = E [Tr log (I

𝑟
+ snrHH∗)] ,

(4)
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where in the last equality we use the fact that Tr log(⋅) =
log det(⋅). We refer the reader to [6] or [4] for more details
on this.

Another important performance measure is the min-
imum mean square error (MMSE) achieved by a linear
receiver, which determines the maximum achievable output
signal to interference and noise ratio (SINR). For an input
vector x with i.i.d. entries of zero mean and unit variance, the
MSE at the output of the MMSE receiver is given by

min
M∈C𝑡×𝑟

E [




x −My



2

] = E [Tr (I
𝑡
+ snrH∗H)−1] , (5)

where the expectation on the left-hand side is over both the
vectors x and the random matrices H, while the right-hand
side is overH only. We refer to [4] for more details on this.

There is a big literature and history of work on averages
over Gaussian ensembles; see, for instance, [3–14] and refer-
ences therein. In [6], the capacity of theGaussian channel was
computed as an improper integral. This integral is difficult to
compute, and asymptotic and simulation results are provided.
In [8, 11, 12, 14, 15], several asymptotic results for large
complex Gaussian random matrices are studied in connec-
tion with wireless communication and information theory.
In [8], many aspects of correlated Gaussian matrices are
addressed, and in particular, the capacity of Rayleigh channel
was computed as the number of antennas increases to infinity.
Thebooks [3–5] are excellent introductions to randommatrix
theory and their applications to physics and information
theory. In [10], the spectral eigenvalue distribution for a
random infinite 𝑑-regular graph was computed.

The typical approach in computing averages over random
matrices is to consider the asymptotic behavior as the size of
the matrix increases to infinity. In this work, we contribute
to this area by providing a unified framework to express
the ergodic mutual information, the MSE at the output of
the MMSE decoder, and other types of functionals of a
single userMIMO channel, when the number of transmitting
and receiving antennas is equal and finite. We do not rely
on asymptotic results as the number of antennas increases.
The results shown in this work are new and novel to the
best knowledge of the authors and they were not discovered
before.

In Section 2, we present some preliminaries in Schur
polynomials that are later used in this work. In Section 3, we
prove the main result of the paper, Theorem 2. This theorem
provides a new formula for the expectation

E [Tr (𝑓 (HAH∗))] , (6)

where A is a positive definite matrix and 𝑓 a continuous
function such that

∫

∞

0

𝑒
−𝛼𝑡



𝑓 (𝑡)






2

𝑑𝑡 < ∞, (7)

for every 𝛼 > 0. Notice that, as previously stated, taking
𝑓(𝑥) = log(1+𝑥) gives another formula for the capacity of the
MIMO communication channel, and taking 𝑓(𝑥) = (1+𝑥)−1
gives theMMSE achieved by a linear receiver.We also discuss
some applications and present some examples.

2. Schur Polynomials Preliminaries

A symmetric polynomial is a polynomial 𝑃(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) in

𝑛 variables such that if any of the variables are interchanged
one obtains the same polynomial. Formally, 𝑃 is a symmetric
polynomial if for any permutation𝜎 of the set {1, 2, . . . , 𝑛} one
has

𝑃 (𝑥
𝜎(1)
, 𝑥
𝜎(2)
, . . . , 𝑥

𝜎(𝑛)
) = 𝑃 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) . (8)

Symmetric polynomials arise naturally in the study of the
relation between the roots of a polynomial in one variable
and its coefficients, since the coefficients can be given by a
symmetric polynomial expressions in the roots. Symmetric
polynomials also form an interesting object by themselves.
The resulting structures, and in particular the ring of symmet-
ric functions, are of great importance in combinatorics and in
representation theory (see e.g., [16–19] for more on details on
this topic).

