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1. Introduction

In this paper we propose a modified Jacobian-Newton iterative method to solve nonlinear
differential equations. In the first paper we concentrate on ordinary differential equations,
but numerical results are also obtained for partial differential equations. Basic studies of
the operator-splitting methods are found in [1, 2]. Further important research was carried
out to obtain a higher order for the splitting methods (see [3]). For this reason, the
iterative splitting methods became more important for linear and nonlinear differential
equations, while simple increasing of iteration steps affects the order of the scheme (see
[4]). An interesting topic is Newton’s methods for nonlinear problems with specifications
for numerical implementations, (see [5]). Efficient modifications of Newton’s methods, with
regard to the computation of the Jacobian matrices are discussed in [6]. In our paper we
discuss the benefit of the combination of splitting and linearization methods (see theoretical
frameworks [7, 8]).
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The outline of the paper is as follows. For our mathematical model we describe the
convection-diffusion-reaction equation in Section 2. The fractional splitting is introduced in
Section 3. We present the iterative splitting methods in Section 4. Section 5 discusses the
Newton methods and their modifications. In Section 6 we present the numerical results from
the solution of selected model problems. We end the article in Section 7 with a conclusion and
comments.

2. Mathematical Model

The motivation for the study presented below originates from a computational simulation of
heat-transfer [9] and convection-diffusion-reaction-equations [10–13].

In the present paper we concentrate on ordinary differential equations, given as

∂tu(t) = A(u(t))u(t) + B(u(t))u(t), t ∈ (0, T), (2.1)

where the initial condition is u(0) = u0. The operators A(u) and B(u) can be spatially
discretized operators, that is, they can correspond to the discretized in space convection and
diffusion operators (matrices). In the following, we deal with bounded nonlinear operators.

The aim of this paper is to present a new method based on Newton and iterative
schemes.

In the next section we discuss the decoupling of the time-scale with a first-order
fractional splitting method.

3. Fractional-Splitting Methods of
First-Order for Linear Equations

First we describe the simplest operator-splitting, which is called sequential operator-splitting,
for the following linear system of ordinary differential equations:

∂tu(t) = Au(t) + Bu(t), t ∈ (0, T), (3.1)

where the initial condition is u(0) = u0. The operators A and B are linear and bounded
operators in a Banach space (see also Section 2).

The sequential operator-splitting method is introduced as a method that solves two
subproblems sequentially, where the different subproblems are connected via the initial
conditions. This means that we replace the original problem (3.1) with the subproblems

∂u∗(t)
∂t

= Au∗(t), with u∗
(
tn
)
= un,

∂u∗∗(t)
∂t

= Bu∗∗(t), with u∗∗
(
tn
)
= u∗

(
tn+1),

(3.2)

where the splitting time-step is defined as τn = tn+1 − tn. The approximated solution is un+1 =
u∗∗(tn+1).
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Clearly, the replacement of the original problem with the subproblems usually results
in an error, called splitting error. The splitting error of the sequential operator-splitting method
can be derived as (cf., e.g., [1, 2]).

ρn =
1
τn

(
exp
(
τn(A + B)

) − exp
(
τnB
)

exp
(
τnA
))
u
(
tn
)

=

⎧
⎨

⎩

0, for [A,B] = 0 ,

O
(
τn
)
, for [A,B]/= 0 ,

(3.3)

where [A,B] := AB − BA is the commutator of A and B. Consequently, the splitting error is
O(τn) when the operators A and B do not commute, otherwise the method is exact. Hence,
by definition, the sequential operator-splitting is called the first-order splitting method.

4. The Iterative Splitting Method

The following algorithm is based on the iteration with fixed splitting discretization step-
size τ . On the time interval [tn, tn+1] we solve the following subproblems consecutively for
i = 0, 2, . . . 2m:

∂ui(x, t)
∂t

= Aui(x, t) + Bui−1(x, t), with ui(tn) = un,

u0(x, tn) = un, u−1 = 0,

ui(x, t) = ui−1(x, t) = u1, on ∂Ω × (0, T),

∂ui+1(x, t)
∂t

= Aui(x, t) + Bui+1(x, t), with ui+1(x, tn) = un,

ui(x, t) = ui−1(x, t) = u1, on ∂Ω × (0, T),

(4.1)

where un is the known split approximation at the time level t = tn (see [14]).

Remark 4.1. We can generalize the iterative splitting method to a multi-iterative splitting
method by introducing new splitting operators, for example, spatial operators. Then we
obtain multi-indices to control the splitting process; each iterative splitting method can be
solved independently, while connecting with further steps to the multi-splitting methods. In
the following we introduce the multi-iterative splitting method for a combined time-space
splitting method.

5. The Modified Jacobian-Newton Methods
and Fixpoint-Iteration Methods

In this section we describe the modified Jacobian-Newton methods and Fixpoint-iteration
methods.

We propose for weak nonlinearities, for example, quadratic nonlinearity, the fixpoint
iteration method, where our iterative operator splitting method is one, see [4]. For stronger
nonlinearities, for example, cubic or higher order polynomial nonlinearities, the modified
Jacobian method with embedded iterative-splitting methods is suggested.
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The point of embedding the splitting methods into the Newton methods is to decouple
the equation systems into simpler equations. Such simple equation systems can be solved
with scalar Newton methods.

5.1. The Altered Jacobian-Newton Iterative Methods with
Embedded Sequential Splitting Methods

We confine our attention to time-dependent partial differential equations of the form

dc

dt
= A(c(t))c(t) + B(c(t))c(t), with c

(
tn
)
= cn, (5.1)

whereA(c), B(c) : X → X are linear and densely defined in the real Banach space X, involving
only spatial derivatives of c, see [8]. We assume also that we have a weak nonlinear operator
with A(c)c = λ1c and B(c)c = λ2c, where λ1 and λ2 are constant factors.

In the following we discuss the embedding of a sequential splitting method into the
Newton method.

The altered Jacobian-Newton iterative method with an embedded iterative splitting
method is given as follows.

