
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 174546, 14 pages
doi:10.1155/2009/174546

Research Article
Diffusive Synchronization of Hyperchaotic
Lorenz Systems

Ruy Barboza

Department of Electrical Engineering, School of Engineering at São Carlos, University of São Paulo,
13566-590 São Carlos, SP, Brazil

Correspondence should be addressed to Ruy Barboza, rbarboza@sel.eesc.usp.br

Received 6 January 2009; Accepted 2 March 2009
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1. Introduction

Coupled oscillators are currently studied in physics, chemistry, biology, neural networks,
and other fields. A large number of coupled oscillators form a complex system for which
the investigation of coherence and synchronization is important and in the last decade
the discovery that chaotic systems can synchronize added interest to this topic [1–4]. An
approach for contributing to the investigation of large networks is studying the properties
of a small number of coupled oscillators—this is the approach used in the present work.
Chaos synchronization is also of interest in secure communication systems. For such
application, hyperchaos has drawn attention for providing more complex waveforms than
simply chaotic systems, thus improving the masking process. This is because hyperchaos
is characterized by at least two positive Lyapunov exponents, while simple chaos shows a
single one. Related to this subject is the question on how many variables are necessary to
be coupled in order to obtain synchronization. Although chaotic systems can synchronize
by a single variable coupling, it was for some time believed that in the case of hyperchaos
the minimum number of coupling variables had to be equal to the number of positive
Lyapunov exponents [5]. It was later demonstrated in [6] that it is not true, and some
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hyperchaotic systems can achieve synchronization by a single variable. Other systems,
however, for example the Rössler equations for hyperchaos, are unable to synchronize by
only one of its variables [6, 7]. Another problem refers to synchronization under parameter
mismatch, since usually perfect synchronization is achieved only if the coupling systems
are identical. In this work we are concerned with the question of whether a hyperchaotic
Lorenz system can synchronize and with which variables. The effect of mismatch is also
observed. We present some results from numerical and laboratory experiments on an eight-
dimensional dynamical system obtained by diffusively coupling two hyperchaotic Lorenz
systems.

2. Equations and Numerical Simulations

2.1. Diffusive Coupling

Consider the four-dimensional system dx/dt = f(x), where x = [x, y, z,w]t. Unidirectional
diffusive coupling involving two such systems is obtained by using the system dx1/dt =
f1(x1) to drive the response system dx2/dt = f2(x2) + K(x1 − x2). In this work we consider
K a diagonal matrix, where each element kii is the strength of the coupling related to the
corresponding variable. We also consider f1(x) = f2(x) = f(x), and each entry k11, k22, k33, or
k44 is either zero or equal to a positive constant k. For example, the case k11 = 0, k22 = k, k33 =
0, and k44 = k means simultaneous y-y and w-w coupling. The two coupled systems form
a compound eight-dimensional system. If the systems synchronize, the motion must remain
on the hyperplane x1 = x2. For small (x1 − x2) we have f(x1) − f(x2) ≈ (∂f(x1)/∂x1) · (x1 − x2),
so we can write the variational equation

dx⊥
dt

= A
(
x1
)

x⊥, (2.1)

where A = ∂ f(x1)/∂x1 − K and x⊥ = (x1 − x2). In the case of bidirectional diffusive coupling
we have dx1/dt = f(x1) + K(x2 − x1) and dx2/dt = f(x2) + K(x1 − x2), therefore (2.1)
also applies, now with A = ∂ f(x1)/∂x1 − 2K. We use (2.1) as the locally linear dynamical
system associated to a fiducial trajectory [8] of the coupled system to calculate the transverse
Lyapunov exponents [2, 3, 7, 9], so called because the perturbation x⊥ is transverse to
the synchronization hyperplane. The coupled system will remain stably synchronized if all
transverse Lyapunov exponents (TLEs) are negative.

