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1. Introduction

Coaxial discontinuity structures are widely used as an element of microwave devices, and in
the permeability and permittivity measurement for materials [1–3]. Hence, the diffraction at
discontinuities in coaxial waveguides is a very important topic in microwave theory and have
been subjected to numerous past investigations. Most simple types of discontinuities such as
steps in inner or outer conductors (see, e.g., [4–7]) and wall impedance discontinuities [8, 9]
were analyzed and characterized. For example, in [8, 9] the scattering of a shielded surface
wave in a coaxial waveguide by a wall impedance discontinuity in the inner cylinder has
been analyzed. These classical results are related mostly with isolated discontinuities, and
fail when there are several of them close enough to interfere with each other. The aim of the
present work is to consider a new canonical scattering problem consisting of the propagation
of the dominant TEM mode at the finite-length impedance discontinuities in the inner and
outer conductors of a coaxial waveguide (see Figure 1). The contributions from the successive
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impedance discontinuities are accounted for through the solution of a system of coupled
modified Wiener-Hopf equations. Notice that the present problem may also be thought as
a first-order approximation for coaxial waveguides loaded with a dielectric filled shallow
grooves, forming a band stop filter in the microwave region [10]. The band stop properties
of such structures are exploited in multiple frequency circuits, such as parametric amplifiers.
Constant surface impedance model may also be used to simulate corrugations, thin finite-
length dielectric linings on the inner and outer metallic walls of a coaxial waveguide [11–13].
The impedance representation is also applicable to ribbed or helical slow-wave structures
if the repeat distance of the ribs or helix is small relative to the distance within which the
field in the guide changes substantially. Hence the present problem is also of interest when
a coaxial phase shifter is used. It consists of a section of coaxial waveguide with a helix
cut in the inner rod, which can be screwed to a variable depth into the end of the smooth
inner conductor. The length of this screwed section then provides the required phase shift
[9].

A problem similar to the one considered in this work has been recently treated by the
authors in the simpler case where the impedance loading is present on the outer conductor
only [14]. The generalization consisting of assuming that both inner and outer conductors
are loaded with different surface impedances of finite-length is not straightforward since we
end up with a coupled system of modified Wiener-Hopf equations. It is well known that
the classical Wiener-Hopf technique is applicable when the diffracting obstacle is infinitely
thin and has a semi-infinite straight boundary. However, since the impedance loadings on
the inner and outer conductors of the coaxial waveguide are of finite-length and are different
from each other, the resulting Wiener-Hopf equations are modified and coupled, respectively
[15].

The method adopted here is similar to that described in [16] where parallel plate
waveguides with different impedance loading of finite-length on the upper and lower plates
were dealt with. Indeed, by using the analytical properties of the functions that occur we were
able to uncouple these modified Wiener-Hopf equations and obtain the exact formal solution
through the factorization and decomposition procedures. The formal solution involves 8 sets
of infinitely many constants satisfying 8 sets of infinite systems of algebraic equations. An
approximate solution to these infinite system of equations is obtained numerically and the
radiation characteristics of the impedance-loaded coaxial waveguide is studied.

2. Analysis

Consider a coaxial waveguide whose inner cylinder is of radius ρ = a, while the radius of the
outer cylinder is ρ = b with (ρ, φ, z) being the usual cylindrical coordinates. The part 0 < z < l
of the inner and outer conductors are characterized by different constant surface impedances
denoted byZ1 = η1Z0 andZ2 = η2Z0, respectively, withZ0 being the characteristic impedance
of the free space.

Let the incident TEM mode with angular frequency ω and propagating in the positive
z direction be given by Hi

ρ = 0, Hi
φ = ui, Hi

z = 0, with

ui =
exp(ikz)

ρ
, (2.1a)
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Figure 1: Coaxial cable with a finite-length impedance loading in the inner and outer conductors.

where an exp(−iωt) time factor is assumed and suppressed. k is the propagation constant
which is assumed to have a small imaginary part corresponding to a medium with damping.
The lossless case can be obtained by letting Im k → 0 at the end of the analysis.