Newton’s Method

F(c) = dc/dt−A(c(t))c(t)−B(c(t))c(t) and we can compute c(k+1) = c(k)−D(F(c(k)))
−1
F(c(k)),

where D(F(c)) is the Jacobian matrix and k = 0, 1, . . . .
We stop the iterations when we obtain: |c(k+1) − c(k)| ≤ err, where err is an error bound,

for example, err = 10−4.
We assume the spatial discretization, with spatial grid points, i = 1, . . . , m and obtain

the differential equation system:

F(c) =

⎛

⎜⎜⎜⎜
⎝

F
(
c1
)

F
(
c2
)

...
F
(
cm
)

⎞

⎟⎟⎟⎟
⎠
, (5.2)

where c = (c1, . . . , cm)T and m is the number of spatial grid points.
The Jacobian matrix for the equation system is given as:

DF(c) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂F(c1)
c1

∂F(c1)
c2

. . .
∂F(c1)
cm

∂F(c2)
c1

∂F(c2)
c2

. . .
∂F(c2)
cm

...
∂F(cm)
c1

∂F(cm)
c2

. . .
∂F(cm)
cm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.3)

where c = (c1, . . . , cm).
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The modified Jacobian is given as:

DF(c) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂F(c1)
c1

+ F(c1)
∂F(c1)
c2

. . .
∂F(c1)
cm

∂F(c2)
c1

∂F(c2)
c2

F(c2) . . .
∂F(c2)
cm

...
∂F(cm)
c1

∂F(cm)
c2

. . .
∂F(cm)
cm

+ F(cm)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.4)

where c = (c1, . . . , cn).
By embedding the sequential splitting method we obtain the following algorithm. We

decouple into two equation systems:

F1
(
u1
)
= ∂tu1 −A

(
u1
)
u1 = 0 with u1

(
tn
)
= cn,

F2
(
u2
)
= ∂tu2 − B

(
u2
)
u2 = 0 with u2

(
tn
)
= u1

(
tn+1),

(5.5)

where the results of the methods are c(tn+1) = u2(tn+1), and u1 = (u11, . . . , u1n), u2 =
(u21, . . . , u2n).

Thus we have to solve two Newton methods, each in one equations system. The
contribution is to reduce the Jacobian matrix into a diagonal entry, for example, with a
weighted Newton method, see [15]. The splitting method with embedded Newton method
is given as follows.

Algorithm 5.1. We assume the spatial operators A and B are discretized, for example, finite
difference or finite element methods; further all initial conditions and boundary conditions
are discrete given. Then we can apply the Newton’s method in its discrete form as:

u
(k+1)
1 = u(k)1 −D(F1

(
u
(k)
1

))−1(
∂tu

(k)
1 −A(u(k)1

)
u
(k)
1

)
,

with D
(
F1
(
u
(k)
1

))
=

∂

∂u
(k)
1

(

∂tu
(k)
1 −A(u(k)1

) − ∂A
(
u
(k)
1

)

∂u
(k)
1

u
(k)
1

)

,

u
(k)
1

(
tn
)
= cn, k = 0, 1, 2, . . . , K,

u
(l+1)
2 = u(l)2 −D(F2

(
u
(l)
2

))−1(
∂tu

(l)
2 − B(u(l)2

)
u
(l)
2

)
,

with D
(
F2
(
u
(l)
2

))
=

∂

∂u
(k)
1

(

∂tu
(k)
2 − B(u(l)2

) − ∂B
(
u
(l)
2

)

∂u
(l)
2

u
(l)
2

)

,

u
(l)
2

(
tn
)
= uK1

(
tn+1), l = 0, 1, 2, . . . , L.

(5.6)
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where k and l are the iteration indices, K and L the maximal iterative steps for each part of
the Newton’s method. The maximal iterative steps allow us to have at least an error of:

∣
∣u(K)(tn+1)

1 − u(K−1)(tn+1)
1

∣
∣ ≤ err,

∣
∣u(L)(t

n+1)
2 − u(L−1)(tn+1)

2

∣
∣ ≤ err,

(5.7)

where err is the error bound, for example, err= 10−6.
The approximated solution is given as:

u
(
tn+1) = u(L)(t

n+1)
2 . (5.8)

For the improvement method, we can apply the weighted Newton method. We try to
skip the delicate outer diagonals in the Jacobian matrix and apply:

u
(k+1)
1 = u(k)1 − (D(F1

(
u
(k)
1

))
+ δ1
(
u
(k)
1

))−1(
F1
(
u
(k)
1

)
+ ε u(k)1

)
, (5.9)

where the function δ can be applied as a scalar, for example, δ = 10−6, and the same with ε. It
is important to ensure that δ is small enough to preserve the convergence.

Remark 5.2. If we assume that we discretize (5.5) with the backward-Euler method, for
example,

F1
(
u1
(
tn+1)) = u1

(
tn+1) − u1

(
tn
) −ΔtA

(
u1
(
tn+1))u1

(
tn+1) = 0 with u1

(
tn
)
= cn,

F2
(
u2
)
= u2

(
tn+1) − u2

(
tn
) −ΔtB

(
u2
(
tn+1))u2

(
tn+1) = 0 with u2

(
tn
)
= u1

(
tn+1),

(5.10)

then we obtain the derivations D(F1(u1(tn+1))) and D(F2(u2(tn+1)))

D
(
F1
(
u1
(
tn+1))) = 1 −Δt

(

A
(
u1
(
tn+1)) +

∂A
(
u1
(
tn+1))

∂u1
(
tn+1
) u1

(
tn+1)

)

,

D
(
F2
(
u2
))

= 1 −Δt

(

B
(
u2
(
tn+1)) +

∂B
(
u2
(
tn+1))

∂u2
(
tn+1
) u2

(
tn+1)

)

.

(5.11)

We can apply the equation (5.9) analogously u(l+1)
2 .

5.2. Iterative Operator-Splitting Method as a Fixpoint Scheme

The iterative operator-splitting method is used as a fixpoint scheme to linearize the nonlinear
operators, see [4, 16].

We confine our attention to time-dependent partial differential equations of the form:

du

dt
= A(u(t))u(t) + B(u(t))u(t), with u(tn) = cn, (5.12)
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where A(u), B(u) : X → X are linear and densely defined in the real Banach space X,
involving only spatial derivatives of c, see [8]. In the following we discuss the standard
iterative operator-splitting methods as a fixpoint iteration method to linearize the operators.

