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São Paulo, Avenida Prof. Luciano Gualberto, travessa 3, n. 158, 05508-900 São Paulo, SP, Brazil

Correspondence should be addressed to José Roberto C. Piqueira, piqueira@lac.usp.br
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Synchronization plays an important role in telecommunication systems, integrated circuits, and
automation systems. Formerly, the masterslave synchronization strategy was used in the great
majority of cases due to its reliability and simplicity. Recently, with the wireless networks
development, and with the increase of the operation frequency of integrated circuits, the
decentralized clock distribution strategies are gaining importance. Consequently, fully connected
clock distribution systems with nodes composed of phase-locked loops (PLLs) appear as a
convenient engineering solution. In this work, the stability of the synchronous state of these
networks is studied in two relevant situations: when the node filters are first-order lag-lead low-
pass or when the node filters are second-order low-pass. For first- order filters, the synchronous
state of the network shows to be stable for any number of nodes. For second-order filter, there is a
superior limit for the number of nodes, depending on the PLL parameters.

Copyright q 2009 Átila Madureira Bueno et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Synchronization networks assure the correct temporal order of information processing in
communication systems, computation and control and many commercial systems adopt a
masterslave synchronization strategy due to its reliable behavior, construction facility, and
low cost [1–3]. In this architecture, a master node dictates the phase and frequency scales for
the entire network.

On the other hand, in a fully connected architecture, phase and frequency scales are
determined by all the nodes as they are all connected to each other. The main advantage
of the fully connected architecture is its robustness when nodes are added or dropped
[4]. Nowadays, besides being used in telecommunication networks, the fully connected
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architecture is used in digital electronic circuits for clock signal distribution [5–7], and in
synchronous neural networks for pattern recognition [8–10].

Modeling fully connected networks result in nonlinear coupled oscillations. Some
interesting works about this kind of architecture were developed between 1960 and 1980 [11–
15]. These papers were written when the service integration started to be taken into account
for telecommunication networks and present several robust results for clock distribution
systems, mainly considering linear analogous phase detection and linear coupling between
nodes.

In these works, synchronous state frequencies and their stability conditions for fully
connected PLL networks were presented depending on the free-running frequencies and
node phase detector gains.

Trying to extend the results to the case with nonlinear coupling, in [16, 17], expressions
for the synchronous state and conditions for its stability are derived, considering analog
phase-detectors and first-order lag low-pass filters. The synchronous state of a fully
connected network showed to be locally asymptotically stable for any number N of nodes.

As, sometimes, double-frequency jitter degrades the performance of the PLLs [18–20],
filters are designed more accurately [21, 22].

Here, a nonlinear state space model of fully connected PLL networks with N nodes,
considering a first-order lead-lag low-pass and a second-order low-pass filters in the nodes is
developed, trying to minimize double-frequency distortion [23, 24].

First, models for the fully connected PLL network with first-order lag-lead node
filters and second-order low-pass node filters are developed. Then, by using Taylor series
development around the synchronous state [25], it was shown that for the lag-lead node
filters, the synchronous state is locally asymptotically stable for any number of nodes, in the
same way of the lag node filters. For third-order node filters, a local Hopf bifurcation that
appears in the single node dynamics [26–29] gives a superior limit for the number of nodes
in the network.

The contribution is about analytic modeling of this kind of network and experimental
and numerical works can be conducted trying to confirm the results as suggested in [27, 30–
32].

2. Fully Connected PLL Network Model

In a fully connected PLL network with N nodes, each node has N − 1 inputs corresponding
to the phase comparisons, as shown in Figure 1, with the nodes mutually coupled by using
two-way connections [30, 31]. As there is no integrated circuit with this architecture, the
implementation of the nodes requires a combination of N − 1 PLL chips with their phase
detector outputs weighted and being the input of the filter f (j)(t) that feeds the local VCO
[17, 30–32].

For a given node j, the output v(j)
o (t), j = 1, 2, . . . ,N, and input signals v(�)

o (t), � =
1, . . . , j − 1, j + 1, . . . ,N, are given by

v
(�)
o

(
t − τ�,j

)
= v(�)

o sin
(
ωM

(
t − τ�,j

)
+ θ(�)o

(
t − τ�,j

))
, (2.1)

v
(j)
o (t) = v(j)

o cos
(
ωMt + θ

(j)
o (t)

)
(2.2)
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where v(�)
o and v(j)

o are the amplitudes of the input and output signals, respectively; ωM is
the free-running angular frequency of all VCOs, θ(j)o (t) is the instantaneous phase of node j,
θ
(�)
o (t − τ�,j) is the phase of node � delayed by the signal propagation time from node � to j,
τ�,j .