2.1. Formulation of the Problem

The total field uT (ρ, z) can be written as

uT = ui + u1
(
ρ, z
)
, ρ ∈ (a, b), z ∈ (−∞,∞), (2.1b)

u1(ρ, z) appearing in (2.1b) is an unknown function which satisfies the Helmholtz equation

(
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+
∂2

∂z2
+ k2 − 1

ρ2

)

u1
(
ρ, z
)
= 0, ρ ∈ (a, b), z ∈ (−∞,∞), (2.2)

and the following boundary conditions and continuity relations:

u1(b, z) + b
∂

∂ρ
u1(b, z) = 0, z ∈ (−∞, 0) ∪ (l,∞), (2.3a)

u1(a, z) + a
∂

∂ρ
u1(a, z) = 0, z ∈ (−∞, 0) ∪ (l,∞), (2.3b)

η∗2u1(b, z) −
1
ik

∂

∂ρ
u1(b, z) = −

η2

b
eikz, z ∈ (0, l), (2.3c)

η∗1u1(a, z) +
1
ik

∂

∂ρ
u1(a, z) = −

η1

a
eikz, z ∈ (0, l), (2.3d)
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where

η∗1 = η1 +
1
ika

,

η∗2 = η2 −
1
ikb

.

(2.3e)

To obtain the unique solution to the mixed boundary value problem stated by (2.2) and
(2.3a)–(2.3d) one has to take into account the following edge and radiation conditions [17]:

uT (a, z)

uT (b, z)
=

⎧
⎨

⎩

O
(
|z|1/2

)
, |z| −→ 0,

O
(
|z − l|1/2

)
, z −→ l,

u1
(
ρ, z
)
= O
(
eik|z|
)
, |z| −→ ∞.

(2.3f)

The infinite-range Fourier transform of (2.2) yields

(
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+K2(α) − 1

ρ2

)
F
(
ρ, α
)
= 0, (2.4a)

with

F
(
ρ, α
)
= F−
(
ρ, α
)
+ F1
(
ρ, α
)
+ eiαlF+(ρ, α

)
, (2.4b)

F−
(
ρ, α
)
=
∫0

−∞
u1
(
ρ, α
)
eiαzdz, (2.4c)

F1
(
ρ, α
)
=
∫ l

0
u1
(
ρ, α
)
eiαzdz, (2.4d)

F+(ρ, α
)
=
∫∞

l

u1
(
ρ, α
)
eiα(z−l)dz. (2.4e)

In (2.4a), K(α) stands for

K(α) =
√
k2 − α2. (2.5)

The square-root function is defined in the complex α-plane, cut along α = k to α = k + i∞ and
α = −k to α = −k − i∞, such that K(0) = k (see Figure 2).
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Figure 2: Branch-cuts and integration lines in the complex plane.

Owing to the analytical properties of Fourier integrals, F+(ρ, α) and F−(ρ, α) are yet
unknown functions which are regular in the half-planes Im(α) > Im(−k) and Im(α) < Im(k),
respectively. The function F1(ρ, α) defined by (2.4d) is an unknown entire function.

The solution of (2.4a) reads

F−
(
ρ, α
)
+ F1
(
ρ, α
)
+ eiαlF+(ρ, α

)
= A(α)J1

(
Kρ
)
+ B(α)Y1

(
Kρ
)
. (2.6)

HereA(α) and B(α) are spectral coefficients to be determined. By using the Fourier transform
of the boundary conditions in (2.3a) and (2.3b), one can easily show that they are related to
P1(a, α) and P1(b, α) through

[
A(α)

B(α)

]

=

⎡

⎢⎢⎢
⎣

−K(α)Y0(Kb)
aT1(a, b, α)

K(α)Y0(Ka)
bT1(a, b, α)

K(α)J0(Kb)
aT1(a, b, α)

−K(α)J0(Ka)
bT1(a, b, α)

⎤

⎥⎥⎥
⎦

[
P1(a, α)

P1(b, α)

]

, (2.7a)

with P1(ρ, α) being given by

P1
(
ρ, α
)
= F1
(
ρ, α
)
+ ρḞ1

(
ρ, α
)
. (2.7b)

In (2.7b), the dot (·) denotes the derivative with respect to ρ, that is, Ḟ1(ρ, α) = (∂/∂ρ)F1(ρ, α).
Hence, (2.6) can be rearranged as

F−
(
ρ, α
)
+ F1
(
ρ, α
)
+ eiαlF+(ρ, α

)
=
T2
(
ρ, b, α

)

aT1(a, b, α)
P1(a, α) −

T2
(
ρ, a, α

)

bT1(a, b, α)
P1(b, α), (2.8a)
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with