2.2. Complete Replacement

If the drive system 1 transmits the scalar component x1 and the corresponding variable
x2 of the response system 2 is replaced by the transmitted one x1, this is called complete
replacement [4]. As explained in [4], unidirectional diffusive coupling and complete
replacements are related, since at very high values of k the variable x1 slaves x2. Therefore,
in our numerical and experimental investigations, complete replacement of one or more
variables corresponds to k → ∞.
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2.3. Coupled Hyperchaotic Lorenz Systems

The preceding coupling scheme will now be applied to systems described by the following
Lorenz equations linearly extended to four dimensions:

dx

dt
= σ(y − x),

dy

dt
= x(r − z) − y +w,

dz

dt
= xy − bz,

dw

dt
= −γx,

(2.2)

which shows hyperchaos and was theoretically analyzed in [10]. In the case of unidirectional
coupling the eight-dimensional system is given by

dx1

dt
= σ

(
y1 − x1

)
,

dy1

dt
= x1

(
r − z1

)
− y1 +w1,

dz1

dt
= x1y1 − bz1,

dw1

dt
= −γx1,

dx2

dt
= σ

(
y2 − x2

)
+ k11

(
x1 − x2

)
,

dy2

dt
= x2

(
r − z2

)
− y2 +w2 + k22

(
y1 − y2

)
,

dz2

dt
= x2y2 − bz2 + k33

(
z1 − z2

)
,

dw2

dt
= −γx2 + k44

(
w1 −w2

)
.

(2.3)

For this system the matrix A is

A =

⎡

⎢⎢⎢⎢⎢
⎣

−σ − k11 σ 0 0

z1 − r −1 − k22 −x1 1

y1 x1 −b − k33 0

−γ 0 0 −k44

⎤

⎥⎥⎥⎥⎥
⎦

(2.4)

for unidirectional coupling. In the case of bidirectional coupling, the only modification is
replacing kii by 2kii along the diagonal. The synchronizing properties of system (2.2) will
now be numerically investigated by calculating the TLE of (2.3) as a function of the coupling
strength k. Parameter mismatch is also examined. In the following, only unidirectional
coupling is considered.

2.3.1. Parameters σ = 10, b = 8/3, r = 30, γ = 10

We first illustrate the synchronizing properties of (2.2) for the above parameter values. The
values σ = 10 and b = 8/3 are the classical, or most popular, used in studies of the original
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Figure 1: Transversal Lyapunov exponents (TLEs) for σ = 10, b = 8/3, r = 30, γ = 10.

Lorenz 3D system. For the hyperchaotic Lorenz 4D system the extra parameter γ = 10
is included. In Figure 1, the two largest TLE for single-variable coupling are plotted as a
function of k, for r = 30. The synchronization thresholds are k = 8.1 and k = 1.8 for
x-x and y-y couplings, respectively. The systems will never get synchronized if w alone is
the coupling variable. On the other hand, z-z coupling provides a small window of stable
synchronization.

2.3.2. Parameters σ = 4, b = 0.3, r = 30, γ = 1.6

The above values of the parameters are of interest in this work because small values of σ
and b are easier to realize with practical component values in the circuit model presented in
Section 3. (At this point it is worth remembering the observation by Sparrow [11] that small b
leads to very complex behavior of the Lorenz equations.) Therefore, the system properties for
such small parameter values will be examined with more detail in the following. In Figure 2,
the Lyapunov spectrum for these parameter values is plotted as a function of r, showing
a broad range of hyperchaotic behavior. Also shown is the one-dimensional bifurcation
diagram along the same r range.
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Figure 2: (a) Lyapunov spectrum Λk(r); (b) bifurcation diagram obtained from the crossings through the
Poincaré surface dz/dt = 0, corresponding to maxima of z(t). Parameter values: σ = 4, b = 0.3, r = 30, γ =
1.6.

The two largest TLEs for single-variable coupling, plotted as a function of k, are
shown in Figures 3(a)–3(c). The synchronization thresholds are k = 3.2 and k = 1.3 for
x-x and y-y couplings, respectively. For z-z coupling, the system shows a window of stable
synchronization ranging from k = 0.7 to k = 9.0. The system does not synchronize in the case
of w-w coupling. However, the nonsynchronizing variables z and w, when working together
in the z-z plus w-w double-coupling scheme, provide stable synchronization above k = 0.34.
In the case of all-variable coupling, stable synchronization is achieved above k = 0.21.

2.3.3. Parameter Mismatch

A qualitative method of investigating the hyperchaos synchronization phenomena is by
observing the projections of the eight-dimensional attractor onto the planes (x1, x2), (y1, y2),
(z1, z2), and (w1, w2). In these planes the straight lines x1 = x2, y1 = y2, z1 = z2, and w1 = w2

correspond to the synchronization hyperplane. In the following we show only the (z1, z2)
plane, since the components z1 and z2 seem to be the most difficult to synchronize. For all
plots we used x-x coupling. Figure 4 refers to identical parameters (i.e., without mismatch),
illustrating the inability of the systems to synchronize if k is less than the threshold value
obtained from Figure 3(a), while perfect synchronization is achieved above the threshold:
the same alignment along the diagonal is observed in all the four projection planes.

