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1. Introduction

The chemostat, a laboratory apparatus used for the continuous culture of microorganisms,
has played an important role in microbiology and population biology. It is the most simple
idealization of a biological system where the parameters are measurable, the experiments
are reasonable, and the mathematics is tractable [1]. Experimental verification of the match
between theory and experiment in the chemostat can be found in [2]. For a general discussion
of competition, see [3, 4] while a detailed mathematical description of competition in the
chemostat may be found in [1].

The ability to manufacture desired products through genetically altered organisms
represents one of the major developments in biotechnology. The genetic alteration commonly
takes place through the insertion of a recombinant DNA into the cell in the form of a plasmid
to code for the production of the desired protein. The load imposed by production can
result in the genetically altered (plasmid-bearing) organism being a less able competitor
than the plasmid-free (or “wild-type”) organism. Unfortunately, the plasmid can be lost



2 Mathematical Problems in Engineering

in the reproductive process. Since commercial production can take place on a scale of
many generations, it is possible for the plasmid-free organism to take over the culture. In
pharmaceuticals, changes in the plasmid could cause changes in the amino acid sequence
of a protein product or changes in the background from which it must be purified. It
is vital to produce a uniform product if it is a drug intended for human use. Since
commercial production of products manufactured by genetically altered organisms is a
reality, understanding the competition between plasmid-bearing and plasmid-free organisms
in a mathematically rigorous fashion seems important. The study of mathematical models
for the competition between plasmid-free and plasmid-bearing populations has recently
been a problem of considerable interest. We refer the readers to Ryder and BiBiasio [5],
Stephanopoulos and Lapudis [6], Hsu et al. [7–12], Luo and Hsu [13], Lu and Hadeler [14],
Ai [15], Yuan et al. [16–18] as well as Xiang and Song [19], Wu et al. [20], and the references
therein for recent studies on this respect.

To simulate the effect of perturbations such as seasonal or other variation in the
chemostat, the chemostat models described in impulsive differential equations have been
studied by many authors, see, for example, Funasaki and Kot [21], Xiang and Song [19],
Wang et al. [22], Smith and Wolkowicz [23, 24], Fan and Wolkowicz [25], and the references
therein for recent studies on this respect. Recently impulsive differential equations have been
introduced in almost every domain of applied sciences. Numerous examples are given in
Baı̆nov et al. work [26, 27]. In this paper, we focus on a model of competition between
plasmid-bearing and plasmid-free organisms in the chemostat with periodically pulsed
nutrient input and washout. Assuming that the specific growth rates of the organisms take
the form of Holling II type, we want to explore if some new dynamical behaviors could occur
in comparison with the model with constant input and washout and under what conditions
can both the plasmid-bearing and plasmid-free organisms coexist in the chemostat.

The organization of this paper is as follows. In Section 2, we present the model
under periodic pulsed chemostat conditions. In Section 3, we investigate the existence and
stability of the periodic solutions of the impulsive subsystem with nutrient and plasmid-
free organism. In Section 4, we study the local stability of the boundary periodic solution
of the system and obtain the threshold of the invasion of the plasmid-bearing organism. By
use of standard techniques of bifurcation theory, we prove that above this threshold there
are periodic oscillations in substrate, plasmid-bearing, and plasmid-free organisms. Finally,
numerical simulations and a brief discussion are presented in Section 5.

2. The Model

Let S(t) be the concentration of nutrient at time t, let x1(t) be the concentration of the plasmid-
free organisms at time t, and let x2(t) be the concentration of the plasmid-bearing organisms
at time t. The model of competition between plasmid-bearing and plasmid-free organisms in
the chemostat with pulsed input and washout can be described by the following impulsive
differential equations:

dS(t)
dt

= −m1

δ1

S(t)x1(t)
a1 + S(t)

− m2

δ2

S(t)x2(t)
a2 + S(t)

,

dx1(t)
dt

=
m1S(t)x1(t)
a1 + S(t)

+ q
m2S(t)x2(t)
a2 + S(t)

, t /=nτ,

dx2(t)
dt

=
(
1 − q)m2S(t)x2(t)

a2 + S(t)
,

(2.1)
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ΔS(t) = D
(
S0 − S(t)

)
,

Δx1(t) = −Dx1(t), t = nτ,

Δx2(t) = −Dx2(t),

S(0+) = S0 > 0, x1(0+) = x10 > 0, x2(0+) = x20 > 0,

(2.2)

where n ∈ N, N is the set of positive integers. All parameters are positive constants.
However, q, where 0 < q < 1, is the fraction constant of plasmid-bearing population
converting into plasmid-free population during the replication;mi, ai, i = 1, 2 are the maximal
growth rates of plasmid-free and plasmid-bearing organisms and the Michaelis-Menten (or
half saturation) constants, respectively; δi, i = 1, 2 are the yield constants, biologically one
may assume δ1 = δ2 = δ. The operating parameters are S(0), D and τ , where S(0) is the input
concentration of the nutrient, D is the input and washout flow of the chemostat, and τ is the
period of the impulsive effects.