Assuming that all VCOs in the network have the same free-running angular frequency,
the phase and frequency spatial errors can be defined as

ϑ(�,j)(t) = θ(�)o

(
t − τ�,j

)
− θ(j)o (t), (2.3)

ϑ̇(�,j)(t) = θ̇(�)o

(
t − τ�,j

)
− θ̇(j)o (t). (2.4)

Considering the expressions of the phase errors between node j and of all other nodes as
given by (2.3) and summing them, the estimation of phase θ(j)o (t), of the node j, is written as
follows:

θ
(j)
o (t) =

1
N − 1

N∑

�=1
� /= j

(
θ
(�)
o

(
t − τ�,j

)
− ϑ(�,j)(t)

)
. (2.5)

The PLLs are described by a differential equation of order P (j) + 1, considering that the order
of the linear filter f(t) is P (j) [21, 22]. The transfer function F(j)(s) of the node j filter can be
expressed in the form of a rational fraction of polynomials:

F(j)(s) =
N(j)(s)

D(j)(s)
, (2.6)

with

N(j)(s) =
M(j)∑

m=0

α
(j)
m sm, (2.7)

D(j)(s) =
P (j)∑

p=0

β
(j)
p sp, (2.8)

considering that M(j) ≤ P (j).
A consequence from the fact that the filter can be modeled by (2.6) and from the

structure of (2.1) and (2.2) is that the network dynamics can be expressed in a simpler way
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v
(j)
o (t)
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o (t)
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×

×
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Figure 1: PLL block diagram in a fully connected architecture.

considering the operators Q(j)[·] and L(j)[·], and the node gains G(�,j) as follows:

Q(j)[·] =
M(j)∑

m=0

α
(j)
m
dm

dtm
(·),

L(j)[·] =
P (j)∑

p=0

β
(j)
p
dp+1

dtp+1
(·),

G(�,j) =
1
2
a�,jk

(j)
m k

(j)
o v(j)

o v(�)
o .

(2.9)

In these definitions, the positive numbers k(j)m are the phase detector gains, k(j)o , the VCO
control gains and a�,j , the weighting factors between nodes � and j.

Therefore, the filter inputs are

v
(j)
d (t) =

1
N − 1

N∑

�=1
� /= j

a�,ju
(�,j)
d (t), (2.10)

with

1
N − 1

N∑

�=1
� /= j

a�,j = 1. (2.11)

The outputs of the phase detectors are proportional to the product between their input and
output signals:

u
(�,j)
d (t) = k(j)m v

(�)
o

(
t − τ�,j

)
v
(j)
o (t), (2.12)
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resulting

u
(�,j)
d (t) =

G(�,j)

a�,jk
(j)
o

u
(�,j)
δ (t), (2.13)

with

u
(�,j)
δ (t) = sin

(
ϑ(�,j)(t) −ωMτ�,j

)
+ sin

(
2ωMt + θ

(�)
o

(
t − τ�,j

)
+ θ(j)o (t) −ωMτ�,j

)
. (2.14)

Solving (2.3) for θ(j)o (t), replacing the result in (2.14), and doing some algebra:

u
(�,j)
δ (t) = sin

(
ϑ(�,j)(t) −ωMτ�,j

)
+ sin

(
2
(
ωMt + θ

(�)
o

(
t − τ�,j

))
− ϑ(�,j)(t) −ωMτ�,j

)
. (2.15)

The output phase θ(j)o (t) of the VCO is controlled according to

d

dt
θ
(j)
o (t) = k(j)o v

(j)
c (t), (2.16)

with control signal v(j)
c being the filter response to the weighted error signal v(j)

d , and given
by

v
(j)
c (t) = f (j)(t) ∗ v(j)

d (t). (2.17)

Consequently, replacing (2.17) in (2.16) and applying the convolution theorem [33]:

k
(j)
o N(j)(s)V (j)

d (s) = sD(j)(s)Θ(j)
o (s). (2.18)

Considering the operators Q(j)[·] and L(j)[·] and using (2.5), (2.10), and (2.13),