We split our nonlinear differential equation (5.12) by applying:

dui(t)
dt

= A
(
ui−1(t)

)
ui(t) + B

(
ui−1(t)

)
ui−1(t), with ui

(
tn
)
= cn,

dui+1(t)
dt

= A
(
ui−1(t)

)
ui(t) + B

(
ui−1(t)

)
ui+1, with ui+1

(
tn
)
= cn,

(5.13)

where the time-step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. u0(t) = cn is the
starting solution, where we assume the solution cn+1 is near cn, or u0(t) = 0. So we have to
solve the local fixpoint problem. cn is the known split approximation at the time level t = tn.

The split approximation at time level t = tn+1 is defined as cn+1 = u2m+2(tn+1). We
assume the operators A(ui−1), B(ui−1) : X → X to be linear and densely defined on the real
Banach space X, for i = 1, 3, . . . , 2m + 1.

Here the linearization is done with respect to the iterations, such that A(ui−1), B(ui−1)
are at least non-dependent operators in the iterative equations, and we can apply the linear
theory.

The linearization is at least in the first equation A(ui−1) ≈ A(ui), and in the second
equation B(ui−1) ≈ B(ui+1).

We have

∥∥A
(
ui−1
(
tn+1))ui

(
tn+1) −A(un+1)u

(
tn+1)∥∥ ≤ ε, (5.14)

with sufficient iterations i = {1, 3, . . . , 2m + 1}.

Remark 5.3. The linearization with the fixpoint scheme can be used for smooth or weak
nonlinear operators, otherwise we lose the convergence behavior, while we did not converge
to the local fixpoint, see [4].

The second idea is based on the Newton method.

5.3. Jacobian-Newton Iterative Method with
Embedded Operator-Splitting Method

The Newton method is used to solve the nonlinear parts of the iterative operator-splitting
method (see the linearization techniques in [4, 17]).

Newton Method

The function is given as:

F(c) =
∂c

∂t
−A(c(t))c(t) − B(c(t))c(t) = 0, (5.15)
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The iteration can be computed as:

c(k+1) = c(k) −D(F(c(k)))−1
F
(
c(k)
)
, (5.16)

where D(F(c)) is the Jacobian matrix and k = 0, 1, . . . . and c = (c1, . . . , cm) is the solution
vector of the spatial discretized nonlinear equation.

We then have to apply the iterative operator-splitting method and obtain:

F1
(
ui
)
= ∂tui −A

(
ui
)
ui − B

(
ui−1
)
ui−1 = 0, with ui

(
tn
)
= cn,

F2
(
ui+2
)
= ∂tui+1 −A

(
ui
)
ui − B

(
ui+1
)
ui+1 = 0, with ui+1

(
tn
)
= cn,

(5.17)

where the time-step is τ = tn+1−tn. The iterations are i = 1, 3, . . . , 2m+1. c0(t) = 0 is the starting
solution and cn is the known split approximation at the time-level t = tn. The results of the
methods are c(tn+1) = u2m+2(tn+1).

Thus we have to solve two Newton methods and the contribution will be to reduce
the Jacobian matrix, for example, skip the diagonal entries. The splitting method with the
embedded Newton method is given as:

u
(k+1)
i = u(k)i −D(F1

(
u
(k)
i

))−1(
∂tu

(k)
i −A(u(k)i

)
u
(k)
i − B(u(k)i−1

)
u
(k)
i−1

)
,

with D
(
F1
(
u
(k)
i

))
= −
(

A
(
u
(k)
i

)
+
∂A
(
u
(k)
i

)

∂u
(k)
i

u
(k)
i

)

, k = 0, 1, 2, . . . , K, with ui
(
tn
)
= cn,

u
(l+1)
i+1 = u(l)i+1 −D

(
F2
(
u
(l)
i+1

))−1(
∂tu

(l)
i+1 −A

(
u
(k)
i

)
u
(k)
i − B(u(k)i+1

)
u
(k)
i+1

)
c
(l)
2

)
,

with D
(
F2
(
u
(l)
i+1

))
= −
(

B
(
u
(l)
i+1

)
+
∂B
(
u
(l)
i+1

)

∂u
(l)
i+1

u
(l)
i+1

)

, l = 0, 1, 2, . . . , L, with ui+1
(
tn
)
= cn,

(5.18)

where the time-step is τ = tn+1 − tn. The iterations are: i = 1, 3, . . . , 2m + 1. c0(t) = 0 is the
starting solution and cn is the known split approximation at the time-level t = tn. The results
of the methods are c(tn+1) = u2m+2(tn+1).

For the improvement by skipping the delicate outer diagonals in the Jacobian matrix,

we apply u(k+1)
i = u(k)i − (D(F1(u

(k)
i )) + δ1(u

(k)
i ))

−1
(F1(u

(k)
i ) + ε u(k)i ), and analogously u(l+1)

i+1 .

Remark 5.4. For the iterative operator-splitting method with the Newton iteration we have
two iteration procedures. The first iteration is the Newton method to compute the solution
of the nonlinear equations, and the second iteration is the iterative splitting method, which
computes the resulting solution of the coupled equation systems. The embedded method is
used for strong nonlinearities.
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6. Numerical Results

In this section, we present the numerical results for nonlinear differential equation using
several variations of the proposed Newton and iterative schemes as solvers.

6.1. First Numerical Example: Bernoulli Equation

As a nonlinear differential example, we choose the Bernoulli equation:

∂u(t)
∂t

=
(
λ1 + λ3

)
u(t) +

(
λ2 + λ4

)
(u(t))p, t ∈ [0, T], with u(0) = 1, (6.1)

where the analytical solution can be derived as (see also [16]):

u(t) = exp
((
λ1 + λ3

)
t
)
[
− λ2 + λ4

λ1 + λ3
exp
((
λ1 + λ3

)
(p − 1)t

)
+ c
]1/(1−p)

. (6.2)

Using u(0) = 1 we find that c = 1 + (λ2 + λ4)/(λ1 + λ3), so

u(t) = exp
((
λ1 + λ3

)
t
)
{

1 +
λ2 + λ4

λ1 + λ3

[
1 − exp

((
λ1 + λ3

)
(p − 1)t

)]
}1/(1−p)

. (6.3)