It is convenient to perform scaling for chemostat-type problems. To avoid even more
complicated parameter dependence than what we will see below, we assume that the yield
constants are equal, that is, δ1 = δ2 = δ. Without this assumption, one has an additional
parameter, the ratio of the yield constants, in the system. Specifically, let

S =
S

S0
, x1 =

x1

δS0
, x2 =

x2

δS0
,

mi =
miS

0

ai
, bi =

S0

ai
.

(2.3)

After dropping the bars, (2.2) becomes

dS(t)
dt

= −m1S(t)x1(t)
1 + b1S(t)

− m2S(t)x2(t)
1 + b2S(t)

,

dx1(t)
dt

=
m1S(t)x1(t)
1 + b1S(t)

+ q
m2S(t)x2(t)
1 + b2S(t)

,

dx2(t)
dt

=
(
1 − q)m2S(t)x2(t)

1 + b2S(t)
,

t /=nτ,

ΔS(t) = D(1 − S(t)),
Δx1(t) = −Dx1(t),

Δx2(t) = −Dx2(t),

t = nτ,

S(0+) = S0 > 0, x1(0+) = x10 > 0, x2(0+) = x20 > 0.

(2.4)

From the point of biology, we need only to consider (2.4) in the biological meaning
region R3

+ = {(S, x1, x2) | S, x1, x2 ≥ 0}. The form of the equations in (2.4) implies the global
existence and uniqueness of its solutions.
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3. Dynamical Behaviors of the Nutrient and
Plasmid-Free Organism Subsystem

In the absence of the plasmid-bearing organism, (2.4) reduces to

dS(t)
dt

= −m1S(t)x1(t)
1 + b1S(t)

,

dx1(t)
dt

=
m1S(t)x1(t)
1 + b1S(t)

,

t /=nτ,

ΔS(t) = D(1 − S(t)),
Δx1(t) = −Dx1(t),

t = nτ,

S(0+) = S0 > 0, x1(0+) = x10 > 0.

(3.1)

This nonlinear system has simple periodic solutions. For our purpose, we present these
solutions in this section.

If we add the first and second equations in system (3.1), we have d(S(t)+x1(t))/dt = 0.
Let Σ(t) = S(t) + x1(t), then (3.1) can be written as

dΣ(t)
dt

= 0, t /=nτ,

Σ(nτ+) = D + (1 −D)Σ(nτ), t = nτ,

Σ(0+) = Σ0 > 0.

(3.2)

For system (3.2), we have the following lemma.

Lemma 3.1. However, (3.2) has a positive solution Σ̃(t) = 1 and for every solution Σ(t) of (3.2), we
have |Σ(t) − 1| → 0 as t → ∞, where Σ̃(t) = 1, t ∈ (nτ, (n + 1)τ], n ∈N.

By Lemma 3.1, the following lemma is obvious.

Lemma 3.2. Let (S(t), x1(t)) be any solution of system (3.1) with initial condition S(0) > 0, x1(0) >
0, then limt→∞|S(t) + x1(t) − 1| = 0.

Lemma 3.2 says that the periodic solution Σ̃(t) = 1 is a unique invariant manifold of
the system (3.1). Denote

m∗
1 =

−(1 + b1) ln(1 −D)
τ

. (3.3)

Theorem 3.3. For system (3.1), one has the following.

(1) If m1 < m∗
1, then system (3.1) has a unique globally asymptotically stable boundary τ-

periodic solution (Se(t), x1e(t)), where Se(t) = 1, x1e(t) = 0.
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(2) If m1 > m∗
1, then system (3.1) has a unique globally asymptotically stable positive τ-

periodic solution (Ss(t), x1s(t)) and the τ-periodic solution (Se(t), x1e(t)) is unstable. The
τ-periodic solution x1s(t) satisfies

1
1 −D = exp

(∫ τ

0

m1(1 − x1(l))
1 + b1(1 − x1(l))

dl

)
. (3.4)

Proof. By Lemma 3.2, we can consider (3.1) in its stable invariant manifold Σ̃(t) = 1. That is,

dx1

dt
=
m1(1 − x1)x1

1 + b1(1 − x1)
, t /=nτ,

Δx1 = −Dx1, t = nτ,

0 ≤ x10 ≤ 1.