T1(a, b, α) = K2(α)[J0(Ka)Y0(Kb) − J0(Kb)Y0(Ka)],

T2(a, b, α) = K(α)[J1(Ka)Y0(Kb) − J0(Kb)Y1(Ka)].
(2.8b)

Multiplying both sides of (2.3c) and (2.3d) by eiαz and then integrating from 0 to l we obtain

η∗2F1(b, α) = −
η2

ib(k + α)

[
ei(k+α)l − 1

]
+

1
ik
Ḟ1(b, α),

η∗1F1(a, α) = −
η1

ia(k + α)

[
ei(k+α)l − 1

]
− 1
ik
Ḟ1(a, α).

(2.9)

Putting ρ = b and then ρ = a in (2.8a) and its derivative with respect to ρ, and then using
the relations (2.9) we end up with the following coupled systems of modified Wiener-Hopf
equations valid in the strip Im(−k) < Im(α) < Im(k):

ikaΨ−1 (a, α) + V1(α)P1(a, α) − ikaeiαlΨ+
1 (a, α) =

2ikη1

πbT1(a, b, α)
P1(b, α) − kη1

[
ei(k+α)l − 1
k + α

]

,

ikbΨ−2 (b, α) − V2(α)P1(b, α) − ikbeiαlΨ+
2 (b, α) =

−2ikη2

πaT1(a, b, α)
P1(a, α) − kη2

[
ei(k+α)l − 1
k + α

]

,

(2.10)

with,

V1(α) =
X1(α)

T1(a, b, α)
,

V2(α) =
X2(α)

T1(a, b, α)
,

(2.11a)

X1(α) = T1(a, b, α) + ikη1T2(a, b, α),

X2(α) = T1(a, b, α) + ikη2T2(b, a, α),

Ψ−1 (α) = η
∗
1F−(a, α) +

1
ik
Ḟ−(a, α),

Ψ+
1 (α) = η

∗
1F+(a, α) +

1
ik
Ḟ+(a, α),

Ψ−2 (α) = η
∗
2F−(b, α) −

1
ik
Ḟ−(b, α),

Ψ+
2 (α) = η

∗
2F+(a, α) −

1
ik
Ḟ+(b, α).

(2.11b)
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2.2. Solution of the Wiener-Hopf Equations

Now, let us rearrange the equations in (2.10) as

R−1∗(α) − V1(α)P1(a, α) + eiαlS+
1 (α) = −

2ikη1

πbT1(a, b, α)
P1(b, α), (2.12a)

R−2∗(α) + V2(α)P1(b, α) + eiαlS+
2 (α) =

2ikη2

πaT1(a, b, α)
P1(a, α). (2.12b)

with

R−1∗(α) = aikΨ
−
1 (α) +

kη1

(k + α)
,

R−2∗(α) = bikΨ
−
2 (α) +

kη2

(k + α)
,

S+
1 (α) = aikΨ

+
1 (α) −

kη1

(k + α)
eikl,

S+
2 (α) = bikΨ

+
2 (α) −

kη2

(k + α)
eikl.

(2.13)

Notice that R−1∗(α) and R−2∗(α) are regular functions of α in the lower half-plane Im(α) < Im(k)
except at the pole singularity occurring at α = −k, while S+

1 (α) and S+
2 (α) are regular in the

upper half-plane Im(α) > Im(−k).
Now, consider the Wiener-Hopf factorization of the kernel functions V1,2(α), defined

in (2.11a) as

V1,2(α) = V +
1,2(α)V

−
1,2(α), (2.14a)

where V +
1,2(α) and V −1,2(α) denote certain functions which are regular and free of zeros in the

half-planes Im(α) > Im(−k) and Im(α) < Im(k), respectively. Their explicit expressions can
easily be found by using the method described in [18]

V ±1,2(α) =
√
V1,2(0)

1
(1 ∓ α/ξ1)

∞∏

m=1

(
1 ∓ α/β(1,2)m

(1 ∓ α/ξm+1)

)

. (2.14b)
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Here ±β(1)m and ±β(2)m , m = 1, 2, . . . , denote the symmetrical zeros of V1(α) and V2(α):

