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Vibrations of a nonlinear oscillator with an attached pendulum, excited by movement of
its point of suspension, have been analysed in the paper. The derived differential equa-
tions of motion show that the system is strongly nonlinear and the motions of both sub-
systems, the pendulum and the oscillator, are strongly coupled by inertial terms, leading
to the so-called autoparametric vibrations. It has been found that the motion of the os-
cillator, forced by an external harmonic force, has been dynamically eliminated by the
pendulum oscillations. Influence of a nonlinear spring on the vibration absorption near
the main parametric resonance region has been carried out analytically, whereas the tran-
sition from regular to chaotic vibrations has been presented by using numerical methods.
A transmission force on the foundation for regular and chaotic vibrations is presented as
well.

Copyright © 2006 J. Warminski and K. Kecik. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Vibrations of a pendulum excited by different reasons have been analysed in many papers
in different aspects [1, 8]. Published results show that even the simplest single pendu-
lum structure, forced by an external force or by a moving point of its suspension, can
lead to very interesting and unexpected results [4, 9]. Among the nonlinear systems, we
can mention a special class of models which consists of at least two subsystems. If the
subsystems are coupled by inertial terms [2], then periodic vibrations generated by one
subsystem become an excitation source for the other. This phenomenon performs the so-
called autoparametric vibrations [8]. This specific coupling can lead to energy transfer
between different vibration modes [6], as well as, to resonances possible only in this spe-
cific problem [4]. Moreover, additional types of resonance, internal or combination, are
possible [3] and, for some conditions, the system can transit to chaotic motion [2, 6]. The
vibration absorption problem for a single or multiple pendulums systems is presented in
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Figure 2.1. Physical model of the system.

[7, 10]. Additional effects during transition through the resonance regions can appear if
a source of excitation has limited power [11], a nonideal problem.

The purpose of this paper is to show possible oscillations for realistic data of the
oscillator-pendulum system, taking into account nonlinear stiffness of the supporting
spring. The problem of minimisation of the vibrations near the main parametric reso-
nance for regular and chaotic motions and for different spring characteristics is presented.

2. Model of the vibrating system

The considered mechanical model, presented in Figure 2.1, is composed of two subsys-
tems: a nonlinear oscillator and a pendulum, made up of two masses mp and m2, and
attached in a bearing to the mass m1. The oscillator is forced by an external harmonic
force and is supported by a nonlinear spring having Duffing’s type kx+ k1x3 characteris-
tic, and a linear viscous damper with damping coefficient c.

The motion of the system is represented by two generalised coordinates x and ϕ, for the
oscillator and the pendulum, respectively. Differential equations of motion are derived by
applying Lagrange’s equations of the second kind. Kinetic energy T , potential energy V ,
dissipation function D, and the generalised external force Q of the system, presented in
Figure 2.1, take the forms

T = 1
2
m1ẋ

2 +
1
2
mp

(
ϕ̇2 l

2

4
+ ẋ2 + 2ẋϕ̇

l

2
sinϕ

)
+

1
2
Ipϕ̇

2 +
1
2
m2
(
ϕ̇2l2 + ẋ2 + 2ẋϕ̇l sinϕ

)
,

V = 1
2
kx2 +

1
4
k1x

4− gl cosϕ
(
m2 +

1
2
mp

)
, D = 1

2
cẋ2 +

1
2
cϕϕ̇

2, Q =Q0 sinωt,

(2.1)

where l is the length of the pendulum, cϕ means a coefficient of viscous damping of the
pendulum in its point of suspension, Ip = (1/3)mpl2 is mass moment of inertia of the rod
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having mass mp, m2 is a small mass at the tip of the pendulum, and Q0 and ω are the
amplitude and frequency of an external harmonic force.

Substituting functions (2.1) into Lagrange’s equations of the second kind, we receive
differential equations of motion

(
m1 +m2 +mp

)
ẍ+ cẋ+ kx+ k1x

3 +
(
m2 +

1
2
mp

)(
ϕ̈sinϕ+ ϕ̇2 cosϕ

)
l =Q0 sinωt,

(
m2 +

1
3
mp

)
l2ϕ̈+ cϕϕ̇+

(
m2 +

1
2
mp

)
(ẍ+ g)l sinϕ= 0.