L(j)
N∑

�=1
� /= j

ϑ(�,j)(t) +Q(j)
N∑

�=1
� /= j

G(�,j)u
(�,j)
δ (t) = L(j)

N∑

�=1
� /= j

θ
(�)
o

(
t − τ�,j

)
. (2.19)

Replacing (2.15) in (2.19)

L(j)
N∑

�=1
� /= j

ϑ(�,j)(t) +Q(j)
N∑

�=1
� /= j

G(�,j)sin
(
ϑ(�,j)(t) −ωMτ�,j

)

= −Q(j)
N∑

�=1
� /= j

G(�,j)sin
(

2
(
ωMt + θ

(�)
o

(
t − τ�,j

))
− ϑ(�,j)

o (t) −ωMτ�,j
)
+ L(j)

N∑

�=1
� /= j

θ
(�)
o

(
t − τ�,j

)
,

(2.20)

for j = 1, 2, . . . ,N.
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Finally, (2.20) models the fully connected PLL network, neglecting the second-
harmonic term that is supposed to be filtered [3, 23, 24]. To simplify the analytical reasoning,
for a given node j, it is considered that all the phase errors are equally weighted, and that all
the constitutive parameters of the nodes are the same. These assumptions do not change the
main conclusions as weight criterion and node parameters affect only the system transient
behavior. Therefore, from now on G(�,j) = G, L(j)[·] = L[·], Q(j)[·] = Q[·] and

L
N∑

�=1
� /= j

ϑ(�,j)(t) +GQ
N∑

�=1
� /= j

sin
(
ϑ(�,j)(t) −ωMτ�,j

)
= L

N∑

�=1
� /= j

θ
(�)
o

(
t − τ�,j

)
. (2.21)

The fixed transmission delays, τ�,j , are also neglected, since they only shift the equilibrium
points from its original position in equation not affecting their stability conditions (2.21).
Using (2.5)

−(N − 1)Lθ(j)o (t) +GQ
N∑

�=1
� /= j

sin
(
ϑ(�,j)(t)

)
= 0, (2.22)

for j = 1, 2, . . . ,N.
From (2.5) it can be seen that, in the synchronous state the phase of node j is linearly

dependent on the phase output of all the other nodes. Then, it is necessary to obtain a set of
N − 1 linearly independent state variables [31].

This is obtained by rewriting (2.22) for node 1 and for the other nodes as follows:

−(N − 1)Lθ(1)o (t) +GQ
N∑

�=2

sin
(
ϑ(�,1)(t)

)
= 0, (2.23)

for node 1, and

−(N − 1)Lθ(j)o (t) +GQ
N∑

�=1
� /= j

sin
(
ϑ(�,j)(t)

)
= 0, (2.24)

for j = 2, . . . ,N.
Expressing the phase difference between all the other nodes and the node 1, that is,

subtracting (2.24) from (2.23), and considering (2.3) with τ�,j = 0

(N − 1)Lϑ(j,1)(t) +GQ
N∑

�=2

sin
(
ϑ(�,1)(t)

)
−

N∑

�=1
� /= j

sin
(
ϑ(�,j)(t)

)
= 0. (2.25)

Considering that

ϑ(1,j)(t) = θ(1)o (t) − θ(j)o (t) = −
(
θ
(j)
o (t) − θ(1)o (t)

)
= −ϑ(j,1)(t) (2.26)
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and that

ϑ(�,j)(t) = θ(�)o (t) − θ(j)o (t) = θ(�)o (t) − θ(1)o (t) + θ(1)o (t) − θ(j)o (t) = ϑ(�,1)(t) − ϑ(j,1)(t), (2.27)

working on (2.25),

Lϑ(j,1)(t)+2μ1Q sin
(
ϑ(j,1)(t)

)
+μ1Q

N∑

�=2
� /= j

(
sin
(
ϑ(�,1)(t)

)
− sin

(
ϑ(�,1)(t)−ϑ(j,1)(t)

))
=0, (2.28)

for j = 2, . . . ,N, and

μ1 =
G

N − 1
. (2.29)

The set of N − 1 equations given by (2.28) is the general model that describes the dynamical
behavior of the phase differences for the network nodes. The use of the lag filter, as in [16, 17],
simplifies the mathematical reasoning. However, this kind of filter is useful only when the
bandwidth, that is, the difference between input signal frequencies and central operation
frequency of the PLL does not need to be narrow [34].