V1,2

(
±β(1,2)m

)
= 0, Im β

(1,2)
m > Im k, (2.15)

whereas ±ξm,m = 1, 2, . . . are the zeros of T1(a, b, α), that is,

T1(a, b,±ξm) = 0, Im ξm > Im k. (2.16)

Multiplying both sides of (2.12a) by 1/V −1 (α) and e−iαl/V +
1 (α), and both sides of

(2.12b) by 1/V −2 (α) and e−iαl/V +
2 (α), we obtain, after using the Wiener-Hopf decomposition

procedure, the analytical continuation principle, and the Liouville theorem, the following
results [19]:

R−1∗(α)
V −1 (α)

− 1
2πi

∫

L−

S+
1 (τ)e

iτldτ

V −1 (τ)(τ − α)
−

2ikη1

πb

1
2πi

∫

L−

P1(b, τ)dτ
T1(a, b, τ)V −1 (τ)(τ − α)

=
kη1

(k + α)V +
1 (k)

,

V +
1 (α)P1(a, α)−

1
2πi

∫

L+

S+
1 (τ)e

iτldτ

V −1 (τ)(τ − α)
−

2ikη1

πb

1
2πi

∫

L+

P1(b, τ)dτ
T1(a, b, τ)V −1 (τ)(τ−α)

=
kη1

(k+α)V +
1 (k)

,

R−2∗(α)
V −2 (α)

− 1
2πi

∫

L−

S+
2 (τ)e

iτldτ

V −2 (τ)(τ − α)
+

2ikη2

πa

1
2πi

∫

L−

P1(a, τ)dτ
T1(a, b, τ)V −2 (τ)(τ − α)

=
kη2

(k + α)V +
2 (k)

,

−V +
2 (α)P1(b, α)−

1
2πi

∫

L+

S+
2 (τ)e

iτldτ

V −2 (τ)(τ−α)
+

2ikη2

πa

1
2πi

∫

L+

P1(a, τ)dτ
T1(a, b, τ)V −2 (τ)(τ−α)

=
kη2

(k+α)V +
2 (k)

,

S+
1 (α)

V +
1 (α)

= − 1
2πi

∫

L+

R−1∗(τ)e
−iτldτ

V +
1 (τ)(τ − α)

−
2ikη1

πb

1
2πi

∫

L+

P1(b, τ)e−iτldτ
T1(a, b, τ)V +

1 (τ)(τ − α)
,

V −1 (α)e
−iτlP1(a, α) = −

1
2πi

∫

L−

R−1∗(τ)e
−iτldτ

V +
1 (τ)(τ − α)

−
2ikη1

πb

1
2πi

∫

L−

P1(b, τ)e−iτldτ
T1(a, b, τ)V +

1 (τ)(τ − α)
,

S+
2 (α)

V +
2 (α)

= − 1
2πi

∫

L+

R∗2(τ)e
−iτldτ

V +
2 (τ)(τ − α)

+
2ikη2

πa

1
2πi

∫

L+

P1(a, τ)e−iτldτ
T1(a, b, τ)V +

2 (τ)(τ − α)
,

−V −2 (α)e
−iτlP1(b, α) =

1
2πi

∫

L−

R−2∗(τ)e
−iτldτ

V +
2 (τ)(τ − α)

+
2ikη2

πa

1
2πi

∫

L−

P1(a, τ)e−iτldτ
T1(a, b, τ)V +

2 (τ)(τ − α)
.

(2.17)

The positions of the integration lines L± are shown in Figure 2.
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The above integrals can be evaluated by using Jordan’s Lemma and the residue
theorem. The result is

R−1∗(α)
V −1 (α)

−
2ikη1

πb

∞∑

m=1

V +
1

(
β
(1)
m

)
P1

(
b, β

(1)
m

)

X′1
(
β
(1)
m

)(
β
(1)
m − α

) −
∞∑

m=1

V +
1

(
β
(1)
m

)
eiβ

(1)
m lS+

1

(
β
(1)
m

)

V ′1

(
β
(1)
m

)(
β
(1)
m − α

) =
ikη1

i(k + α)V +
1 (k)

,

(2.18a)

R−2∗(α)
V −2 (α)

+
2ikη2

πa

∞∑

m=1

V +
2

(
β
(2)
m

)
P1

(
a, β

(2)
m

)