In Figures 5 and 6, we observe the effect of mismatch on synchronization (for x-x
coupling). In these examples we applied the same mismatch to all parameters, that is, Δσ/σ =
Δb/b = Δr/r = Δγ/γ . In Figure 5, where k = 4.0, we see that for k values just above the
threshold, some good degree of synchronization is obtained for 1% mismatch; however, for
5% large deviations from the diagonal are observed. Figure 6 shows the effect of mismatch
for 1% and 5% in the case of k = 10.
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Figure 3: Transversal Lyapunov exponents (TLEs) for σ = 4, b = 0.3, r = 30, γ = 1.6. (a) and (b) One-
variable coupling; (c) two- and four-variable couplings.
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Figure 4: Synchronization for identical parameters: k below and above the threshold k = 3.2 (σ = 4, b =
0.3, r = 30, γ = 1.6).
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Figure 5: Effect of mismatch on synchronization for k = 4 (σ = 4, b = 0.3, r = 30, γ = 1.6).

3. Experiments with a Simple Electrical Circuit

3.1. Circuit Description and Equations

The Lorenz system, being one of the most important paradigms of chaos, has inspired many
attempts to make a physical system representing its equations, mainly in the form of an
electrical circuit. Some authors have proposed replacing the cross-products of variables by
discontinuities (switching circuits) as in [12, 13], or by continuous piecewise linear resistors
[14], thus resulting in very simple and practical circuits, although not truly described by
the Lorenz equations. More accurate realization, though more complex, is by the analog
computer approach using smooth cross-product functions, as in [15], which employs 10
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Figure 6: Effect of mismatch on synchronization for k = 10 (σ = 4, b = 0.3, r = 30, γ = 1.6).

integrated circuits (2 multipliers and 8 op amps) and 23 passive components, therefore
a total of 33 circuit components for the Lorenz 3D circuit. In the present work we are
proposing a simpler easy-to-build circuit with smooth functions, aiming at encouraging more
experimental approaches on hyperchaos investigation, even by those researchers not trained
in electronics. As stated in [3], to facilitate experiments with coupled chaotic oscillators the
circuit is required to exhibit chaos in a large range of parameters in order that the coupling
will not destroy the attractor, and it is needed to be simple enough so that several practically
identical oscillators can be easily constructed. The simplest possible smooth Lorenz 3D circuit
appeared in [16], using only 2 integrated circuits (2 multipliers) and 7 passive components
(a total of 9 components, thus about 70% smaller than the circuit by Cuomo et al. in [15]),
as shown in Figure 7(a). The good performance of this circuit is illustrated in Figure 7(b),
which shows the experimental attractor and examples of single-cusp and double-cusp Lorenz
maps (displayed in-line by the circuit, via a Poincaré-section circuitry). In the present work
we extended to 4D that simplest circuit by adding 2 op amps and 6 passive components,
obtaining the hyperchaotic Lorenz circuit shown in Figure 8(a), redrawn in Figure 8(b) using
circuit theoretic symbols. The following equations describe the circuit:

C1
dv1

dt
= i − v1

R1
,

L
di

dt
= −v1v2

10
− R2i + v3,

C2
dv2

dt
=
R2iv1

10R4
− v2 + E

R3
,

C3
dv3

dt
= − v1

R1
,

(3.1)

where we used the multipliers transfer function W = 0.1(X1 − X2)(Y1 − Y2) + Z, where
Z = v1 + v3 on the input of the first multiplier (on the left side in Figure 8(a)), and Z = v2 on
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Figure 7: (a) Simplest circuit for the 3D standard Lorenz equations. (b) Experimental results from the
circuit of Figure 7(a): butterfly attractor on the plane v1 × v2; Lorenz maps showing single and double
cusps v2(tn) × v2(tn+1). The straight line in each picture is given by v2(tn+1) = v2(tn). L = 10 mH, C1 =
22 nF, C2 = 1 nF, R1 = 1.5 kΩ, R2 = 100Ω, R3 = 160 kΩ, R4 = 1 kΩ.