We choose p = 2, λ1 = −1, λ2 = −0.5, λ3 = −100, λ4 = −20 and, for example, Δt = 10−2.
The analytical solutions can be given as:

u(t)1−p = u0 exp
(
(1 − p)(λ1 + λ3

)
t
)
+
λ2 + λ4

λ1 + λ3

(
exp
(
(1 − p)(λ1 + λ3

)
t
) − 1). (6.4)

We divide the time interval [0, T], with T = 1, in n intervals with length τn = T/n.
(1) The sequential operator-splitting method with analytical solutions is given as

follows.
We apply the quasilinear iterative operator-splitting method:

du1(t)
dt

= A
(
u1(t)

)
u1(t), with u1

(
tn
)
= un,

du2(t)
dt

= B
(
u2(t)

)
u2, with u2

(
tn
)
= un+1

1 ,

(6.5)

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))
p−1u, B(u)u = λ3u(t)+λ4(u(t))

p−1u. The
result is given as u2(tn+1) = un+1.

We apply the Newton method and discretize the operators with time discretization
methods such as backward-Euler or higher Runge-Kutta methods.
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The analytical result for each equation part is given as:

u1(t)
1−p = u

(
tn
)

exp
(
(1 − p)(λ1

)
t
)
+
λ2

λ1

(
exp
(
(1 − p)(λ1

)
t
) − 1

)
,

u2
(
tn+1)1−p

= u1
(
tn+1) exp

(
(1 − p)(λ3

)
t
)
+
λ4

λ3

(
exp
(
(1 − p)(λ3

)
t
) − 1

)
,

(6.6)

where the result is given as u(tn+1) = u2(tn+1).
We can apply the simpler equations and solve the sequential operator-splitting

method.
(2) The sequential operator-splitting method with embedded Newton method is given

as follows.
We apply the quasilinear iterative operator-splitting method:

du1(t)
dt

= A
(
u1(t)

)
u1(t), with u1

(
tn
)
= un,

du2(t)
dt

= B
(
u2(t)

)
u2, with u2

(
tn
)
= un+1

1 ,

(6.7)

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))
p−1u, B(u)u = λ3u(t)+λ4(u(t))

p−1u. The
result is given as u2(tn+1) = un+1.

We apply the Newton method and discretize the operators with time discretization
methods such as backward-Euler or higher Runge-Kutta methods.

The splitting method with embedded Newton’s method is given as

u
(k+1)
1 = u(k)1 −D(F1

(
u
(k)
1

))−1(
∂tu

(k)
1 −A(u(k)1

)
u
(k)
1

)
,

with D
(
F1
(
u
(k)
1

))
= −
(

A
(
u
(k)
1

)
+
∂A
(
u
(k)
1

)

∂u
(k)
1

u
(k)
1

)

,

u
(k)
1

(
tn
)
= cn, k = 0, 1, 2, . . . , K,

u
(l+1)
2 = u(l)2 −D(F2

(
u
(l)
2

))−1(
∂tu

(l)
2 − B(u(l)2

)
u
(l)
2

)
,

with D
(
F2
(
u
(l)
2

))
= −
(

B
(
u
(l)
2

)
+
∂B
(
u
(l)
2

)

∂u
(l)
2

u
(l)
2

)

,

u
(l)
2

(
tn
)
= uK1

(
tn+1), l = 0, 1, 2, . . . , L,

(6.8)

where we discretize the equations and obtain the discretized operators:

∂tu
(k)
1 −A(u(k)1

)
u
(k)
1 = 0, (6.9)
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as

F1
(
u1
(
tn+1))u(k)1

(
tn+1) − u1

(
tn
) −ΔtA

(
u
(k)
1

(
tn+1))u(k)1

(
tn+1) = 0, (6.10)

where we have the initialization of the Newton’s method as u(0)1 (tn+1) = 0 or u(0)1 (tn+1) =
u1(tn).

For the second iteration equation we have

∂tu
(l)
2 − B(u(l)2

)
u
(l)
2 , (6.11)

as

F2
(
u2
(
tn+1)) = u(l)2

(
tn+1) − u2

(
tn
) −ΔtB

(
u
(l)
2

(
tn+1))u(l)2

(
tn+1) = 0, (6.12)

where we have the initialization of the Newton’s method as u(0)2 (tn+1) = 0 or u(0)2 (tn+1) =
u1(tn).

The derivations are given as:

D
(
F1
(
u1
(
tn+1))) = 1 −Δt

(

A
(
u1
(
tn+1)) +

∂A
(
u1
(
tn+1))

∂u1
(
tn+1
) u1

(
tn+1)

)

,

D
(
F2
(
u2
))

= 1 −Δt

(

B
(
u2
(
tn+1)) +

∂B
(
u2
(
tn+1))

∂u2
(
tn+1
) u2

(
tn+1)

)

.

(6.13)

(3) The standard iterative operator-splitting method is given as follows.
We apply the quasilinear iterative operator-splitting method:

dui(t)
dt

= A
(
ui−1(t)

)
ui(t) + B

(
ui−1(t)

)
ui−1(t), with ui

(
tn
)
= un,

dui+1(t)
dt

= A
(
ui−1(t)

)
ui(t) + B

(
ui−1(t)

)
ui+1, with ui+1

(
tn
)
= un,

(6.14)

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))
p−1u, B(u)u = λ3u(t)+λ4(u(t))

p−1u. The
initialization of the fixpoint iteration is u0 = un or u0 = 0 with A(u0) = λ1 and B(u0) = λ3.

For the iterations we can apply the analytical solution of each equation:

ui(t) = un exp
(
A
(
ui−1(t)

)
t
)
+
(
A
(
ui−1(t)

))−1(
B
(
ui−1(t)

)
ui−1(t)

)(
1 − exp

(
A
(
ui−1(t)

)
t
))
,

ui+1(t) = un exp
(
B
(
ui−1(t)

)
t
)
+
(
B
(
ui−1(t)

))−1(
A(ui−1(t)

)
ui−1(t)

)(
1 − exp

(
B
(
ui−1(t)

)
t
))
.