X′2
(
β
(2)
m

)(
β
(2)
m − α

) −
∞∑

m=1

V +
2

(
β
(2)
m

)
eiβ

(2)
m lS+

2

(
β
(2)
m

)

V ′2

(
β
(2)
m

)(
β
(2)
m − α

) =
ikη2

i(k + α)V +
2 (k)

,

(2.18b)

S+
1 (α)

V +
1 (α)

−
2ikη1

πb

∞∑

m=1

V +
1

(
β
(1)
m

)
eiβ

(1)
m lP1

(
b,−β(1)m

)

X′1
(
β
(1)
m

)(
β
(1)
m + α

) −
∞∑

m=1

V +
1

(
β
(1)
m

)
eiβ

(1)
m lR−1∗

(
−β(1)m

)

V ′1

(
β
(1)
m

)(
β
(1)
m + α

) = 0, (2.18c)

S+
2 (α)

V +
2 (α)

+
2ikη2

πa

∞∑

m=1

V +
2

(
β
(2)
m

)
eiβ

(2)
m lP1

(
a,−β(2)m

)

X′2
(
β
(2)
m

)(
β
(2)
m + α

) −
∞∑

m=1

V +
2

(
β
(2)
m

)
eiβ

(2)
m lR∗2

(
−β(2)m

)

V ′2

(
β
(2)
m

)(
β
(2)
m + α

) = 0, (2.18d)

−
2ikη1

πb

∞∑

m=1

V +
1

(
β
(1)
m

)
P1

(
b, β

(1)
m

)

X′1
(
β
(1)
m

)(
β
(1)
m − α

) −
2ikη1

πb

V +
1 (α)P1(b, α)
X1(α)

+ V +
1 (α)P1(a, α)

−
∞∑

m=1

V +
1

(
β
(1)
m

)
eiβ

(1)
m lS+

1

(
β
(1)
m

)

V ′1

(
β
(1)
m

)(
β
(1)
m − α

) −
V +

1 (α)e
iαlS+

1 (α)
V1(α)

= kη1
1

(k + α)V +
1 (k)

,

(2.18e)

V +
2 (α)P1(b, α) +

2ikη2

πa

∞∑

m=1

V +
2

(
β
(2)
m

)
P1

(
a, β

(2)
m

)

X′2
(
β
(2)
m

)(
β
(2)
m − α

) +
2ikη2

πa

V +
2 (α)P1(a, α)
X2(α)

−
∞∑

m=1

V +
2 (α)
(
β
(2)
m

)
eiβ

(2)
m lS+

2

(
β
(2)
m

)

V ′2

(
β
(2)
m

)(
β
(2)
m − α

) −
V +

2 (α)e
iαlS+

2 (a, α)
V2(α)

= kη2
1

(k + α)V +
2 (k)

, (2.18f)
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e−iαlV −1 (α)P1(a, α) −
2ikη1

πb

∞∑

m=1

V +
1

(
β
(1)
m

)
eiβ

(1)
m lP1

(
b,−β(1)m

)

X′1
(
β
(1)
m

)(
β
(1)
m + α

)

−
2ikη1

πb

V −1 (α)e
−iαlP1(b, α)
X1(α)

−
∞∑

m=1

V +
1

(
β
(1)
m

)
eiβ

(1)
m lR−1∗

(
−β(1)m

)

V ′1

(
β
(1)
m

)(
β
(1)
m + α

)

−
V −1 (α)e

−iαlR−1∗(α)
V1(α)

= 0,

(2.18g)

− e−iαlV −2 (α)P1(b, α) +
2ikη2

πa

∞∑

m=1

V +
2

(
β
(2)
m

)
eiβ

(2)
m lP1

(
a,−β(2)m

)

X′2
(
β
(2)
m

)(
β
(2)
m + α

)

+
2ikη2

πa

V −2 (α)e
−iαlP1(a, α)
X2(α)

+
∞∑

m=1

V +
2

(
β
(2)
m

)
eiβ

(2)
m lR−2∗

(
−β(2)m

)

V ′2

(
β
(2)
m

)(
β
(2)
m + α

)

−
V −2 (α)e

−iαlR−2∗(α)
V2(α)

= 0.