(2.2)

Introducing dimensionless time τ = ω0t, where ω0 =
√
k/(m1 +m2 +mp) is the natural

frequency of the oscillator, X = x/xst, ϕ ≡ ϕ are dimensionless coordinates, and xst =
(m1 + m2 + m3)g/k is a static displacement of the linear oscillator, we express (2.2) in
dimensionless forms

Ẍ +α1Ẋ +X + γX3 + λ1
(
ϕ̈sinϕ+ ϕ̇2 cosϕ

)= q sinϑτ, (2.3)

ϕ̈+α2ϕ̇+ λ2(Ẍ + 1)sinϕ= 0, (2.4)

where dimensionless parameters α1, α2, γ, λ1, λ2, q, ϑ take definitions

α1 = c(
m1 +m2 +mp

)
ω0

, α2 =
cϕ(

m2 + (1/3)mp
)
l2
ω0, γ = k1

k
x2

st,

λ1 =
(
m2 + (1/2)mp

)
l(

m1 +m2 +mp
)
xst

, λ2 =
(
m2 + (1/2)mp

)
xst(

m2 + (1/3)mp
)
l

, q = Q0

kxst
, ϑ= ω

ω0
.

(2.5)

The dimensionless natural frequency of the linear oscillator is reduced to one.

3. Analytical solutions

Differential equations (2.3) and (2.4) are coupled by inertial terms and by nonlinear
terms produced by the pendulum motion (terms multiplied by λ1 and λ2). Moreover,
additional nonlinearity is caused by the spring characteristic, parameter γ. Therefore, to
get analytical solutions, it has been assumed that the swing of the pendulum is not large
and that the spring is not strongly nonlinear. On the basis of these assumptions, the non-
linear functions sinϕ and cosϕ are expanded in Taylor series around the lower steady
state, for ϕ≈ 0. Taking into account the third-order terms we get

sinϕ= ϕ− ϕ3

6
+ 0
(
ϕ4), cosϕ= 1− ϕ2

2
+ 0
(
ϕ4). (3.1)

If the exciting force is harmonic, we can expect that vibrations of the oscillator are har-
monic with the same frequency, then the periodic term produced by (2.3) acts as the
parametric excitation in (2.4). Therefore, we assume that the oscillator vibrates with fre-
quency ϑ, but the frequency of the pendulum equals ϑ/2. It means that pendulum vibrates
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under the principal parametric resonance condition. Thus, the solutions are assumed as

x(τ)= B1(τ)cosϑτ +B2(τ)sinϑτ,

ϕ(τ)= C1(τ)cos
ϑ

2
τ +C2(τ)sin

ϑ

2
τ,

(3.2)

where B1(τ), B2(τ), C1(τ), C2(τ) are slowly changing in time functions that represent the

oscillator’s and pendulum’s amplitudes, which are defined asB =
√
B2

1 +B2
2,C =

√
C2

1 +C2
2,

respectively.
Substituting solutions (3.2) into (2.3), (2.4), taking into account (3.1), and next bal-

ancing the harmonic terms cosϑτ, sinϑτ, cos(ϑ/2)τ, sin(ϑ/2)τ, we get a set of the first-
order approximate differential equations:

− 2ϑḂ1 +α1Ḃ2 + λ1ϑĊ1C1

(
C2

1

6
− 1
)

+ λ1ϑĊ2C2

(
1− C2

2

6

)
−α1ϑB1 +B2

(
1− ϑ2)

+
1
2
λ1ϑ

2C1C2

(
C2

2

12
− 1
)

+
1

24
λ1ϑ

2C3
1C2 +

3
4
γB2

(
B2

1 +B2
2

)− q = 0,

α1Ḃ1 + 2ϑḂ2 + λ1ϑĊ1C2

(
1− C2

1

4
− C2

2

12

)
+ λ1ϑĊ2C1

(
1− C2

1

12
− C2

2

4

)
+α1ϑB2 +B1

(
1− ϑ2)