(3.5)

Suppose x1(t, x10) is a solution of (3.5), with initial condition x10 ∈ [0, 1], we have

x1(t, x10) = x1(nτ+) exp

(∫ t

nτ

m1(1 − x1(l, x10))
1 + b1(1 − x1(l, x10))

dl

)

, t ∈ (nτ, (n + 1)τ],

x1(nτ+) = (1 −D)x1(nτ), x1(0+) = x10, t = nτ.

(3.6)

For (3.6), we have the following properties:

(i) for x10 ∈ (0, 1], 0 < x1(t, x10) ≤ 1, t ∈ (0,∞) is a piecewise continuous function;

(ii) the function F(x10) = x1(t, x10), x10 ∈ (0, 1] is a increasing function;

(iii) x1(t, 0) = 0, t ∈ (0,∞) is a solution.

The periodic solutions of (3.5) satisfies the following equation:

x10 = (1 −D)x10 exp
(∫ τ

0

m1(1 − x1(l, x10))
1 + b1(1 − x1(l, x10))

dl

)
. (3.7)

By (i) and (ii), we know that if 1 < 1/(1−D) < exp(m1τ/(1+ b1)), that is, m1 > m
∗
1, then (3.7)

has a unique solution x∗
10 in (0, 1); otherwise, it has no solution in (0, 1].

If m1 < m∗
1, then (3.5) has a periodic solution x1e(t) = 0. By Lemma 3.2, we have

limt→∞|S(t) − Σ̃(t)| = 0. We have proved (1).
If m1 > m∗

1, then (3.5) has a unique positive periodic solution x1s(t) = x1(t, x∗
10). The

multiplier μ1 of x1s(t) is

μ1 = (1 −D) exp

(∫ τ

0

m1
(
Ss − x1s + b1S

2
s

)

(1 + b1Ss)
2

dl

)

= exp

(∫ τ

0

−m1x1s

(1 + b1Ss)
2
dl

)

< 1, (3.8)

where Ss(t) = 1 − x1s(t) and (3.7) has been used. Thus the periodic solution x1s(t) of (3.5) is
local stable.



6 Mathematical Problems in Engineering

To prove the global attractivity of the periodic solution x1s(t), we define a function
G(x10) : x10 ∈ (0, 1) as follows:

G(x10) = (1 −D) exp
(∫ τ

0

m1(1 − x1(l, x10))
1 + b1(1 − x1(l, x10))

dl

)
. (3.9)

Noticing (3.6), we have

G(x10) =
x1(τ, x10)

x10
, x10 ∈ (0, 1). (3.10)

It is obvious that G(x∗
10) = 1.

Furthermore, ∂x1(t, x10)/∂x10 ≥ 0, t ∈ (0, τ) (otherwise, there exist t0 > 0, 0 < x
(1)
10 <

x
(2)
10 < 1 such that x1(t0, x

(1)
10 ) = x1(t0, x

(2)
10 ), a contradiction, since different flows of (3.5) do not

intersect). Thus, the function G(x10) has the following properties:

G(x10) < 1, if x∗
10 < x10 < 1,

G(x10) = 1, if x10 = x∗
10,

G(x10) > 1, if 0 < x10 < x
∗
10.

(3.11)

Furthermore, we obtain the following inequalities:

x10 > x1(τ, x10) > · · · > x1(nτ, x10) > · · · > x∗
10, if x∗

10 < x10 ≤ 1,

x10 < x1(τ, x10) < · · · < x1(nτ, x10) < · · · < x∗
10, if 0 < x10 < x

∗
10.

(3.12)

Let x10 ∈ (0, 1). According to (3.12), we suppose that

lim
n→∞

x1(nτ, x10) = α. (3.13)

We will prove that the solution x1(t, α) is τ-periodic. We note that the functions x1n(t) =
x1(t + nτ, x10), due to the τ-periodicity of (3.5), are also its solutions and x1n(τ) → α, as
n → ∞. By the continuous dependence of the solutions on the initial values, we have
x1(τ, α) = limn→∞x1n(τ) = α. Hence the solution x1(t, α) is τ-periodic. Since the periodic
solution x1(t, x∗

10) is unique, thus we have α = x∗
10.