In practical cases, when narrow bandwidth and large gain are simultaneously
required, lead-lag filters with transfer functions given by

F(s) =
s + α0

s + β0
(2.30)

are used [34].
The second-order filter, with transfer function given by

F(s) =
s + α0

s2 + β1s + β0
, (2.31)

prevents spurious side-bands by reducing the influence of double-frequency jitter and
transmission noise [21–24, 34], in spite of provoking bifurcation [26, 27].

Considering a first-order lead-lag filter in each node of the PLL network and (2.28),

ϑ̈(j,1)(t) + β0ϑ̇(j,1)(t) + 2μ1ϑ̇(j,1)(t) cos
(
ϑ(j,1)(t)

)
+ 2α0μ1sin

(
ϑ(j,1)(t)

)

+ μ1

N∑

�=2
� /= j

(
ϑ̇(�,1)(t) cos

(
ϑ(�,1)(t)

)
−
(
ϑ̇(�,1)(t) − ϑ̇(j,1)(t)

)
cos
(
ϑ(�,1)(t)−ϑ(j,1)(t)

))

+ α0μ1

N∑

�=2
� /= j

(
sin
(
ϑ(�,1)(t)

)
− sin

(
ϑ(�,1)(t) − ϑ(j,1)(t)

))
= 0.

(2.32)

for j = 2, . . . ,N.
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For the second-order filter, the model of the network is given by

...
ϑ
(j,1)(t) + β1ϑ̈(j,1)(t) + β0ϑ̇(j,1)(t) + 2μ1ϑ̇(j,1)(t) cos

(
ϑ(j,1)(t)

)
+ 2α0μ1sin

(
ϑ(j,1)(t)

)

+ μ1

N∑

�=2
� /= j

(
ϑ̇(�,1)(t) cos

(
ϑ(�,1)(t)

)
−
(
ϑ̇(�,1)(t) − ϑ̇(j,1)(t)

)
cos
(
ϑ(�,1)(t) − ϑ(j,1)(t)

))

+ α0μ1

N∑

�=2
� /= j

(
sin
(
ϑ(�,1)(t)

)
− sin

(
ϑ(�,1)(t) − ϑ(j,1)(t)

))
= 0,

(2.33)

for j = 2, . . . ,N.
Therefore, (2.32) models the fully connected network considering first-order lead-lag

node filters. Similarly, (2.33) represents the network with second-order node filters.In order
to simplify the study of the equilibrium and its stability for (2.32) and (2.33),

the next section presents state space models for both cases.

3. State Space Equations

From (2.32), state equations can be established considering the phase and frequency errors,
measured taking node 1 as reference, that is,

x
(m)
1 = ϑ(j,1)(t),

x
(m)
2 = ϑ̇(j,1)(t),

(3.1)

for j = 2, . . . ,N and m = j − 1.
Then, considering a first-order lag-lead low-pass filter, state equations are

ẋ
(m)
1 = x(m)

2

ẋ
(m)
2 = −β0x

(m)
2 − 2μ1x

(m)
2 cos

(
x
(m)
1

)
− 2α0μ1sin

(
x
(m)
1

)

− μ1

N−1∑

n=1
n/=m

(
x
(n)
2 cos

(
x
(n)
1

)
−
(
x
(n)
2 − x(m)

2

)
cos
(
x
(n)
1 − x(m)

1

))

− α0μ1

N−1∑

n=1
n/=m

(
sin
(
x
(n)
1

)
− sin

(
x
(n)
1 − x(m)

1

))
,

(3.2)

for m = 1, 2, . . . ,N − 1.
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Defining a new state variable,

x
(m)
3 = ϑ̈(j,1)(t), (3.3)

and by using (2.33), state equations considering a second-order low-pass filter are derived as

ẋ
(m)
1 = x(m)

2

ẋ
(m)
2 = x(m)

3

ẋ
(m)
3 = −β1x

(m)
3 − β0x

(m)
2 − 2μ1x

(m)
2 cos

(
x
(m)
1

)
− 2α0μ1sin

(
x
(m)
1

)

− μ1

N−1∑

n=1
n/=m

(
x
(n)
2 cos

(
x
(n)
1

)
−
(
x
(n)
2 − x(m)

2

)
cos
(
x
(n)
1 − x(m)

1

))

− α0μ1

N−1∑

n=1
n/=m

(
sin
(
x
(n)
1

)
− sin

(
x
(n)
1 − x(m)

1

))
,

(3.4)

for m = 1, 2, . . . ,N − 1.
Expressions (3.2) and (3.4) describe the dynamics of the phase adjustments of a fully-

connected network depending on the node parameters μ1, α0, β0 and β1, considering first-
order lag-lead and second-order filters, respectively. These equations allow the research of
the synchronous state stability conducted in the next section.