− 1
4
λ1ϑ

2(C2
1 −C2

2

)
+

1
48

λ1ϑ
2(C4

1 −C4
2

)
+

3
4
γB1

(
B2

1 +B2
2

)= 0,

λ2ϑḂ1C1

(
C2

1

12
+
C2

2

4
− 1
)

+ λ2ϑḂ2C2

(
C2

2

6
− 1
)
− ϑĊ1 +α2Ċ2 +

1
2
λ2ϑ

2B1C2

(
1− C2

2

6

)

+
1
2
λ2ϑ

2B2C1

(
C2

1

12
+
C2

2

4
− 1
)
− 1

2
α2ϑC1 +

(
λ2− ϑ2

4

)
C2− 1

8
λ2C2

(
C2

1 +C2
2

)= 0,

λ2ϑḂ1C2

(
C2

1

4
+
C2

2

12
− 1
)

+ λ2ϑḂ2C1

(
1− C2

1

6

)
+α2Ċ1 + ϑĊ2 +

1
2
λ2ϑ

2B1C1

(
C2

1

6
− 1
)

+
1
2
λ2ϑ

2B2C2

(
C2

1

4
+
C2

2

12
− 1
)

+
1
2
α2ϑC2 +

(
λ2− ϑ2

4

)
C1− 1

8
λ2C1

(
C2

1 +C2
2

)= 0.

(3.3)

The derivatives of the second order and terms having derivatives in a power higher than
the one in (3.3) are neglected.

For a steady state, the first-order derivative of the amplitudes is equal to zero

Ḃ1 = 0, Ḃ2 = 0, Ċ1 = 0, Ċ2 = 0. (3.4)

Moreover, according to [7], for small oscillations of the pendulum, we can assume that
C2/12≈ 0, C2/6≈ 0. Then we receive four algebraic equations with unknown amplitudes



J. Warminski and K. Kecik 5

B1, B2, C1, C2,

−α1ϑB1 +B2
(
1− ϑ2)+

3
4
γB2

(
B2

1 +B2
2

)− 1
2
λ1ϑ

2C1C2− q = 0,

α1ϑB2 +B1
(
1− ϑ2)+

3
4
γB1

(
B2

1 +B2
2

)− 1
4
λ1ϑ

2(C2
1 −C2

2

)= 0,

−1
2
α2ϑC1 +C2

(
λ2− 1

4
ϑ2
)
− 1

2
λ2ϑ

2(B2C1−B1C2
)− 1

8
λ2C2

(
C2

1 +C2
2 −B2C1C2ϑ

2)= 0,

1
2
α2ϑC2 +C1

(
λ2− 1

4
ϑ2
)
− 1

2
λ2ϑ

2(B1C1 +B2C2
)− 1

8
λ2C1

(
C2

1 +C2
2 −B2C1C2ϑ

2)= 0.

(3.5)

The set of the above algebraic equations may have the following solutions:
(a) trivial B1 = B2 = C1 = C2 = 0, only if q = 0;
(b) semitrivial B1 �= 0, B2 �= 0, C1 = C2 = 0, oscillator vibrates, pendulum does not

swing;
(c) semitrivial B1 = 0, B2 = 0, C1 �= 0, C2 �= 0, oscillator does not vibrate, pendulum

swings;
(d) nontrivial B1 �= 0, B2 �= 0, C1 �= 0, C2 �= 0, both oscillator and pendulum vibrate.

The semitrivial and nontrivial solutions have been solved numerically from the set of
nonlinear algebraic equations (3.5).

If we assume that damping of the pendulum is equal to zero α2 = 0, we can find a
condition of the full elimination of the oscillator vibrations. Putting B1 = 0, B2 = 0, and
α2 = 0 in (3.5), in the first-order approximation, we get

ϑ∗ =
√√√√2λ2 + λ2

√
4− 2q

λ1λ2
, C∗ = √2

√√√√2−
√

4− 2q
λ1λ2

, (3.6)

where ϑ∗ is the frequency of the full vibration absorption of the oscillator and C∗ is
the amplitude of the pendulum. This state can be achieved only if the damping of the
pendulum equals zero. We can notice that nonlinear characteristic of the spring does not
influence this condition.