The Schur polynomials are certain symmetric polynomi-
als in 𝑛 variables. This class of polynomials is very important
in representation theory since they are the characters of
irreducible representations of the general linear groups. The
Schur polynomials are indexed by partitions. A partition of a
positive integer 𝑛, also called an integer partition, is a way of
writing 𝑛 as a sum of positive integers. Two partitions that
differ only by the order of their summands are considered
to be equal. Therefore, we can always represent a partition
𝜆 of a positive integer 𝑛 as a nonincreasing sequence of 𝑛
nonnegative integers 𝑑

𝑖
such that

𝑛

∑

𝑖=1

𝑑
𝑖
= 𝑛 with 𝑑

1
≥ 𝑑
2
≥ 𝑑
3
≥ ⋅ ⋅ ⋅ ≥ 𝑑

𝑛
≥ 0. (9)

Notice that some of the 𝑑
𝑖
could be zero. Integer partitions

are usually represented by the so-called Young diagrams
(also known as Ferrers’ diagrams). A Young diagram is a
finite collection of boxes, or cells, arranged in left-justified
rows, with the row lengths weakly decreasing (each row has
the same or shorter length than its predecessor). Listing
the number of boxes on each row gives a partition 𝜆 of
a nonnegative integer 𝑛, the total number of boxes of the
diagram. The Young diagram is said to be of shape 𝜆, and it
carries the same information as that partition. For instance,
later we can see the Young diagram corresponding to the
partition (5, 4, 1) of the number 10:

(10)

Given a partition 𝜆 of 𝑛

𝑛 = 𝑑
1
+ 𝑑
2
+ ⋅ ⋅ ⋅ + 𝑑

𝑛
: 𝑑
1
≥ 𝑑
2
≥ ⋅ ⋅ ⋅ ≥ 𝑑

𝑛
≥ 0, (11)
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the following functions are alternating polynomials (in other
words they change sign under any transposition of the
variables):

𝑎
(𝑑
1
,...,𝑑
𝑛
)
(𝑥
1
, . . . , 𝑥

𝑛
) = det

[

[

[

[

[

[

[

[

[

𝑥
𝑑
1

1
𝑥
𝑑
1

2
. . . 𝑥
𝑑
1

𝑛

𝑥
𝑑
2

1
𝑥
𝑑
2

2
. . . 𝑥
𝑑
2

𝑛

...
... d

...
𝑥
𝑑
𝑛

1
𝑥
𝑑
𝑛

2
. . . 𝑥
𝑑
𝑛

𝑛

]

]

]

]

]

]

]

]

]

= ∑

𝜎∈𝑆
𝑛

𝜖 (𝜎) 𝑥
𝑑
1

𝜎(1)
⋅ ⋅ ⋅ 𝑥
𝑑
𝑛

𝜎(𝑛)
,

(12)

where 𝑆
𝑛
is the permutation group of the set {1, 2, . . . , 𝑛}.

Since they are alternating, they are all divisible by the
Vandermonde determinant

Δ (𝑥
1
, . . . , 𝑥

𝑛
) = ∏

1≤𝑗<𝑘≤𝑛

(𝑥
𝑗
− 𝑥
𝑘
) . (13)

The Schur polynomial associated with 𝜆 is defined as the ratio

𝑠
𝜆
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑎
(𝑑
1
+𝑛−1,𝑑

2
+𝑛−2,...,𝑑

𝑛
+0)
(𝑥
1
, . . . , 𝑥

𝑛
)

Δ (𝑥
1
, . . . , 𝑥

𝑛
)

.

(14)

This is a symmetric function because the numerator and
denominator are both alternating and a polynomial since all
alternating polynomials are divisible by the Vandermonde
determinant (see [16, 18, 19] for more details here). For
instance,

𝑠
(2,1,1)

(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥
1
𝑥
2
𝑥
3
(𝑥
1
+ 𝑥
2
+ 𝑥
3
) ,

𝑠
(2,2,0)

(𝑥
1
, 𝑥
2
, 𝑥
3
)

= 𝑥
2

1
𝑥
2

2
+ 𝑥
2

1
𝑥
2

3
+ 𝑥
2

2
𝑥
2

3
+ 𝑥
2

1
𝑥
2
𝑥
3

+ 𝑥
1
𝑥
2

2
𝑥
3
+ 𝑥
1
𝑥
2
𝑥
2

3
.

(15)

Another definition we need for the next section is the so-
called hook length, hook (𝑥), of a box 𝑥 in a Young diagram
of shape 𝜆. This is defined as the number of boxes that is in
the same row to the right of it plus those boxes in the same
column below it, plus one (for the box itself). As an example,
later we show the hook lengths of the partition (5, 4, 1). The
product of the hook’s length of a partition is the product of
the hook lengths of all the boxes in the partition:

7 5 4 3 1

5 3 2 1

1

(16)

We recommend the interested reader to consult [16, 18, 19] for
more details and examples on this topic.