4. Synchronous State Stability

The fully connected PLL network reaches the synchronous state when all the frequency errors
vanish. Furthermore, the robustness of this state under small perturbations gives an idea
about the network steady state operation.

In this section, the local stability of the synchronous state, for the two different filter
types, by using the Taylor series representing the vector fields given by (3.2) and (3.4) in a
neighborhood of the synchronous state is studied.

Calculating the eigenvalues of the Jacobian of the vector fields that represents their
linear part, conditions for local asymptotic stability of the synchronous state are derived [25].

4.1. First-Order Lag-Lead Filter Analysis

The equilibrium points of the state equations in (3.2) that correspond to the synchronous
states of the network are

x∗(m) =
[
kπ 0

]T
, (4.1)
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where k = 0,±1,±2, . . . ; and for m = 1, 2, . . . ,N − 1, then

x∗ =
[
x∗(1)T x∗(2)T · · · x∗(N−1)T]T . (4.2)

For odd values of k, the equilibrium points are unstable for any parameter combination [17].
The stability of the equilibrium points corresponding to even values of k can be studied by
the eigenvalues of (4.3), considering the equilibrium point x∗, with k = 0:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

0 1 · · · 0 0

−α0Nμ1 −β0 −Nμ1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 1

0 0 · · · −α0Nμ1 −β0 −Nμ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

. (4.3)

The characteristic polynomial of the matrix A is

P(λ) = (λ2 + (β0 +Nμ1)λ + α0Nμ1)
N−1

, (4.4)

that presents N − 1 repeated pair of roots given by

λ = −
β0 +Nμ1

2
±

√
(β0 +Nμ1)

2 − 4α0Nμ1

2
. (4.5)

As all physically possible parameters in (4.5) are positive real numbers, these roots are either
real negative or complex conjugated with negative real part. Consequently, for any number
of nodes and any parameter combination, the fully connected PLL network with first-order
lag-lead filters presents locally asymptotically stable synchronous states.

4.2. Second-Order Filter Analysis

The equilibrium points of the state equations in (3.4) are

x∗(m) =
[
kπ 0 0

]T
, (4.6)

where k = 0,±1,±2, . . . ; and for m = 1, 2, . . . ,N − 1, then

x∗ =
[
x∗(1)T x∗(2)T · · · x∗(N−1)T]T . (4.7)
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For odd values of k, the equilibrium points are unstable for any parameter combination [27].
The stability of the equilibrium points corresponding to even values of k can be studied by
the eigenvalues of (4.8), considering the equilibrium point x∗, with k = 0:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0

−α0Nμ1 −β0 −Nμ1 −β1 · · · 0 0 0

...
...

...
...

. . .
...

...

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

0 0 0 · · · −α0Nμ1 −β0 −Nμ1 −β1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.8)

The characteristic polynomial of the matrix A is

P(λ) = (λ3 + β1λ
2 + β0 +Nμ1)λ + α0Nμ1)

N−1
. (4.9)

In order to verify if (4.9) presents roots with positive real part, Routh-Hurwitz criterion ([35])
is applied as follows:

λ3 1 β0 +Nμ1

λ2 β1 α0Nμ1

λ1 β1
(
β0 +Nμ1

)
− α0Nμ1

β1
λ0 α0Nμ1

. (4.10)

As all physically possible parameters are positive real numbers, the roots of (4.9) are either
real negative or complex conjugated with negative real part only if

N <
β1β0

μ1
(
α0 − β1

) . (4.11)

Consequently, (4.11) gives a superior limit for the number of nodes in a fully connected PLL
network with second-order node filters. Above this value, all the synchronous states of the
network are unstable

5. Conclusions

fully connected PLL networks can have their performance improved by choosing filters
different from first-order lag low-pass. If first-order lag-lead low-pass are chosen, the
synchronous states of the network are locally asymptotically stable for any number of nodes.
The adjustment of the parameters α0 and β0 only changes the transient responses, allowing
the desired bandwidth.
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If a second-order low pass is used, in order to further improve the transient response,
(4.11) establishes a superior limitation for the number of nodes of the network.
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