If the pendulum does not swing, which corresponds to semitrivial solutions, case (b),
we can determine a resonance curve of the nonlinear one degree of freedom system with
joined masses m = m1 + m2 + mp. Putting C1 = 0 and C2 = 0 in (3.5), after rearrange-
ments, we get the resonance curve

9
16

γ2B6 +
3
2
γ
(
1− ϑ2)B4 +

[(
1− ϑ2)2

+α2
1ϑ

2
]
B2− q2 = 0. (3.7)

If γ = 0, then

B = q√(
1− ϑ2

)2
+α2

1ϑ2
(3.8)

is the amplitude of the linear oscillator.
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4. Solutions stability

Analysis of stability of the semitrivial and nontrivial solutions is carried out by using
the approximate equations (3.3). Determining derivatives Ḃ1, Ḃ2, Ċ1, Ċ2 the so-called
amplitude modulation equations have been found:

Ḃ1 = f1
(
B1,B2,C1,C2

)
, Ḃ2 = f2

(
B1,B2,C1,C2

)
,

Ċ1 = f3
(
B1,B2,C1,C2

)
, Ċ2 = f4

(
B1,B2,C1,C2

)
.

(4.1)

Functions f1(B1,B2,C1,C2), f2(B1,B2,C1,C2), f3(B1,B2,C1,C2), f4(B1,B2,C1,C2) are ex-
pressed as

f1 =
WḂ1

W
, f2 =

WḂ2

W
, f3 =

WĊ1

W
, f4 =

WĊ2

W
, (4.2)

where

W =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣
, WḂ1

=

∣∣∣∣∣∣∣∣∣∣∣

a0 a12 a13 a14

b0 a22 a23 a24

c0 a32 a33 a34

d0 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣
,

WḂ2
=

∣∣∣∣∣∣∣∣∣∣∣

a11 a0 a13 a14

a21 b0 a23 a24

a31 c0 a33 a34

a41 d0 a43 a44

∣∣∣∣∣∣∣∣∣∣∣
, WĊ1

=

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a0 a14

a21 a22 b0 a24

a31 a32 c0 a34

a41 a42 d0 a44

∣∣∣∣∣∣∣∣∣∣∣
,

WĊ2
=

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a0

a21 a22 a23 b0

a31 a32 a33 c0

a41 a42 a43 d0

∣∣∣∣∣∣∣∣∣∣∣
.

(4.3)

Coefficients applied in the above determinants are defined as

a11 =−2ϑ, a12 = α1, a13 =−λ1ϑC1, a14 = λ1ϑC2,

a21 = α1, a22 = 2ϑ, a23 = λ1ϑC2

(
1− C2

1

4

)
, a24 = λ1ϑC1

(
1− C2

2

4

)
,

a31 =−λ2ϑC1

(
1− C2

2

4

)
, a32 =−λ2ϑC2, a33 =−ϑ, a34 = α2,

a41 =−λ2ϑC2

(
1− C2

1

4

)
, a42 = λ2ϑC1, a43 = α2, a44 = ϑ,

a0 = α1ϑB1−B2
(
1− ϑ2)− 3

4
γB2

(
B2

1 +B2
2

)
+

1
2
λ1ϑ

2C1C2 + q,
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b0 =−α1ϑB2−B1
(
1− ϑ2)− 3

4
γB1

(
B2

1 +B2
2

)
+

1
4
λ1ϑ

2(C2
1 −C2

2

)
,

c0 = 1
2
α2ϑC2−C1

(
λ2− 1

4
ϑ2
)
− 1

2
λ2ϑ

2(B1C1 +B2C2
)− 1

8
λ2C1

(
C2

1 +C2
2 −B2C1C2ϑ

2),

d0 =−1
2
α2ϑC2−C1

(
λ2− 1

4
ϑ2
)

+
1
2
λ2ϑ

2(B2C1−B1C2
)

+
1
8
λ2C1

(
C2

1 +C2
2 −B2C1C2ϑ

2).
(4.4)

Perturbing the analysed solutions, B1 + δB1, B2 + δB2, C1 + δC1, C2 + δC2, next substitut-
ing them to (4.1), then subtracting from unperturbed equations, and taking into account
linear part of their expansions in power series, we get a set of linear differential equa-
tions in variations δḂ1, δḂ2, δĊ1, δĊ2. Stability of the system solutions depends on the
eigenvalues of the Jacobian

[J]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂B1

∂ f1
∂B2

∂ f1
∂C1

∂ f1
∂C2

∂ f2
∂B1

∂ f2
∂B2

∂ f2
∂C1

∂ f2
∂C2

∂ f3
∂B1

∂ f3
∂B2

∂ f3
∂C1

∂ f3
∂C2

∂ f4
∂B1

∂ f4
∂B2

∂ f4
∂C1

∂ f4
∂C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

whose elements denote the partial derivatives calculated adequately for semi- or nontriv-
ial solutions.