(6.15)

Further the iterative steps can be done.
(4) The Newton iterative method with embedded iterative operator-splitting method

is given as follows.
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We apply the quasilinear iterative operator-splitting method:

dui(t)
dt

= A
(
ui(t)

)
ui(t) + B

(
ui−1(t)

)
ui−1(t), with ui

(
tn
)
= un,

dui+1(t)
dt

= A
(
ui(t)

)
ui(t) + B

(
ui+1(t)

)
ui+1, with ui+1

(
tn
)
= un,

(6.16)

with the nonlinear operators A(u)u = λ1u(t)+λ2(u(t))
p−1u, B(u)u = λ3u(t)+λ4(u(t))

p−1u. The
initialization of the fixpoint iteration is u0(tn+1) = un or u0(tn+1) = 0.

The discretization of the nonlinear ordinary differential equation is performed with
higher-order Runge-Kutta methods.

The Newton method is applied as:

u
(k+1)
i = u(k)i −D(F1

(
u
(k)
i

))−1(
∂tu

(k)
i −A(u(k)i

)
u
(k)
i − B(ui−1

)
ui−1
)
,

D
(
F1
(
u
(k)
i

))
= −
(

A
(
u
(k)
i

)
+
∂A
(
u
(k)
i

)

∂u
(k)
i

u
(k)
i

)

, k = 0, 1, 2, . . . , K,

ui
(
tn
)
= cn,

ui
(
tn+1) = ui

(
tn+1)K+1

, where |ui
(
tn+1)K+1 − ui

(
tn+1)K| ≤ err,

u
(l+1)
i+1 = u(l)i+1 −D

(
F2
(
u
(l)
i+1

))−1(
∂tu

(l)
i+1 −A

(
ui
)
ui − B

(
u
(l)
i+1

)
u
(l)
i+1

)
c
(l)
2

)
,

D
(
F2
(
u
(l)
i+1

))
= −
(

B
(
u
(l)
i+1

)
+
∂B
(
u
(l)
i+1

)

∂u
(l)
i+1

u
(l)
i+1

)

, l = 0, 1, 2, . . . , L,

ui+1
(
tn
)
= cn,

ui+1
(
tn+1) = ui+1

(
tn+1)L+1

, where |ui+1
(
tn+1)L+1 − ui+1

(
tn+1)L| ≤ err.

(6.17)

Here the time-step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m+1. u0(t) = 0 is the starting
solution and cn is the known split approximation at the time-level t = tn. The results of the
methods are u(tn+1) = u2m+2(tn+1).

We apply the discretization methods for the iteration steps.
We discretize the equations

∂tu
(k)
i −A(u(k)i

)
u
(k)
i − B(ui−1

)
ui−1 = 0 , (6.18)

as

F1
(
u
(k)
i

(
tn+1)) = u(k)i

(
tn+1) − ui

(
tn
) −Δt

(
A
(
u
(k)
i

(
tn+1))u(k)i

(
tn+1) + B

(
ui−1
(
tn+1))ui−1

(
tn+1)) ,
(6.19)

where we have the initialization of the Newton’s method as u(0)i (tn+1) = 0 or u(0)i (tn+1) = u(tn).
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Table 1: Numerical results for the Bernoulli equation with sequential operator-splitting method.

Time partitions Approximated solution Error
1 0.0000000000 6.620107e-044
2 0.0000000000 5.874983e-023
3 0.0000000000 6.351951e-016
4 0.0000000000 1.917794e-012
5 0.0000000002 2.232302e-010
10 0.0000023626 2.362646e-006
50 0.0015822287 1.582229e-003

Table 2: Numerical results for the Bernoulli equation with sequential operator-splitting method with
embedded Newton’s method.

Time partitions Approximated solution Error
1 0.4705129443 4.705129e-001
4 0.0546922483 5.469225e-002
5 0.0269954419 2.699544e-002
10 0.0008034713 8.034713e-004
15 0.0000000000 1.137634e-044
100 0.0000000000 1.137634e-044

For the second iteration equation we have:

∂tu
(l)
2 −A(ui

)
ui − B

(
u
(l)
2

)
u
(l)
2 = 0, (6.20)

as

F2
(
u
(l)
i+1

(
tn+1)) = u(l)i+1

(
tn+1) − ui+1

(
tn
) −Δt

(
A
(
ui
(
tn+1))ui

(
tn+1) + B

(
u
(l)
i+1

(
tn+1))u(l)i+1

(
tn+1)),

(6.21)

where we have the initialization of the Newton’s method as u(0)i+1(t
n+1) = 0 or u(0)i+1(t

n+1) = u(tn).
The derivations are given as:

D
(
F1
(
u
(k)
i

(
tn+1))) = 1 −Δt

(

A
(
u
(k)
i+1

(
tn+1)) +

∂A
(
u
(k)
i+1

(
tn+1))

∂u
(k)
i+1

(
tn+1
) u

(k)
i+1

(
tn+1)

)

,

D
(
F2
(
u
(l)
i+1

(
tn+1))) = 1 −Δt

(

B
(
u
(l)
i+1

(
tn+1)) +

∂B
(
u
(l)
i+1

(
tn+1))

∂u
(l)
i+1

(
tn+1
) u

(l)
i+1

(
tn+1)

)

.

(6.22)

Our numerical results for the different methods are presented in Tables 1, 2, 3, and 4.
The errors of the methods are shown in Figures 1, 2, and 3. We chose different iteration steps
and time partitions. The error between the analytical and numerical solution is shown with
the supremum norm at time T = 1.0.
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Table 3: Numerical results for the Bernoulli equation with iterative operator-splitting method.

Time partitions Number of iter. Approximated solution Error
1 2 0.0125000000 1.250000e-002
1 4 0.2927814810 2.927815e-001
1 10 0.0109667158 1.096672e-002
1 50 0.0109556732 1.095567e-002
5 2 0.0109913109 1.099131e-002
5 4 0.3152826900 3.152827e-001
5 10 0.0108511723 1.085117e-002
5 50 0.0108509643 1.085096e-002
10 2 0.0108995483 1.089955e-002
10 4 0.2437741856 2.437742e-001
10 10 0.0108426328 1.084263e-002
10 50 0.0108426158 1.084262e-002
50 2 0.0149667882 1.496679e-002
50 4 0.0166913971 1.669140e-002
50 10 0.0157464111 1.574641e-002
50 50 0.0159933864 1.599339e-002
100 2 0.0154572223 1.545722e-002
100 4 0.0160048071 1.600481e-002
100 10 0.0158481781 1.584818e-002
100 50 0.0158673179 1.586732e-002

0.250.20.150.10.050

Exact solution
Approximated solution

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 1: Analytical and approximated solution with sequential operator-splitting method.