(2.18h)

Here the dash (′) denotes the derivative with respect to α : V ′1,2(β
(1,2)
m ) = (∂/∂α)V1,2(α)|α=β(1,2)m

.

The formal solution of the coupled system of Wiener-Hopf
equations given by (2.18a)–(2.18h) involves 16 unknown functions, namely,

P1(a, β
(1)
m ), P1(a, β

(2)
m ), P1(a,−β(1)m ), P1(a,−β(2)m ), P1(b, β

(1)
m ), P1(b, β

(2)
m ), P1(b,−β(1)m ), P1(b,−β(2)m ),

S+
1 (β

(1)
m ), S+

1 (β
(2)
m ), S+

2 (β
(1)
m ), S+

2 (β
(2)
m ), R−1∗(−β

(1)
m ), R−1∗(−β

(2)
m ), R−2∗(−β

(1)
m ), and R−2∗(−β

(2)
m ). In order

to determine them we substitute α = −β(1)n , −β(2)n , n = 1, 2, . . . in (2.18a), (2.18b), (2.18g),

(2.18h) and α = β
(1)
n , β

(2)
n , n = 1, 2, . . . in (2.18c), (2.18d), (2.18e), (2.18f), respectively. So, at

a first sight, we get 16 infinite systems of algebraic equations. After some straightforward
but tedious algebraic manipulations, one can reduce the number of the unkown sets to

8, namely, P1(a,±β(2)m ), P1(b,±β(1)m ), R−1∗(−β
(1)
m ), R−1∗(−β

(2)
m ), R−2∗(−β

(1)
m ) and R−2∗(−β

(2)
m ). These

coupled systems of algebraic equations will be solved numerically. The approach used in
solving the infinite system of algebraic equations is similar to that employed by Rawlins [20].

By using the edge conditions and the asymptotic behavior of β(1)n and β
(2)
n , one can show that

the convergence of the infinite series appearing in these equations is rapid enough to allow
truncation at, say N. Consequently the infinite systems are replaced by the corresponding
finite systems of 8N × 8N algebraic equations and then solved by standard numerical
algorithms. The value of N was increased until the reflected field amplitude being calculated
did not change in a given number of decimal places. A typical result is provided by Figure 3.
It can be seen that the reflected field amplitude becomes insensitive to the increase of the
truncation number for N > 6.
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Figure 3: Reflected field amplitude versus the truncation number.

3. Scattered Field

For ρ ∈ (a, b) and z < 0, the reflected wave propagating backward is obtained by taking the
inverse Fourier transform of F−(ρ, α), namely,

u1
(
ρ, α
)
=

1
2π

∫∞

−∞

(
bT2
(
ρ, b, α

)
P1(a, α) − aT2

(
ρ, a, α

)
P1(b, α)

abT1(a, b, α)

−F1
(
ρ, α
)
− eiαlF+

(
ρ, α
))
e−iαzdα.

(3.1)

The above integral is calculated by closing the contour in the upper half plane and evaluating
the residue contributions from the simple poles occurring at the zeros of T1(a, b, α) lying in
the upper α-half-plane. The reflection coefficient R of the fundamental mode is defined as the
ratio of reflected and incident waves amplitudes. It is computed from the contribution of the
first pole at α = k. The result is

R = − i

2abk log(b/a)
[bP1(a, k) − aP1(b, k)]. (3.2)

Similarly, the transmitted field in the region ρ ∈ (a, b) and z > l is obtained by inverting
F+(ρ, α):

u1
(
ρ, α
)
=

1
2π

∫∞

−∞

(
bT2
(
ρ, b, α

)
P1(a, α) − aT2

(
ρ, a, α

)
P1(b, α)

abT1(a, b, α)
− F−
(
ρ, α
)
− F1
(
ρ, α
)
)

e−iαzdα.