5. Exemplary results

Numerical analysis of the system has been carried out on the basis of data taken from the
realistic system, for which the dimensionless parameters take values:

α1 = 0.49, α2 = 0.015, λ1 = 1.39, λ2 = 0.17, q = 0.1. (5.1)

The vibration amplitudes of the oscillator and the pendulum have been found by solving
(3.5).

Analytical results have been verified by a direct numerical integration of (2.3) and
(2.4). Numerical procedures, based on fourth-order Runge-Kutta method, have been pre-
pared in Fortran language and in Matlab-Simulink package, taking into account the er-
ror control. The bifurcation diagrams, basins of attraction, and the Laypunov exponents
(presented in Sections 5 and 6) have been obtained by methods and procedures pub-
lished in [5]. Numerical simulations have been done on Unix Digital Alpha Station by
using packages submitted in [5] by Hunt and Kostelich.

Amplitudes versus excitation frequency ϑ of the oscillator and the pendulum, obtained
for the linear spring γ = 0 and for the pendulum without damping α2 = 0, are presented
in Figures 5.1(a) and 5.1(b), respectively. Solid lines denote stable solutions while dashed
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Figure 5.1. Amplitude versus excitation frequency for γ = 0, α2 = 0; (a) oscillator, (b) pendulum.

ones unstable, and black points present direct numerical simulation results. In Figure 5.2,
for comparison, the bifurcation diagram has been plotted for the same parameters.

The sampling frequency in this diagram is equal to the excitation frequency and initial
conditions have been fixed X = 0, Ẋ = 0, ϕ = 0.1, ϕ̇ = 0. It means that for each point,
in the bifurcation diagram, the pendulum has been disturbed from the lower steady
state. Comparing Figures 5.1 and 5.2 we can find that analytical results are correct in
limited frequency range ϑ ∈ (0.792,0.852). The upper branch of the resonance curve of
the pendulum obtained analytically is stable in a very wide area (Figure 5.1(b)). However,
numerical simulation (NS) results, marked by dots in Figure 5.1, and numerical results
presented in Figure 5.2 are confirmed only in a narrow resonance region where nontriv-
ial solutions, corresponding to both oscillator and the pendulum vibrations, may exist.
This solution is presented in bifurcation diagram by single solid lines for the oscillator
(Figure 5.2(a)) and by two lines for the pendulum (Figure 5.2(b)).

The diagrams confirm the assumption that the oscillator vibrates harmonically with
single frequency ϑ, whilst the pendulum oscillates subharmonically with ϑ/2 frequency. In
this resonance area, according to (3.6), the absorption effect takes place about frequency
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Figure 5.2. Bifurcation diagrams of the oscillator and the pendulum versus excitation frequency for
γ = 0, α2 = 0; (a) displacement, (b) angular velocity.

ϑ∗ = 0.8, for which vibrations of the oscillator are close to zero. Then, the pendulum
vibrates with amplitude C∗ = 0.67. Outside the resonance region, the system vibrates
quasiperiodically (black areas on bifurcation diagrams). This situation takes place due to
lack of pendulum damping, which leads to two, out of four, roots of the Jacobian (4.5),
having only imaginary parts. Therefore the pendulum oscillates permanently about its
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0.7 0.9

ϑ

−0.2

0.2
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0.7 0.9

ϑ

−0.2

0.2

ϕ̇

(b)

Figure 5.3. Bifurcation diagrams of displacement of the (a) oscillator and (b) angular velocity of the
pendulum versus excitation frequency, for q = 0.1, α2 = 0.01, and initial conditions X = 0, Ẋ = 0,
ϕ= 0.1, ϕ̇= 0.

lower position. However, in practical applications, the damping of the pendulum exists
and therefore parameter α2 has to be put greater than zero.