The experiments show the reduced errors for more iteration steps and more time
partitions. Because of the time-discretization method for ODEs, we restrict the number of
iteration steps to a maximum of five. If we restrict the error bound to 10−3, two iteration steps
and five time partitions give the most effective combination.
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Table 4: Numerical results for the Bernoulli equation with iterative operator-splitting method with
embedded Newton’s method.

Time partitions Number of iter. Approximated solution Error
1 2 0.0000000000 1.137634e-044
1 4 0.0000000000 1.137634e-044
1 10 0.0000000000 1.137634e-044
1 20 0.0000000000 1.137634e-044
2 2 0.0000000000 1.137634e-044
2 4 0.0000000000 1.137634e-044
2 10 0.0000000000 1.137634e-044
2 20 0.0000000000 1.137634e-044

0.250.20.150.10.050

Exact solution
Approximated solution

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 2: Analytical and approximated solution with sequential operator-splitting method with embedded
Newton’s method.

6.2. Second Numerical Example: Mixed Convection-Diffusion
and Burgers Equation

We deal with a 2D example which is a mixture of a convection-diffusion and Burgers
equation. We can derive an analytical solution:

∂tu = −1
2
u∂xu − 1

2
u∂yu − 1

2
∂xu − 1

2
∂yu

+ μ
(
∂xxu + ∂yyu

)
+ f(x, y, t), (x, y, t) ∈ Ω × [0, T],

u(x, y, 0) = uana(x, y, 0), (x, y) ∈ Ω,

u(x, y, t) = uana(x, y, t) on ∂Ω × [0, T],

(6.23)

where Ω = [0, 1] × [0, 1], T = 1.25, and μ is the viscosity.
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Exact solution
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Figure 3: Analytical and approximated solution with iterative operator-splitting method.

The analytical solution is given as

uana(x, y, t) =
(

1 + exp
(
x + y − t

2μ

))−1

+ exp
(
x + y − t

2μ

)
, (6.24)

where we compute f(x, y, t) accordingly.
We split the convection-diffusion and the Burgers equation. The operators are given

as:

A(u)u = −1
2
u∂xu − 1

2
u∂yu +

1
2
μ
(
∂xxu + ∂yyu

)
, (6.25)

hence

A(u) =
1
2
( − u∂x − u∂y + μ

(
∂xx + ∂yy

))
(the Burgers term),

Bu = −1
2
∂xu − 1

2
∂yu +

1
2
μ
(
∂xxu + ∂yyu

)
+ f(x, y, t) (the convection-diffusion term).

(6.26)

For the first equation we apply the nonlinear Algorithm 5.1 and obtain

A
(
ui−1
)
ui = −1

2
ui−1∂xui − 1

2
ui−1∂yui +

1
2
μ
(
∂xxui + ∂yyui

)
,

Bui−1 =
1
2
( − ∂x − ∂y + μ

(
∂xx + ∂yy

))
ui−1,

(6.27)

and we obtain linear operators, because ui−1 is known from the previous time-step.
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Table 5: Numerical results for the mixed convection-diffusion and Burgers equation with viscosity μ = 0.5,
initial condition u0(t) = cn, and four iterations per time-step.

Δx = Δy Δt errL1 errmax ρL1 ρmax

1/5 1/20 0.0137 0.0354
1/10 1/20 0.0055 0.0139 1.3264 1.3499
1/20 1/20 0.0017 0.0043 1.6868 1.6900
1/40 1/20 8.8839 · 10−5 3.8893 · 10−4 4.2588 3.4663
1/5 1/40 0.0146 0.0377
1/10 1/40 0.0064 0.0160 1.1984 1.2315
1/20 1/40 0.0026 0.0063 1.3004 1.3375
1/40 1/40 8.2653 · 10−4 0.0021 1.6478 1.6236

Table 6: Numerical results for the mixed convection-diffusion and Burgers equation with viscosity μ = 5,
initial condition u0(t) = cn, and two iterations per time-step.

Δx = Δy Δt errL1 errmax ρL1 ρmax

1/5 1/20 1.3166 · 10−5 2.9819 · 10−5

1/10 1/20 5.6944 · 10−6 1.3541 · 10−5 1.2092 1.1389
1/20 1/20 1.6986 · 10−6 4.5816 · 10−6 1.7452 1.5634
1/40 1/20 7.8145 · 10−7 2.0413 · 10−6 1.1201 1.1663
1/5 1/40 1.4425 · 10−5 3.2036 · 10−5

1/10 1/40 7.2343 · 10−6 1.5762 · 10−5 0.9957 1.0233
1/20 1/40 3.0776 · 10−6 6.7999 · 10−6 1.2330 1.2129
1/40 1/40 9.8650 · 10−7 2.3352 · 10−6 1.6414 1.5420

In the second equation we obtain by using Algorithm 5.1:

A
(
ui−1
)
ui = −1

2
ui−1∂xui − 1

2
ui−1∂yui +

1
2
μ
(
∂xxui + ∂yyui

)
,

Bui+1 =
1
2
( − ∂x − ∂y + μ

(
∂xx + ∂yy

))
ui+1,

(6.28)

and we have linear operators.
We deal with different viscosities μ as well as different step-sizes in time and space.

We have the following results (see Tables 5 and 6).
Figure 4 presents the profile of the 2D linear and nonlinear convection-diffusion

equation.

Remark 6.1. In the examples, we deal with more iteration steps to obtain higher-order
convergence results. In the first test we have four iterative steps but a smaller viscosity
(μ = 0.5) such that we can reach at least a second-order method. In the second test we use a
high viscosity about μ = 5 and get the second-order result with two iteration steps. Here we
see the loss of differentiability, that becomes stiff equation parts. To obtain the same results,
we have to increase the number of iteration steps. Therefore we can show an improvement of
the convergence order with respect to the iteration steps.