Let ε > 0 be given. By [27, Theorem 2.9] on the continuous dependence of the solutions
on the initial values, there exist a δ > 0 such that if |x10 − x∗

10| < δ and 0 ≤ t ≤ τ , then

∣∣x1(t, x10) − x1
(
t, x∗

10

)∣∣ < ε. (3.14)

Choose n1 > 0 such that |x1(nτ, x10) − x∗
10| < δ for n > n1. Then |x1(t, x10) − x1(t, x∗

10)| < ε for
t > nτ , which implies that

lim
t→∞
∣∣x1(t, x10) − x1

(
t, x∗

10

)∣∣ = 0. (3.15)



Mathematical Problems in Engineering 7

By Lemma 3.2, for any solution (S(t), x1(t)) of system (3.1) with initial condition S(0) > 0,
x1(0) > 0, we have

lim
t→∞

|x1(t) − x1s(t)| = 0, lim
t→∞

|S(t) − Ss(t)| = 0. (3.16)

The proof of Theorem 3.3(2) is thus completed.

4. Existence of the Positive τ-Periodic Solution

In this section, we investigate the invasion of the plasmid-bearing organism of system (2.4).
Denote Σ(t) = S(t) + x1(t) + x2(t), it follows from (2.4) that

dΣ(t)
dt

= 0, t /=nτ,

Σ(nτ+) = D + (1 −D)Σ(nτ), t = nτ,

Σ(0+) > 0.

(4.1)

By Lemma 3.1, the following lemma is obvious.

Lemma 4.1. Let (S(t), x1(t), x2(t)) be any solution of system (2.4) with initial value S(0) > 0,
xi(0) > 0, i = 1, 2, then

lim
t→∞

|S(t) + x1(t) + x2(t) − 1| = 0. (4.2)

Lemma 4.1 says that the periodic solution Σ̃(t) = 1 of (4.1) is an invariant manifold of
(2.4).

By Theorem 3.3, we know that (2.4) has two nonnegative boundary τ-periodic
solutions:

(Se(t), x1e(t), x2e(t)) = (1, 0, 0), (Ss(t), x1s(t), 0)
(
if m1 > m

∗
1

)
. (4.3)

4.1. Stability of the Boundary Periodic Solutions

For convenience, in the following discussion, if m1 > m
∗
1, we denote

m∗
2 =

− ln(1 −D)
∫τ

0

((
1 − q)Ss(l)/(1 + b2Ss(l))

)
dl
. (4.4)

Theorem 4.2. For (2.4), one has the following.

(1) If m1 < m∗
1, then (2.4) has a unique globally asymptotically stable boundary τ-periodic

solution (1, 0, 0).

(2) Ifm1 > m
∗
1 and m2 < m

∗
2, then (2.4) has a unique globally asymptotically stable boundary

τ-periodic solution (Ss(t), x1s(t), 0).
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(3) If m1 > m∗
1 and m2 > m∗

2, then the periodic boundary solution (Ss(t), x1s(t), 0) of system
(2.4) is unstable.

Proof. The proof of (1) is easy, we want to prove (2) and (3). The local stability of periodic
solution (Ss(t), x1s(t), 0) may be determined by considering the behavior of small amplitude
perturbations of the solution. Define

S(t) = u(t) + Ss(t), x1(t) = v(t) + x1s(t), x2(t) = w(t), (4.5)

then we have

⎛

⎜
⎜
⎝

u(t)

v(t)

w(t)

⎞

⎟
⎟
⎠ = Φ(t)

⎛

⎜
⎜
⎝

u(0)

v(0)

w(0)

⎞

⎟
⎟
⎠, 0 ≤ t < τ, (4.6)

where Φ(t) satisfies

dΦ(t)
dt

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− m1x1s

(1 + b1Ss)
2

− m1Ss
1 + b1Ss

− m2Ss
1 + b2Ss

m1x1s

(1 + b1Ss)
2

m1Ss
1 + b1Ss

q
m2Ss

1 + b2Ss

0 0
(
1 − q) m2Ss

1 + b2Ss

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Φ(t), (4.7)

and Φ(0) = I, the identity matrix. Hence, the fundamental solution matrix is

Φ(τ) =

⎛

⎜⎜⎜⎜⎜
⎝

φ11(τ) φ12(τ) ∗
φ21(τ) φ22(τ) ∗∗

0 0 exp

(∫ τ

0

(
1 − q)m2Ss

1 + b2Ss
dl

)

⎞

⎟⎟⎟⎟⎟
⎠
. (4.8)

The linearization of impulsive subsystem (2.4) is written as

⎛

⎜⎜
⎝

u(nτ+)

v(nτ+)

w(nτ+)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1 −D 0 0

0 1 −D 0

0 0 1 −D

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

u(nτ)

v(nτ)

w(nτ)