In Figure 5.3 bifurcation diagrams are plotted for realistic data for which either the
pendulum damping or nonlinearity of the spring is assumed as α2 = 0.01, γ = 0.00046.
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Figure 5.4. Amplitude versus excitation frequency for γ = 0.00046, α2 = 0.01; (a) oscillator, (b) pen-
dulum.

Due to existing damping, the quasiperiodic motion disappears. Moreover, solutions ob-
tained analytically correspond to the numerical simulation. The analytical results for
these parameters are presented in Figure 5.4. Out of resonance, all roots of the Jacobian
(4.5) have negative real parts, it means that the semitrivial solutions B �= 0, C = 0 are sta-
ble and oscillations of the pendulum disappear. The set, oscillator-pendulum, vibrates as
a one-degree-of-freedom system and the absorption effect does not take place, the reso-
nance curve is described by (3.7).

At the ends of the resonance area, nontrivial as well as semitrivial solutions are possi-
ble, depending on initial conditions. Basins of attraction of the pendulum in this region,
for ϑ= 0.8, are presented in Figure 5.5. Attractors no. 1 represent nontrivial solutions and
their basins are marked by a light grey colour.

Darker narrow areas correspond to semitrivial solution (attractor no. 2). In these areas
where two stable solutions are possible, the nontrivial solutions have much wider basins
of attractions. Probability that pendulum will swing is much higher.



12 Autoparametric vibrations

−3.14 3.14

ϕ

−1

1

ϕ̇ 1

2

Figure 5.5. Basins of attractions of the pendulum for ϑ= 0.8.

The graphs in Figure 5.4 present the influence of a very small positive value of nonlin-
ear term of the spring (γ = 0.00046) on the vibration amplitude. In spite of the fact that
a stiff spring should have a slope oriented in the right-hand side (hard characteristic),
the slope of the resonance curve is still oriented in the left-hand side, like for the system
with features of the soft characteristic. It means that “soft” nonlinear terms performed
by the pendulum dominate. Similar situation has been observed for negative stiffness of
the spring γ =−0.0046 (“soft” spring). This value does not change motion of the system
radically. Additional softening due to “soft” spring existence has been negligible.

To present the influence of the “hard” and “soft” characteristics of the spring on the
main parametric resonance area, the resonance curves have been calculated for the new
set of parameters

α1 = 0.49, α2 = 0.015, λ1 = 1.8, λ2 = 0.3, q = 0.5 (5.2)

and γ = 0 for linear, γ = 0.5 for stiff, and γ =−0.5 for soft springs.
Comparing vibration amplitudes of the oscillator having “soft” or “hard” springs with

linear one (Figure 5.6(a)), we can notice that minimum of the amplitude (absorption
effect) occurs almost at the same place. However, for decreasing frequency below ϑ= 0.9,
the difference increases. Amplitudes of the soft spring oscillator are higher than the linear
or stiff spring system. According to the pendulum motion (Figure 5.6(b)), the soft spring
reduces the resonance region, which is not wanted from the absorption point of view, for
elimination of the oscillator vibrations the motion of the pendulum is required.

6. Transition to chaos

The analytical approach, presented in Section 3, can be applied only for limited frequency
range, around the main parametric resonance. The semi- and nontrivial solutions ob-
tained numerically confirm the absorption effect, which takes place around frequency
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Figure 5.6. Amplitude versus excitation frequency for various nonlinear springs, γ = 0, γ = 0.5, γ =
−0.5, α2 = 0.015; (a) oscillator, (b) pendulum.

ϑ= 0.8 and for small oscillations of the pendulum, which is in accordance with analytical
results.

From practical point of view, however, dynamics of the system should be checked when
the excitation frequency changes out of the main parametric resonance region. Therefore
the influence of two parameters, the amplitude q and the frequency ϑ of the excitation,
has been tested in ranges q ∈ 〈0.1,10〉, ϑ∈ 〈0,10〉.