18 Mathematical Problems in Engineering

0
0.2 0.4

0.6 0.8 1

0

0.5

1
0

2

4

6

8

Numeric solution wave equation

(a)

0
0.2 0.4

0.6 0.8 1

0

0.5

1
0

2

4

6

8

Numeric solution wave equation

(b)

Figure 4: Mixed convection-diffusion and Burgers equation at initial time t = 0.0 (a) and end time t = 1.25
(b) for viscosity μ = 0.5.
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Figure 5: 1D momentum equation at initial time t = 0.0 (a) and end time t = 1.25 (b) for μ = 5 and v = 0.001.

6.3. Third Numerical Example: Momentum Equation (Molecular Flow)

We deal with an example of a momentum equation, that is used to model the viscous flow of
a fluid.

∂tu = −u · ∇u + 2μ∇
(
D(u) +

1
3
∇u
)
+ f(x, y, t), (x, y, t) ∈ Ω × [0, T],

u(x, y, 0) = g1(x, y), (x, y) ∈ Ω,

u(x, y, t) = g2(x, y, t) on ∂Ω × [0, T], (enclosed flow),

(6.29)

where u = (u1, u2)
t is the solution and Ω = [0, 1]× [0, 1], T = 1.25, μ = 5, and v= (0.001, 0.001)t

are the parameters and I is the unit matrix.
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Figure 6: 2D momentum equation at initial time t = 0.0 ((a), (c)) and end time t = 1.25 ((b), (d)) for μ = 0.5
and v= (1, 1)t for the first and second component of the numerical solution.

The nonlinear function D(u) = u ·u + v ·u is the viscosity flow, and v is a constant
velocity.

We can derive the analytical solution with respect to the first two test examples with
the functions:

u1(x, y, t) =
(

1 + exp
(
x + y − t

2μ

))−1

+ exp
(
x + y − t

2μ

)
,

u2(x, y, t) =
(

1 + exp
(
x + y − t

2μ

))−1

+ exp
(
x + y − t

2μ

)
.

(6.30)

For the splitting method our operators are given as:

A(u)u = −u∇u + 2μ∇D(u) (the nonlinear operator),

Bu =
2
3
μΔu (the linear operator).

(6.31)
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We deal first with the one-dimensional case,

∂tu = −u · ∂xu + 2μ∂x
(
D(u) +

1
3
∂xu

)
+ f(x, t), (x, t) ∈ Ω × [0, T],

u(x, 0) = g1(x), (x) ∈ Ω,

u(x, t) = g2(x, t) on ∂Ω × [0, T], (enclosed flow),

(6.32)

where u is the solution and Ω = [0, 1], T = 1.25, μ = 5, and v = 0.001 are the parameters.
Then the operators are given as:

A(u)u = −u∂xu + 2μ∂xD(u) (the nonlinear operator),

Bu =
2
3
μ∂xxu (the linear operator).

(6.33)

For the iterative operator-splitting as fixed point scheme, we have the following results (see
Tables 7 and 9).

Figure 5 presents the profile of the 1D momentum equation.
We have the following results for the 2D case (see Tables 10, 11, and 12).
Figure 6 presents the profile of the 2D momentum equation.
For the Newton operator-splitting method we obtain the following functional matrices

for the one-dimensional case:

DF(u) = (4μ − 1)∂xu,

D(F(u)) = −
(
∂u1F1(u) ∂u2F1(u)

∂u1F2(u) ∂u2F2(u)

)

= −
(−∂xu1 + 4μ∂xu1 −∂xu2 + 4μ∂xu2

−∂yu1 + 4μ∂yu1 −∂yu2 + 4μ∂yu2

)

= (4μ − 1)∇u.

(6.34)

For the two-dimensional case, we use:

A(u)u = −u∇u + 2μ∇D(u)

= −
(
u1∂xu1 + u2∂xu2

u1∂yu1 + u2∂yu2

)

+ 2μ

(
2u1∂xu1 + 2u2∂xu2 + v1∂xu1 + v2∂xu2

2u1∂yu1 + 2u2∂yu2 + v1∂yu1 + v2∂yu2

)

.
(6.35)

Here, we do not need the linearization and apply the standard iterative splitting
method.

We only linearize the first split step and therefore we can relax this step with the second
linear split step. Therefore we obtain stable methods, see [15]. For the Newton iterative
method, we have the following results, see Table 8.
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Table 7: Numerical results for the 1D momentum equation with μ = 5, v = 0.001, initial condition u0(t) = cn,
and two iterations per time-step.

Δx Δt errL1 errmax ρL1 ρmax

1/10 1/20 0.0213 0.0495

1/20 1/20 0.0203 0.0470 0.0689 0.0746

1/40 1/20 0.0198 0.0457 0.0401 0.0402

1/80 1/20 0.0195 0.0450 0.0216 0.0209

1/10 1/40 0.0134 0.0312

1/20 1/40 0.0117 0.0271 0.1957 0.2009

1/40 1/40 0.0108 0.0249 0.1213 0.1211

1/80 1/40 0.0103 0.0238 0.0682 0.0674

1/10 1/80 0.0094 0.0217

1/20 1/80 0.0073 0.0169 0.3591 0.3641

1/40 1/80 0.0062 0.0143 0.2451 0.2448

1/80 1/80 0.0056 0.0129 0.1478 0.1469

Table 8: Numerical results for the 1D momentum equation with μ = 5, v = 0.001, initial condition u0(t) = cn,
two iterations per time-step and K = 1 using Newton iterative method.