⎞

⎟⎟
⎠. (4.9)

The stability of the periodic solution (Ss(t), x1s(t), 0) is determined by the eigenvalues of

M =

⎛

⎜⎜
⎝

1 −D 0 0

0 1 −D 0

0 0 1 −D

⎞

⎟⎟
⎠Φ(τ), (4.10)
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which are μ3 = (1 − D) exp(
∫τ

0((1 − q)m2Ss/(1 + b2Ss))dl) and the eigenvalues μ1, μ2 of the
following matrix:

(1 −D)

(
φ11(τ) φ12(τ)

φ21(τ) φ22(τ)

)

. (4.11)

The μ1, μ2 are also the multipliers of the locally linearization system of (3.1) provided with
D ∈ (0, D0) at the asymptotically stable periodic solution (Ss(t), x1s(t)), where D0 = 1 −
exp((1 + b1)/m∗

1τ). According to Theorem 3.3, we have that μ1 < 1, μ2 < 1.
If m2 < m∗

2, then μ3 = (1 − D) exp(
∫τ

0((1 − q)m2Ss/(1 + b2Ss))dl) < 1, the boundary
periodic solution (Ss(t), x1s(t), 0) of system (2.4) is locally stable. We obtain that

x2(t) = x2(0)(1 −D)n exp

(∫ t

0

(
1 − q)m2Ss(l)
1 + b2Ss(l)

dl

)

, t ∈ (nτ, (n + 1)τ]. (4.12)

Hence, we obtain that for any solution (S(t), x1(t), x2(t)) with initial value S(0) > 0, xi(0) > 0,
i = 1, 2, x2(t) → 0 as t → ∞. By Lemma 4.1, we have limt→∞|S(t) + x1(t) − 1| = 0. Now using
Theorem 3.3, we have limt→∞|S(t) − Ss(t)| = 0 and limt→∞|x1(t) − x1s(t)| = 0.

If m2 > m∗
2, then μ3 > 1, the boundary periodic solution (Ss(t), x1s(t), 0) of (2.4) is

unstable. The proof of Theorem 4.2 is completed.

4.2. Bifurcation Analysis of the Boundary Periodic Solution (Ss(t), x1s(t), 0)

Let B denote the Banach space of piecewise continuous, τ-periodic function N : [0, τ] → R2,
and have points of discontinuity τ , where they continuous from the left. In the set B introduce
the norm ‖N‖0 = sup0≤t≤τ‖N(t)‖ with which B becomes a Banach space with the uniform
convergence topology.

For convenience, we introduce Lemmas 4.3 and 4.5 from Cushing [28] with small
modifications.

Lemma 4.3. Suppose aij ∈ B and 0 ≤ di < 1 (i = 1, 2).
(a) If (1 − d2) exp(

∫τ
0a22(s)ds)/= 1, (1 − d1) exp(

∫τ
0a11(s)ds)/= 1, then the linear impulsive

homogenous system

dy1

dt
= a11y1 + a12y2,

dy2

dt
= a22y2,

t /=nτ,

Δy1 = −d1y1,

Δy2 = −d2y2,
t = nτ,

(4.13)
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has no nontrivial solution in B × B. In this case, the nonhomogeneous system

dx1

dt
= a11x1 + a12x2 + f1,

dx2

dt
= a22x2 + f2,

t /=nτ,

Δx1 = −d1x1,

Δx2 = −d2x2,
t = nτ ,

(4.14)

has for every (f1, f2) ∈ B×B, a unique solution (x1, x2) ∈ B×B and the operator L : B×B → B×B
defined by (x1, x2) = L(f1, f2) is linear and compact.

(b) If (1−d2) exp(
∫τ

0a22(s)ds) = 1, (1−d1) exp(
∫τ

0a11(s)ds)/= 1, then (4.13) has exactly one
independent solution in B × B.