3. Averages over Gaussian Ensembles

Let𝑀
𝑛
be the set of all 𝑛 × 𝑛 complex matrices andU

𝑛
the set

of 𝑛 × 𝑛 unitary complex matrices. Let 𝑑H be the Lebesgue
measure on𝑀

𝑛
, and let

𝑑] (H) = 𝜋−𝑛
2

exp (−trace (H∗H)) 𝑑H (17)

be the Gaussian measure on𝑀
𝑛
. This is the induced measure

by the Gaussian random matrix with complex independent
and identically distributed entries with zero mean and unit
variance in the set of matrices, when this is represented
as a Euclidean space of dimension 2𝑛

2. Note that this
probability measure is left and right invariant under unitary
multiplication (i.e., 𝑑](HU) = 𝑑](UH) = 𝑑](H) for every
unitaryU). The following theorem can be found on page 447
of [18].

Theorem 1 (see [18]). For all Hermitian 𝑛 × 𝑛 matrices A,B
and every partition 𝜆

∫

𝑀
𝑛

𝑠
𝜆
(AH∗BH) 𝑑] (H) = ℎ (𝜆) 𝑠

𝜆
(A) 𝑠
𝜆
(B) , (18)

where ℎ(𝜆) is the product of the hook lengths of 𝜆.

Denote by (𝑚−𝑘, 1𝑘) the partition (𝑚−𝑘, 1, 1, . . . , 1)with
𝑘 ones. It is a well-known fact in matrix theory (see [16] or
[18]) that for every Hermitian 𝑛 × 𝑛 matrix A and for every
integer𝑚

Tr (A𝑚) =
𝑛−1

∑

𝑘=0

(−1)
𝑘

𝑠
(𝑚−𝑘,1

𝑘
)
(A) . (19)

Note that for the case 1 ≤ 𝑚 < 𝑛, even though the sum is up
to the 𝑛 − 1 term, all the terms between min{𝑛,𝑚} and 𝑛 − 1
are zero. In particular,

(i) Tr(A) = 𝑠
(1)
(A),

(ii) Tr(A2) = 𝑠
(2,0)

(A) − 𝑠
(1,1)

(A),
(iii) Tr(A3) = 𝑠

(3,0)
(A) − 𝑠

(2,1)
(A) + 𝑠

(1,1,1)
(A),

(iv) Tr(A4) = 𝑠
(4,0)

(A) − 𝑠
(3,1)

(A) + 𝑠
(2,1,1)

(A) − 𝑠
(1,1,1,1)

(A).

The constant 𝑠
(𝑚−𝑘,1

𝑘
)
(I
𝑝
) is equal to

𝑠
(𝑚−𝑘,1

𝑘
)
(I
𝑝
) =

(𝑚 + 𝑝 − (𝑘 + 1))!

𝑘! (𝑝 − (𝑘 + 1))! (𝑚 − (𝑘 + 1))!𝑚

(20)

(see [18] for a proof of this formula). Therefore,

𝑠
(𝑚−𝑘,1

𝑘
)
(I
𝑝
)

𝑠
(𝑚−𝑘,1

𝑘
)
(I
𝑛
)

=

(𝑚 + 𝑝 − (𝑘 + 1))!

(𝑚 + 𝑛 − (𝑘 + 1))!

⋅

(𝑛 − (𝑘 + 1))!

(𝑝 − (𝑘 + 1))!

. (21)

For every 𝛼 > 0, let us define the following class of functions:

𝐿
2

𝛼
:= {𝑓 : R

+

→ R : measurable such that

∫

∞

0

𝑒
−𝛼𝑡 




𝑓 (𝑡)






2

𝑑𝑡 < ∞} .