the input of the second one. In deriving (3.1) we assumed R8 = 2R9 and R5 = R6 = R7 � R1.
Now, by defining the new variables and parameters

x =
v1

10

√
L

R1R4C2
, y =

R1i

10

√
L

R1R4C2
, z =

v2

10
R1

R2
+ r,

w =
v3

10
R1

R2

√
L

R1R4C2
, σ =

L

R1R2C1
, b =

L

R2R3C2
,

r =
R1E

10R2
, γ =

L

R2
2C3

,

(3.2)

we obtain (2.2). Therefore, the proposed circuit realizes, exactly, the Lorenz hyperchaotic
system given by (2.2), obviously with some usual practical restrictions imposed by parasitic
effects and finite bandwidth, slew-rate, excursion range, and so forth.
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Figure 8: (a) Simplest circuit for the 4D hyperchaotic Lorenz system of (2.2). (b) Equivalent Lorenz
hyperchaotic circuit.

3.2. Some Experimental Results

For our experiments, two circuits following the schematic diagram of Figure 8(a) were
constructed, each one using two AD633 multipliers and two LM351 op amps, all powered
with ±15 V, and the following passive components: L = 11 mH, C1 = 22 nF, C2 = 1 nF,
C3 = 1μF, R1 = 1.5 kΩ, R2 = 80Ω, R3 = 470 kΩ, R4 = 1 kΩ, R5 = R6 = R7 = 100 kΩ, R8 = 2 kΩ,
R9 = 1 kΩ. Using (3.2), the corresponding parameters of (2.2) are σ = 4.2, b = 0.3, γ = 1.7.
We worked with E = 15 V, giving r = 28. (Note: we verified that with an independent DC
power source it is possible to use E values up to 30 V, or r = 56, without waveform clipping.)
The six projections of the experimental hyperchaotic attractor are shown in Figure 9(b);
the calculated attractor is shown in Figure 9(a). For the experiments on synchronization,
bidirectional diffusive coupling can be obtained simply by connecting a resistor R linking the
capacitor C1 of the first circuit with the capacitor C′1 of the second circuit, since in this work
we have tested only x-x, or v1-v1, coupling. For unidirectional coupling a voltage follower is
added in series with the resistor R, as sketched in Figure 10. The coupling strength is given
by the relation k = σR1/R, as can be easily verified by adding the term (v′1 −v1)/R to the first
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Figure 9: (a) Projections of a calculated hyperchaotic attractor described by (2.2) for σ = 4.2, b = 0.3, γ =
1.7, and r = 28. From left to right, top: x × z; x × y; y × z; bottom: w × z; x × w; y × w. (b) Experimental
hyperchaotic Lorenz attractor generated by the circuit of Figure 8, as projected on the oscilloscope screen.
From left to right, top: v1 × v2; v1 × i; i × v2; bottom: v3 × v2; v1 × v3; i × v3. The same parameter values as
those of Figure 9(a)—see text.
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Figure 10: Coupling schemes: (a) bidirectional; (b) unidirectional.
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Figure 11: (a) Experimental trajectories near the synchronization hyperplane for several values of the
unidirectional coupling resistor. A: 0Ω; B: 100Ω; C: 220Ω. (b) Continuation of Figure 11(a). D: 470Ω;
E: 1.0 kΩ; F: 2.2 kΩ.

of (3.1). Note that each variable of the second circuit is represented by the same symbol as
the corresponding one of the first circuit, but with an uppercase prime. The four projections
of the trajectories near the synchronization hyperplane are shown in Figures 11(a) and 11(b)
for several values of the coupling resistor R. The waveforms v2(t) and v′2(t) are shown in
Figure 12. All these results refer to unidirectional coupling through the variables v1 and v′1.
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Figure 12: Experimental waveforms v2 and v′2 corresponding to the first column of Figure 11.

4. Conclusion

In this work the synchronizing properties of diffusively coupled hyperchaotic Lorenz 4D
systems, described by (2.2), have been studied both numerically and experimentally. The
numerical investigation was realized by calculating the transverse Lyapunov exponents
as a function of the coupling strength k, and also by visually inspecting the phase
space trajectories near the synchronization hyperplane. We concluded that using a single
coupling variable, either x or y (but neither z nor w), guarantees stable synchronization.
Although z and w are not good choices for the single-variable scheme, double coupling
with both z and w easily provides synchronization. We also verified that a small degree
of parameter mismatch seems tolerable. For the laboratory work a very simple electrical
circuit described by the Lorenz 4D system was proposed and described here for the
first time. The experiments confirmed the qualitative behavior predicted by the numerical
approach.
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