Remark 4.4. In fact, under the conditions of Lemma 4.1(a),

dx2

dt
= a22x2 + f2, t /=nτ,

Δx2 = −d2x2, t = nτ,
(4.15)

has a unique solution x2 ∈ B and the operator L2 : B → B defined by x2 = L2f2 is linear and
compact. Furthermore,

dx1

dt
= a11x1 + f3, t /=nτ,

Δx1 = −d1y1, t = nτ,
(4.16)

for f3 ∈ B has a unique solution (since (1−d1) exp(
∫τ

0a11(s)ds)/= 1) in B, and x1 = L1f3 defines
a linear, compact operator L1 : B → B. Then, we have

L
(
f1, f2

)
=
(
L1
(
a12L2f2 + f1

)
, L2f2

)
. (4.17)

Lemma 4.5. Suppose that a ∈ B, 0 ≤ d < 1, (1 − d) exp(
∫τ

0a(s)ds) = 1 and f ∈ B. Then, the
impulsive equation

dx

dt
= ax + f, t /=nτ,

Δx = −dx, t = nτ,
(4.18)

has a solution x ∈ B if and only if
∫τ

0f(l) exp(−∫ l0a(s)ds)dl = 0.
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By Lemma 4.1, in its invariant manifold Σ̃(t) = S(t) + x1(t) + x2(t) = 1, (2.4) reduces to
an equivalently nonautonomous system as follows:

dx1

dt
=
m1x1(1 − x1 − x2)
1 + b1(1 − x1 − x2)

+ q
m2x2(1 − x1 − x2)
1 + b2(1 − x1 − x2)

,

dx2

dt
=
(
1 − q)m2x2(1 − x1 − x2)

1 + b2(1 − x1 − x2)
,

t /=nτ,

Δx1 = −Dx1,

Δx2 = −Dx2,
t = nτ,

x10 > 0, x20 > 0, x10 + x20 ≤ 1.

(4.19)

If m1 > m∗
1, for (4.19), by Theorem 4.2, the boundary periodic solution (x1s(t), 0) is locally

asymptotically stable provided with m2 < m
∗
2, hence the value m∗

2 plays an important role as
a bifurcation threshold.

For system (4.19), we have the following results.

Theorem 4.6. For system (4.19), assume m1 > m∗
1 holds, then there exists a constant λ0 > 0, such

that for each m2 ∈ (m∗
2, m

∗
2 + λ0), there exists a solution (x1, x2) ∈ B × B of (4.19) satisfying

0 < x1 < x1s, x2 > 0 and S = 1 − x1 − x2 > 0 for all t > 0. Hence, (2.4) has a positive τ-periodic
solution (S, x1, x2).

Proof. Let y1 = x1 − x1s, y2 = x2 in (4.19), then

dy1

dt
= F11(Ss, x1s)y1 + F12(m2, Ss, x1s)y2 + g1

(
y1, y2

)
,

dy2

dt
= F22(m2, Ss)y2 + g2

(
y1, y2

)
,

t /=nτ,

Δy1 = −Dy1,

Δy2 = −Dy2,
t = nτ,

x10 > 0, x20 > 0, x10 + x20 ≤ 1,

(4.20)

where

F11(Ss, x1s) =
m1Ss

1 + b1Ss
− m1x1s

(1 + b1Ss)
2
,

F12(m2, Ss, x1s) = − m1x1s

(1 + b1Ss)
2
+

qm2Ss
1 + b2Ss

,

F22(m2, Ss) =

(
1 − q)m2Ss

1 + b2Ss
.

(4.21)
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Since (1 − D) exp(
∫τ

0((1 − q)m2Ss(l)/(1 + b2Ss(l)))dl)/= 1, by Lemma 4.3, using L, we can
equivalently write (4.20) as the operator equation:

(
y1, y2

)
= L∗(y1, y2

)
+G
(
y1, y2

)
, (4.22)

where

G
(
y1, y2

)
=
(
L1
(
F12(m2, Ss, x1s)L2g2

(
y1, y2

)
+ g1
(
y1, y2

))
, L2g2

(
y1, y2

))
. (4.23)

Here L∗ : B × B → B × B is linear and compact (since L1 and L2 are compact) and satisfies
G = o(|(y1, y2)|0) near (0, 0). A nontrivial solution (y1, y2)/= (0, 0) for some m2 > m∗

2 yields a
solution (x1, x2) = (x1s + y1, y2) of (4.19). The solution (x1, x2)/= (x1s, 0) is called a nontrivial
solution of (4.19).