(22)
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This is a Hilbert space with respect to the inner product
⟨𝑓, 𝑔⟩

𝛼
= ∫

∞

0
𝑒
−𝛼𝑡
𝑓(𝑡)𝑔(𝑡)𝑑𝑡. Moreover, polynomials are

dense with respect to this norm (see Chapter 10 in [20]). Let
A
𝛼
be the set of continuous functions in 𝐿2

𝛼
, and letA be the

intersection of all theA
𝛼
,

A = ⋂

𝛼>0

A
𝛼
. (23)

Note that the family A is a very rich family of functions.
For instance, all functions that do not grow faster than
polynomials belong to this family. In particular,𝑓(𝑡) = log(1+
𝑡) ∈ A.

Theorem 2. Let A be an 𝑛 × 𝑛 positive definite matrix, and let
{𝑑
1
, . . . , 𝑑

𝑛
} be the set of eigenvalues of A. Assume that all the

eigenvalues are different. Then, for every 𝑓 ∈ A one has that

∫

𝑀
𝑛

Tr (𝑓 (H∗AH)) 𝑑] (H) = 1

det (Δ (D))

𝑛−1

∑

𝑘=0

det (T
𝑘
) ,

(24)

where Δ(D) is the Vandermonde matrix associated with the
matrix D = diag(𝑑

1
, . . . , 𝑑

𝑛
) and T

𝑘
is the matrix constructed

by replacing the (𝑘 + 1) row of Δ(D) ({𝑑𝑛−(𝑘+1)
𝑖

}
𝑛

𝑖=1
) by

1

(𝑛 − (𝑘 + 1))!

{𝑓
𝑘
(𝑑
𝑖
)}
𝑛

𝑖=1
, (25)

where

𝑓
𝑘
(𝑥) := ∫

∞

0

𝑒
−𝑡

(𝑡𝑥)
𝑛−(𝑘+1)

𝑓 (𝑡𝑥) 𝑑𝑡. (26)

Proof. First, we will prove the theorem for polynomials. Let
𝑝 and 𝑞 be two polynomials. It is clear that

Tr ((𝑝 + 𝑞) (H∗AH)) = Tr (𝑝 (H∗AH)) + Tr (𝑞 (H∗AH))
(27)

and (𝑝 + 𝑞)
𝑘
= 𝑝
𝑘
+ 𝑞
𝑘
for every 𝑘 = 0, . . . , 𝑛 − 1. Therefore,

both sides of (24) are linear, and it is enough to prove the
Theorem for the case𝑝(𝑥) = 𝑥𝑚 with𝑚 ≥ 0. UsingTheorem 1
and (19), we see that for every positive definite 𝑛 × 𝑛 matrix
A, the average

∫

𝑀
𝑛

Tr ((H∗AH)𝑚) 𝑑] (H)

=

𝑛−1

∑

𝑘=0

(−1)
𝑘

ℎ (𝜆
𝑘
) 𝑠
𝜆
𝑘

(A) 𝑠
𝜆
𝑘

(I
𝑛
) ,

(28)

where 𝜆
𝑘
is the partition (𝑚−𝑘, 1𝑘). It is well known (see [16])

that for every partition 𝜆 = (𝜆
1
, . . . , 𝜆

𝑛
)

𝑠
𝜆
(I
𝑛
) = ∏

1≤𝑖≤𝑗≤𝑛

𝜆
𝑖
− 𝜆
𝑗
+ 𝑗 − 𝑖

𝑗 − 𝑖

. (29)

Therefore, we can deduce that

𝑠
𝜆
𝑘

(I
𝑛
) =

1

𝑚

⋅

(𝑚 + 𝑛 − (𝑘 + 1))!

𝑘! (𝑛 − (𝑘 + 1))! (𝑚 − (𝑘 + 1))!

. (30)

We can see by direct examination that the hook length of the
partition 𝜆

𝑘
is equal to

ℎ (𝜆
𝑘
) = 𝑘! (𝑚 − (𝑘 + 1))!𝑚. (31)

Hence,

𝑠
𝜆
𝑘

(I
𝑛
) ℎ (𝜆
𝑘
) =

(𝑚 + 𝑛 − (𝑘 + 1))!

(𝑛 − (𝑘 + 1))!