Δx Δt errL1 errmax ρL1 ρmax

1/10 1/20 0.0180 0.0435

1/20 1/20 0.0120 0.0276 0.5867 0.6550

1/40 1/20 0.0095 0.0227 0.3311 0.2870

1/80 1/20 0.0085 0.0208 0.1706 0.1231

1/10 1/40 0.0172 0.0459

1/20 1/40 0.0125 0.0305 0.4652 0.5884

1/40 1/40 0.0108 0.0253 0.2366 0.2698

1/80 1/40 0.0097 0.0235 0.1191 0.1111

1/10 1/80 0.0166 0.0475

1/20 1/80 0.0132 0.0338 0.3327 0.4917

1/40 1/80 0.0119 0.0280 0.1640 0.2734

1/80 1/80 0.0112 0.0265 0.0802 0.0779

Remark 6.2. In the more realistic examples of 1D and 2D momentum equations, we can
also observe the stiffness problem, which we obtain with a more hyperbolic behavior. In
the 1D experiments we deal with a more hyperbolic behavior and can obtain at least first-
order convergence with two iterative steps. In the 2D experiments we obtain nearly second-
order convergence results with two iterative steps, if we increase the parabolic behavior, for
example, larger μ and v values. For such methods, we have to balance the usage of the
iterative steps with refinement in time and space with respect to the hyperbolicity of the
equations. At least we can obtain a second-order method with more than two iterative steps.
Therefore the stiffness influences the number of iterative steps.
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Table 9: Numerical results for the 1D momentum equation with μ = 50, v = 0.1, initial condition u0(t) = cn,
and two iterations per time-step.

Δx Δt errL1 errmax ρL1 ρmax

1/10 1/20 2.7352 · 10−6 6.4129 · 10−6

1/20 1/20 2.3320 · 10−6 5.4284 · 10−6 0.2301 0.2404
1/40 1/20 2.1144 · 10−6 4.9247 · 10−6 0.1413 0.1405
1/80 1/20 2.0021 · 10−6 4.6614 · 10−6 0.0787 0.0793
1/10 1/40 2.1711 · 10−6 5.2875 · 10−6

1/20 1/40 1.7001 · 10−6 4.1292 · 10−6 0.3528 0.3567
1/40 1/40 1.4388 · 10−6 3.4979 · 10−6 0.2408 0.2394
1/80 1/40 1.3023 · 10−6 3.1694 · 10−6 0.1438 0.1423
1/10 1/80 1.6788 · 10−6 4.1163 · 10−6

1/20 1/80 1.1870 · 10−6 2.9138 · 10−6 0.5001 0.4984
1/40 1/80 9.1123 · 10−7 2.2535 · 10−6 0.3814 0.3707
1/80 1/80 7.6585 · 10−7 1.9025 · 10−6 0.2507 0.2443

Table 10: Numerical results for the 2D momentum equation with μ = 2, v= (1, 1)t, initial condition u0(t) =
cn, and two iterations per time-step.

Δx = Δy Δt errL1 errmax ρL1 ρmax errL1 errmax ρL1 ρmax

1st c. 1st c. 1st c. 1st c. 2nd c. 2nd c. 2nd c. 2nd c.
1/5 1/20 0.0027 0.0112 0.0145 0.0321
1/10 1/20 0.0016 0.0039 0.7425 1.5230 0.0033 0.0072 2.1526 2.1519
1/20 1/20 0.0007 0.0022 1.2712 0.8597 0.0021 0.0042 0.6391 0.7967
1/5 1/40 0.0045 0.0148 0.0288 0.0601
1/10 1/40 0.0032 0.0088 0.5124 0.7497 0.0125 0.0239 1.2012 1.3341
1/20 1/40 0.0014 0.0034 1.1693 1.3764 0.0029 0.0054 2.1263 2.1325
1/5 1/80 0.0136 0.0425 0.0493 0.1111
1/10 1/80 0.0080 0.0241 0.7679 0.8197 0.0278 0.0572 0.8285 0.9579
1/20 1/80 0.0039 0.0113 1.0166 1.0872 0.0115 0.0231 1.2746 1.3058

Table 11: Numerical results for the 2D momentum equation for the first component with μ = 50,
v= (100, 0.01)t, initial condition u0(t) = cn, and two iterations per time-step.

Δx = Δy Δt errL1 errmax ρL1 ρmax

1st c. 1st c. 1st c. 1st c.
1/5 1/20 1.5438 · 10−5 3.4309 · 10−5

1/10 1/20 4.9141 · 10−6 1.0522 · 10−5 1.6515 1.7052
1/20 1/20 1.5506 · 10−6 2.9160 · 10−6 1.6641 1.8513
1/5 1/40 2.8839 · 10−5 5.5444 · 10−5

1/10 1/40 1.3790 · 10−5 2.3806 · 10−5 1.0645 1.2197
1/20 1/40 3.8495 · 10−6 6.8075 · 10−6 1.8408 1.8061
1/5 1/80 3.1295 · 10−5 5.5073 · 10−5

1/10 1/80 1.7722 · 10−5 2.6822 · 10−5 0.8204 1.0379
1/20 1/80 7.6640 · 10−6 1.1356 · 10−5 1.2094 1.2400
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Table 12: Numerical results for the 2D momentum equation for the second component with μ = 50,
v= (100, 0.01)t, initial condition u0(t) = cn, and two iterations per time-step.

Δx = Δy Δt errL1 errmax ρL1 ρmax

2nd c. 2nd c. 2nd c. 2nd c.
1/5 1/20 4.3543 · 10−5 1.4944 · 10−4

1/10 1/20 3.3673 · 10−5 7.9483 · 10−5 0.3708 0.9109
1/20 1/20 2.6026 · 10−5 5.8697 · 10−5 0.3717 0.4374
1/5 1/40 3.4961 · 10−5 2.2384 · 10−4

1/10 1/40 1.7944 · 10−5 8.9509 · 10−5 0.9622 1.3224
1/20 1/40 1.5956 · 10−5 3.6902 · 10−5 0.1695 1.2783
1/5 1/80 9.9887 · 10−5 3.3905 · 10−4

1/10 1/80 3.5572 · 10−5 1.3625 · 10−4 1.4896 1.3153
1/20 1/80 1.0557 · 10−5 4.4096 · 10−5 1.7525 1.6275

7. Conclusion and Discussion

We present decomposition methods for differential equations based on iterative and non-
iterative methods. The nonlinear equations are solved with embedded Newton’s methods.
We present new ideas on linearization to obtain more accurate results. The superiority of the
new embedded Newton’s methods over the traditional sequential methods is demonstrated
in examples, especially through their simple implementation. Further, we have the smoothing
properties of the iterative scheme that allow a balance between the nonlinear and the linear
terms. The results show more accurate solutions with respect to time decomposition. In
the future the iterative operator-splitting method can be generalized for multi-dimensional
problems and also for non-smooth and nonlinear problems in time and space. In next paper
we discuss error analysis of nonlinear methods.
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