We apply the well-known local bifurcation techniques to (4.22). As is well known,
bifurcation can occur only at the nontrivial solution of the linearized problem:

(
y1, y2

)
= L∗(y1, y2

)
. (4.24)

If (y1, y2) ∈ B × B is a solution of (4.24) for some m2 > 0, then by the very manner in which
L∗ was defined, (y1, y2) solves the system

dy1

dt
= F11(Ss, x1s)y1 + F12(m2, Ss, x1s)y2,

dy2

dt
= F22(m2, Ss)y2,

t /=nτ,

Δy1 = −Dy1,

Δy2 = −Dy2,
t = nτ ,

(4.25)

and conversely. Using Lemma 4.3(b), we see that (4.25) and hence (4.24) has one nontrivial
solution in B × B if and only if m2 = m∗

2. Hence, there exists a continuum C = (m2;y1, y2) ⊆
(0,∞) × B × B nontrivial solutions of (4.24) such that the closure C contains (m∗

2; 0, 0). This
continuum gives rise to a continuum C1 = (m2;x1, x2) ⊆ (0,∞) × B × B of the solutions of
(4.19) whose closure C1 contains the bifurcation point (m∗

2;x1s, 0).
To see that solutions in C1 correspond to solutions (x1, x2) of (4.19), we investigate the

nature of the continuum C near the bifurcation point (m∗
2; 0, 0) by expending m2 and (y1, y2)

in Lyapunov-Schmidt series:

m2 = m∗
2 + λε + · · · ,

y1 = y11ε + y12ε
2 + · · · ,

y2 = y21ε + y22ε
2 + · · · ,

(4.26)
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for yij ∈ B where ε is a small parameter. If we substitute these series into the differential
system (4.19) and equate coefficients of ε and ε2, we find that

dy11

dt
= F11(Ss, x1s)y11 + F12

(
m∗

2, Ss, x1s
)
y21,

dy21

dt
= F22

(
m∗

2, Ss
)
y21,

t /=nτ,

Δy11 = −Dy11,

Δy21 = −Dy21,
t = nτ,

(4.27)

dy12

dt
= F11(Ss, x1s)y12 + F12

(
m∗

2, Ss, x1s
)
y22 +G12

(
y11, y12, λ

)
,

dy22

dt
= F22

(
m∗

2, Ss
)
y22 +

(
1 − q)y21

1 + b2Ss

(

λSs −
m∗

2

(
y11 + y21

)

1 + b2Ss

)

,

t /=nτ,

Δy21 = −Dy21,

Δy22 = −Dy22,
t = nτ,

(4.28)

respectively. Thus, (y11, y21) ∈ B × B must be a solution of (4.22). We choose the specific
solution satisfying the initial conditions y21(0) = 1. Then

y21 = exp

(∫ t

nτ

(
1 − q)m∗

2Ss

1 + b2Ss
dl

)

> 0, nτ < t ≤ (n + 1)τ,

y21(0) = 1.

(4.29)

Moreover, y11 < 0 for all t (since m1 > m∗
1 and (3.8), hence −∫τ0(m1x1s(l)/(1 + b1Ss(l))

2)dl <
0, which implies that the Green’s function for first equation in (4.24) is positive). Using
Lemma 4.5, we find that

λ =

∫τ
0

((
1 − q)y21m

∗
2

(
y11 + y21

)
/(1 + b2Ss)

2
)

exp
(
−∫ l0
((

1 − q)m∗
2Ss/(1 + b2Ss)

)
dl
)
dt

∫τ
0

((
1 − q)y21Ss/(1 + b2Ss)

)
exp
(
−∫ l0
((

1 − q)m∗
2Ss/(1 + b2Ss)

)
dl
)
dt

> 0.

(4.30)

Thus we see that near the bifurcation point (m∗
2, 0, 0) the continuum C has two

branches corresponding to ε < 0, ε > 0, respectively,

C+ = (m2;x1, x2) : m∗
2 < m2 < m

∗
2 + λ0, x1 < 0, x2 > 0,

C− = (m2;x1, x2) : m∗
2 − λ0 < m2 < m

∗
2, x1 > 0, x2 < 0.

(4.31)

The solution is on C+ which prove the theorem, since λ > 0 is equivalent to m2 > m
∗
2. We have

left only to show that x1 = y1 + x1s for all t. This is easy, for if λ0 is small, then x1 is near x1s
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in the sup norm of B; thus since x1s is bounded away from zero, so is x1. At the same time,
by Theorem 4.2, for (2.4), x2 is near x2s means that x1 is near x1s; thus S = 1 − x1 − x2 > 0.
We notice that the periodic solution (x1, x2) is τ-periodic. So S = 1 − x1 − x2 is piecewise
continuous and τ-periodic. The proof is thus completed.