. (32)

Since A is a positive definite matrix, by the spectral theorem
there existsU unitary andD = diag(𝑑

1
, . . . , 𝑑

𝑛
) diagonal such

that A = UDU∗. Note that the 𝑑
𝑖
are the eigenvalues of A. By

definition of the Schur polynomials,

𝑠
𝜆
𝑘

(A) = 𝑠
𝜆
𝑘

(D) =
det (S

𝑘
)

det (Δ (D))
, (33)

where Δ(D) is the Vandermonde matrix associated with the
sequence {𝑑

𝑖
}
𝑛

𝑖=1
and S
𝑘
is a matrix whose 𝑖th column is equal

to

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑑
𝑛−1+𝑚−𝑘

𝑖

𝑑
𝑛−2+1

𝑖

𝑑
𝑛−3+1

𝑖

...

𝑑
𝑛−(𝑘+1)+1

𝑖

𝑑
𝑛−(𝑘+2)

𝑖

...

𝑑
𝑛−(𝑛−1)

𝑖

1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

. (34)

It is easy to see that after 𝑘 transpositions of the rows of the
matrix S

𝑘
, we obtain a new matrix H

𝑘
whose 𝑖th column is

equal to

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑑
𝑛−1

𝑖

𝑑
𝑛−2

𝑖

𝑑
𝑛−3

𝑖

...
𝑑
𝑛−𝑘

𝑖

𝑑
𝑛+𝑚−(𝑘+1)

𝑖

𝑑
𝑛−(𝑘+2)

𝑖

...
𝑑
𝑛−(𝑛−1)

𝑖

1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

. (35)

This matrix is equal to the matrix Δ(D) except for the
(𝑘 + 1) row, {𝑑𝑛−(𝑘+1)

𝑖
}
𝑛

𝑖=1
, which is substituted by the row

{𝑑
𝑛+𝑚−(𝑘+1)

𝑖
}
𝑛

𝑖=1
. Note also that

det (S
𝑘
) = (−1)

𝑘 det (H
𝑘
) . (36)
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Therefore,

∫

𝑀
𝑛

Tr ((H∗AH)𝑚) 𝑑] (H)

=

1

det (Δ (D))

𝑛−1

∑

𝑘=0

(𝑚 + 𝑛 − (𝑘 + 1))!

(𝑛 − (𝑘 + 1))!

⋅ det (H
𝑘
) .

(37)

Using the fact that ∫∞
0
𝑒
−𝑡
𝑡
𝑝
𝑑𝑡 = 𝑝! and the definition of

𝑝
𝑘
(𝑥) for the case 𝑝(𝑥) = 𝑥𝑚, we see that

𝑝
𝑘
(𝑥) := ∫

∞

0

𝑒
−𝑡

(𝑡𝑥)
𝑛+𝑚−(𝑘+1)

𝑑𝑡

= (𝑚 + 𝑛 − (𝑘 + 1))!𝑥
𝑚+𝑛−(𝑘+1)

.

(38)

Therefore, our claim holds and we have proven the result
for all polynomials. Now consider 𝑓 ∈ A, and let 𝛽 be the
maximum eigenvalue; that is, 𝛽 = max{𝑑

1
, . . . , 𝑑

𝑛
}. Define

𝛼 = 1/𝛽. Since 𝑓 ∈ A, then 𝑓 ∈ A
𝛼
, and let {𝑝(𝑟)}

𝑟≥1
be a

sequence of polynomials such that ‖𝑓 − 𝑝(𝑟)‖
𝛼
→ 0. Let T(𝑛)

𝑘

be thematrix constructed by replacing the (𝑘+1) row ofΔ(D)
({𝑑𝑛−(𝑘+1)
𝑖

}
𝑛

𝑖=1
) by

1

(𝑛 − (𝑘 + 1))!

{𝑝
(𝑟)

𝑘
(𝑑
𝑖
)}

𝑛

𝑖=1

, (39)

where

𝑝
(𝑟)

𝑘
(𝑥) := ∫

∞

0

𝑒
−𝑡

(𝑡𝑥)
𝑛−(𝑘+1)

𝑝
(𝑟)

(𝑡𝑥) 𝑑𝑡. (40)

Let T
𝑘
be the matrix constructed by replacing the (𝑘 + 1) row

of Δ(D) by
1

(𝑛 − (𝑘 + 1))!