The behaviour of the model for small excitation amplitude (q = 0.1, α2 = 0) is pre-
sented on bifurcation diagrams in Figure 6.1. Observing the oscillator motion, we can
notice local decrease of the amplitude near ϑ = 0.8, and next the increase close to the
frequency ϑ≈ 1. The oscillations of the pendulum are rather small and only in the neigh-
bourhood of the resonance area a very narrow harmonic motion is possible (Figure
6.1(b)). The behaviour is similar for different initial conditions of the system.

The increase of the external excitation amplitude changes this situation radically. Keep-
ing the same initial conditions X = 0, Ẋ = 0, ϕ= 0.1, ϕ̇= 0, and constant excitation fre-
quency ϑ= 1, we investigate the influence of the amplitude q (Figure 6.2). Near value of
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Figure 6.1. Bifurcation diagrams of displacement of the (a) oscillator and (b) angular velocity of the
pendulum versus excitation frequency, for q = 0.1, α2 = 0, and initial conditionsX = 0, Ẋ = 0, ϕ= 0.1,
ϕ̇= 0.

q over 1.25, after the period doubling bifurcation, the system transits to chaotic motion if
q > 1.4, it goes back to periodicity and only if q is over 5, it transits to a very wide region
of chaotic vibrations.
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Figure 6.2. Bifurcation diagrams of displacement of the (a) oscillator and (b) the Lyapunov exponents
diagram versus q parameter, ϑ= 1 and initial conditions X = 0, Ẋ = 0, ϕ= 0.1, ϕ̇= 0.

The nature of motion is confirmed in Figure 6.2(b) where the Lyapunov exponent
diagram emphasises both chaotic and regular oscillations (two intervals with positive
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Figure 6.3. Chaotic attractors on Poincaré maps, for ϑ= 1, γ = 4.6× 10−4, and (a) q = 1.3, (b) q = 10.

value of the maximal Lyapunov exponent). Chaotic attractors for the first and the sec-
ond chaotic regions are presented on Poincaré sections in Figures 6.3(a) and 6.3(b), re-
spectively. In both cases chaotic motion is composed of rotation an oscillations of the
pendulum.
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Figure 6.4. Time histories of the force transmitted on the ground, ϑ= 1, γ = 4.6× 10−4, initial con-
ditions: X = 0, Ẋ = 0, ϕ= 0.1, ϕ̇= 0, and (a) q = 1.3, (b) q = 10.

The chaotic dynamics result in irregular force transmitted on the foundation defined
as F(τ) = α1ẋ + x + γx3. Time history of the force in Figure 6.4(a) is obtained for exci-
tation of the system q = 1.3 laying in the first chaotic region, while in Figure 6.4(b) the
external excitation is relatively high q = 10 and lays in the second chaotic region. In such a
case the nonlinear stiff spring reduces the vibration amplitudes and the force transmitted
on the foundation.
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7. Conclusions

Influence of the nonlinear spring on the autoparametric system in the neighbourhood of
the main parametric resonance has been investigated. It has been shown that the vibra-
tion absorption effect may exist inside the resonance area, and that the differences be-
tween linear, soft, and stiff supporting springs are not significant. The results have been
found by using analytical the harmonic balance method and next verified numerically.
The approximate analytically solutions are in good agreement only if oscillations of the
pendulum are damped and are small. From practical point of view, the stiff characteristic
of the spring reduces vibration amplitudes if the vibration frequency is detuned from the
absorption point. This type of spring is more beneficial than linear or soft springs.

The numerical results presented in this paper show that it is possible to get regular
and chaotic motions for the set of realistic data. Chaotic motion can be got by the in-
crease of the amplitude of external excitation. Transition to chaos is preceded by the
period doubling bifurcation, and the escape from chaos has rapid nature, preceded by
the crisis bifurcation. The first narrow chaotic region appears for relatively small ampli-
tude q, while the second one occurs for big value of parameter q. The second area is very
wide. It leads to transmission of irregular motion on foundation which can change the
vibration absorption criterion. Nonlinear stiff spring reduces vibration amplitudes and
in consequence the force acting on the ground. In the next step, the results will be ver-
ified experimentally and an appropriate criterion to minimise the force transmitted on
the environment under regular and chaotic motion conditions will be determined.
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