5. Simulations and Discussion

The ability to manufacture desired products through genetically altered organisms represents
one of the major developments in biotechnology. Competition between plasmid-bearing
and plasmid-free organisms is a subject of considerable interest [29]. In this paper,
we have considered a model for competition between plasmid-bearing and plasmid-
free organisms in the chemostat with pulsed nutrient input and washout. Our research
shows that the dynamical behaviors of model (2.4) are completely determined by two
thresholds: m∗

1, the invasion threshold of the plasmid-free organism and m∗
2, the invasion

threshold of the plasmid-bearing organism. If m1 < m∗
1, the periodic solution (1, 0, 0) is

globally asymptotically stable, both the plasmid-bearing and the plasmid-free organisms are
eradicated from the chemostat except the nutrient; if m1 > m∗

1 and m2 < m∗
2, the periodic

solution (Ss(t), x1s(t), 0) is globally asymptotically stable, then the nutrient, plasmid-free
organisms coexist periodically in the chemostat and the plasmid-bearing organism tends to
extinction; if m1 > m∗

1 and m2 > m∗
2, (2.4) has a positive periodic solution (S(t), x1(t), x2(t))

and therefore, both the plasmid-bearing and the plasmid-free organisms coexist periodically
in the chemostat.

To justify the theoretic results, we obtained in Section 4, we give two examples which
concern the results in Theorems 4.2 and 4.6, respectively.

Example 5.1. In (2.4), set m2 = 1.2, a1 = 0.3, a2 = 0.25, D = 0.7, q = 0.0015, we can compute
m∗

1 =̇ 1.4448. By Theorem 4.2, we know that ifm1 < m
∗
1, the periodic solution (1, 0, 0) is globally

asymptotically stable; if m1 > m∗
1, the plasmid-free organism begins to invade the system

and the periodic solution (Ss(t), x1s(t), 0) is globally asymptotically stable. Our simulations
support these results (see Figures 1 and 2, where m1 = 1.2 and m1 = 1.8, resp.).

Example 5.2. In (2.4), setm1 = 1.8(> m∗
1) and a1, a2,D, q have similar values as in Example 5.1.

We can estimate numerically that m∗
2 =̇ 1.74 (since we cannot compute the exact value from

the expression of m∗
2 in (4.4)). By Theorem 4.6, we know that if m2 > m

∗
2, the plasmid-bearing

organism begins to invade the system and, in this case, (2.4) has a positive periodic solution
(S(t), x1(t), x2(t)). Our simulations support this result (see Figure 3, where m2 = 1.745).

From the chemical engineering standpoint, the consumption of nutrient by the
plasmid-free organism represents a loss of production in the bioreactor. Moreover, if it
is a sufficiently better competitor, the plasmid-bearing organism (the production) may be
eliminated from the chemostat (in this situation, the periodic solution (Ss(t), x1s(t), 0) exists
and is globally stable). Then no product is manufactured (and nutrient is consumed). This
is an undesirable situation. Note also that the plasmid-bearing organism can always lose the
plasmid. Thus, if the plasmid-bearing organism does not go to extinction, then neither does
the plasmid-free organism. This can also be seen from the form of the equations in system
(2.4) (as a consequence, there is no nonnegative periodic solution (Ss(t), 0, x2s(t)) in the space
x1 = 0). Thus, the best situation for the manufacture by genetically altered organism is that
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Figure 1: Time-series of (2.4) with periodically input and washout with initial value S0 = 1, x10 = 0.5,
x20 = 0.5: m1 = 1.2, m2 = 1.2, a1 = 0.3, a2 = 0.25, D = 0.7, q = 0.0015, τ = 1.
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Figure 2: Time-series of system (2.4) with periodically input and washout with initial value S0 = 1, x10 =
0.5, x20 = 0.5: m1 = 1.8, m2, a1, a2, D, q, and τ have similar values as in Figure 1.

both the plasmid-free and the plasmid-bearing organisms coexist in the chemostat. Therefore,
the study of the existence of the positive periodic solution (S(t), x1(t), x2(t)) of the system is
paramount. By Theorem 4.6 we can see from the expressions of m∗

1, m∗
2 given, respectively,

by (3.3) and (4.4) and the scaling formulations in (2.3) that the controllers of the bioreactor
can do this by only control the parameters S0, D and τ such that the conditions m1 > m

∗
1 and

m2 > m
∗
2 are satisfied.

For the situation when both the plasmid-free and the plasmid-bearing organisms
coexist in the culture, we further want to know the optimum values of S0, D, and τ under
which the product manufacturer can obtain the maximum production by genetically altered
organism. This is a challenging question to answer. We leave this for future consideration.
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Figure 3: Time-series of (2.4) with periodically input and washout with initial value S0 = 1, x10 = 0.5,
x20 = 0.5: m1 = 1.8(> m∗

1), m2 = 1.745, a1, a2, D, q, τ have similar values as in Figures 1 and 2.
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