{𝑓
𝑘
(𝑑
𝑖
)}
𝑛

𝑖=1
, (41)

where

𝑓
𝑘
(𝑥) := ∫

∞

0

𝑒
−𝑡

(𝑡𝑥)
𝑛−(𝑘+1)

𝑓 (𝑡𝑥) 𝑑𝑡. (42)

To prove that (24) holds, it is enough to prove that

det (T(𝑛)
𝑘
) → det (T

𝑘
) (43)

as 𝑛 → ∞ for every 𝑘 = 0, 1, . . . , 𝑛 − 1. For this, it is enough
to prove that 𝑝(𝑟)

𝑘
(𝑑
𝑖
) → 𝑓

𝑘
(𝑑
𝑖
) for every 𝑘 and every 𝑖 =

1, 2, . . . , 𝑛. Note that





𝑓
𝑘
(𝑑
𝑖
) − 𝑝
(𝑟)

𝑘
(𝑑
𝑖
)







= ∫

∞

0

𝑒
−𝑡

(𝑡𝑑
𝑖
)
𝑛−(𝑘+1) 




𝑓 (𝑡𝑑
𝑖
) − 𝑝
(𝑟)

(𝑡𝑑
𝑖
)






𝑑𝑡

≤ 𝑑
𝑛−(𝑘+1)

𝑖
√(2 (𝑛 − (𝑘 + 1)))!

⋅ (∫

∞

0

𝑒
−𝑡



𝑓 (𝑡𝑑
𝑖
) − 𝑝
(𝑟)

(𝑡𝑑𝑖)







2

𝑑𝑡)

1/2

= 𝑑
𝑛−(𝑘+3/2)

𝑖
√(2 (𝑛 − (𝑘 + 1)))!

⋅ (∫

∞

0

𝑒
−𝑡/𝑑
𝑖





𝑓 (𝑡) − 𝑝

(𝑟)

(𝑡)







2

𝑑𝑡)

1/2

,

(44)

where we use Cauchy-Schwartz for the second inequality and
change of variable for the last one. Now, by construction, the
sequence {𝑝(𝑟)} satisfies

lim
𝑛→∞






𝑓 − 𝑝

(𝑟)




2

𝛼

= lim
𝑛→∞

∫

∞

0

𝑒
−𝛼𝑡



𝑓 (𝑡) − 𝑝

(𝑟)

(𝑡)







2

𝑑𝑡 = 0

(45)

and 𝛼 ≤ 𝑑−1
𝑖
. Hence, we see that

lim
𝑛→∞






𝑓
𝑘
(𝑑
𝑖
) − 𝑝
(𝑟)

𝑘
(𝑑
𝑖
)






= 0 (46)

finishes the proof.

Remark 3. We would like to observe that the case when not
all the eigenvalues are different can be treated as previously
by perturbing the original eigenvalues and applying a sub-
sequent limit. We present an instance of this situation in
Corollary 6.

As a consequence, we have a new formula for the capacity
of the MIMO communication channel and for the MMSE
described in the introduction.

Corollary 4. Let A be as in Theorem 2. Then,

∫

𝑀
𝑛

Tr (log (I
𝑛
+H∗AH)) 𝑑] (H)

=

1

det (Δ (D))

𝑛−1

∑

𝑘=0

det (T
𝑘
) ,

(47)

where T
𝑘
is the matrix constructed by replacing the (𝑘 + 1) row

of Δ(D)({𝑑𝑛−(𝑘+1)
𝑖

}
𝑛

𝑖=1
) by

{

1

(𝑛 − (𝑘 + 1))!

∫

∞

0

𝑒
−𝑡

(𝑡𝑑
𝑖
)
𝑛−(𝑘+1) log (1 + 𝑡𝑑

𝑖
) 𝑑𝑡}

𝑛

𝑖=1

.

(48)

Corollary 5. Let A be as in Theorem 2. Then,

∫

𝑀
𝑛

Tr ((I
𝑛
+H∗AH)−1) 𝑑] (H) = 1

det (Δ (D))

𝑛−1

∑

𝑘=0

det (T
𝑘
) ,

(49)

where T
𝑘
is the matrix constructed by replacing the (𝑘 + 1) row

of Δ(D)({𝑑𝑛−(𝑘+1)
𝑖

}
𝑛

𝑖=1
) by

{

1

(𝑛 − (𝑘 + 1))!

∫

∞

0

𝑒
−𝑡

(𝑡𝑑
𝑖
)
𝑛−(𝑘+1)

(1 + 𝑡𝑑
𝑖
)
−1

𝑑𝑡}

𝑛

𝑖=1

. (50)

As an application, let us compute explicitly the two-
dimensional case for the capacity.

Corollary 6. Let A be a Hermitian 2 × 2 matrix with
eigenvalues 𝑑

1
and 𝑑

2
. If 𝑑
1
̸= 𝑑
2
, then

∫

𝑀
2

Tr (log (I
2
+H∗AH)) 𝑑] (H)

=

𝑓
0
(𝑑
1
) − 𝑓
0
(𝑑
2
) + 𝑑
1
𝑓
1
(𝑑
2
) − 𝑑
2
𝑓
1
(𝑑
1
)

𝑑
1
− 𝑑
2

,

(51)
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where 𝑓
0
(𝑑
𝑖
) = ∫

∞

0
𝑒
−𝑡
𝑡𝑑
𝑖
log(1 + 𝑡𝑑

𝑖
) 𝑑𝑡 and 𝑓

1
(𝑑
𝑖
) =

∫

∞

0
𝑒
−𝑡 log(1 + 𝑡𝑑

𝑖
) 𝑑𝑡. If 𝑑

1
= 𝑑
2
= 𝑑, then

∫

𝑀
2

Tr (log (I
2
+ 𝑑 ⋅H∗H)) 𝑑] (H)

= ∫

∞

0

𝑒
−𝑡

[(1 + 𝑡) log (1 + 𝑡𝑑) + 𝑡𝑑 (𝑡 − 1)
1 + 𝑡𝑑

] 𝑑𝑡.

(52)

Proof. The case 𝑑
1
̸= 𝑑
2
is a direct application of Theorem 2

for 𝑛 = 2 and 𝑓(𝑥) = log(1 + 𝑥). For the case 𝑑
1
= 𝑑
2
= 𝑑,

then both the top and the bottom vanish, and we have to take
the limit of 𝑑

1
= 𝑑 + 𝜖 and 𝑑

2
= 𝑑 as 𝜖 → 0. More precisely,

lim
𝜖→0

𝑓
0
(𝑑 + 𝜖) − 𝑓

0
(𝑑)

𝜖

= ∫

∞

0

𝑒
−𝑡

[𝑡 log (1 + 𝑡𝑑) + 𝑡
2
𝑑

1 + 𝑡𝑑

] 𝑑𝑡,

lim
𝜖→0

(𝑑 + 𝜖) 𝑓
1
(𝑑) − 𝑑𝑓

1
(𝑑 + 𝜖)

𝜖

= ∫

∞

0

𝑒
−𝑡

[(1 + 𝑑) log (1 + 𝑡𝑑) − 𝑡𝑑

1 + 𝑡𝑑

] 𝑑𝑡.

(53)

Putting all the pieces together, we finish the proof.

Analogously, we can compute explicitly the moments for
the two-dimensional case.

Theorem 7. Let A be a Hermitian 2 × 2 matrix with eigen-
values 𝑑

1
and 𝑑

2
and𝑚 ≥ 1. If 𝑑

1
̸= 𝑑
2
, then

∫

𝑀
2

Tr ((H∗AH)𝑚) 𝑑] (H)

= 𝑚!((𝑚 + 1)

𝑑
𝑚+1

1
− 𝑑
𝑚+1

2

𝑑
1
− 𝑑
2

+

𝑑
1
𝑑
𝑚

2
− 𝑑
2
𝑑
𝑚

1

𝑑
1
− 𝑑
2

) .

(54)

If 𝑑
1
= 𝑑
2
= 𝑑, then

∫

𝑀
2

Tr ((H∗AH)𝑚) 𝑑] (H) = 𝑚! (𝑚2 + 𝑚 + 2) 𝑑𝑚. (55)

4. Conclusion

Using results on random matrix theory and representation
theory, in particular Schur polynomials, we prove a new
formula for the average of functionals over the Gaussian
ensemble. In particular, this gives another formula for the
capacity of the MIMO Gaussian channel and the MMSE
achieved by a linear receiver.
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