(3.3)
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The transmission coefficient T of the fundamental mode, which is defined as the ratio of the
amplitudes of the transmitted and incident waves, is obtained by evaluating the integral in
(3.3) for z > l. This integral is now computed by closing the contour in the lower half of the
complex α-plane. The pole of interest is at α = −k whose contribution gives

− i

2abk log(b/a)
[bP1(a,−k) − aP1(b,−k)]

eikz

ρ
, (3.4a)

with

[bP1(a,−k) − aP1(b,−k)] =
2abk log(b/a)

i

− e−ikl

V +
1 (k)

⎧
⎪⎨

⎪⎩

2ikη1

π

∞∑

m=1

⎛

⎜
⎝
V +

1

(
β
(1)
m

)
eiβ

(1)
m lP1

(
b,−β(1)m

)

X′1
(
β
(1)
m

)(
β
(1)
m − k

)

⎞

⎟
⎠

+b
∞∑

m=1

⎛

⎜
⎝
V +

1

(
β
(1)
m

)
eiβ

(1)
m lR−1∗

(
−β(1)m

)

V ′1

(
β
(1)
m

)(
β
(1)
m − k

)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
,

(3.4b)

or equivalently

[bP1(a,−k) − aP1(b,−k)] =
2abk log(b/a)

i

− e−ikl

V +
2 (k)

⎧
⎪⎨

⎪⎩
−

2ikη2

π

∞∑

m=1

⎛

⎜
⎝
V +

2

(
β
(2)
m

)
eiβ

(2)
m lP1

(
a,−β(2)m

)

X′2
(
β
(2)
m

)(
β
(2)
m − k

)

⎞

⎟
⎠

+a
∞∑

m=1

⎛

⎜
⎝
V +

2

(
β
(2)
m

)
eiβ

(2)
m lR−2∗

(
−β(2)m

)

V ′2

(
β
(2)
m

)(
β
(2)
m − k

)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

(3.4c)

The first term in (3.4a) or in (3.4b) cancels out the incident fundamental mode as expected.
The transmission coefficient is then given by

T = 1 − i

2abk log(b/a)
[bP1(a,−k) − aP1(b,−k)]. (3.5)

4. Computational Results

In order to observe the influence of the different parameters such as the surface impedances
(η1 and η2), the width (l) of the impedance loadings, and the distance b − a between the two
coaxial cylinders on the reflection coefficient, some numerical results are presented in this
section. In what follows the impedances are assumed to be purely reactive.
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Figure 4: (a) Amplitude of the reflection coefficient versus the frequency, for different values of the
impedance loading on the inner conductor (the case where η1 and η2 are capacitive). (b) Amplitude of
the reflection coefficient versus the frequency, for different values of the impedance loading on the inner
conductor (the case where η1 is capacitive and η2 is inductive ). (c) Amplitude of the reflection coefficient
versus the frequency, for different values of the impedance loading on the inner conductor (the case where
η1 and η2 are inductive).

Figures 4(a)–4(c) show the amplitude of the reflection coefficient versus the frequency
for different values of η2 while η1, a, b, and l are held fixed. If η1 and η2 are both capacitive,
the band-stop frequencies of the configuration are shifted to the right for increasing values
of |η2| (Figure 4(a)). In the case where η1 is capacitive while η2 is inductive, the band stop
characteristic of the configuration is observed at lower frequencies for increasing the values
of |η2| (Figure 4(b)). Finally, Figure 4(c) displays the case where the both surface impedances
are inductive.

Figure 5 depicts the variation of the reflected field amplitude for different values of
distance between the coaxial cylinders. It is observed that the amplitude of the reflected
field decreases when the separation distance b − a increases, as expected. Furthermore, for
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Figure 5: Amplitude of the reflection coefficient versus the frequency for different values of the outer
cylinder radius b.

decreasing values of the outer cylinder radius, the band-stop frequencies of the configuration
are shifted to the right. This means that total reflections occur at higher frequencies if the
radius of the outer cylinder decreases.

The effect of the width for the impedance loadings on the reflection coefficient is shown
in Figure 6. The number of resonances corresponding to the variation of the reflected field
increases when the value of l increases. But the amplitude related to the reflected field is
not affected too much by the width of the impedance surfaces. It is also seen that the curves
related to reflected field amplitude approaches to the one calculated from (5.2a), when kl 	 1.

5. Discussion

When we let l → ∞, the Wiener- Hopf equations in (2.10) reduce to

ikaΨ−1 (a, α) + V1(α)P1(a, α) =
2ikη1

πbT1(a, b, α)
P1(b, α) +

kη1

k + α
, (5.1a)

ikbΨ−2 (b, α) − V2(α)P1(b, α) =
−2ikη2

πaT1(a, b, α)
P1(a, α) +

kη2

k + α
. (5.1b)

Then, the reflection coefficient in (3.2) takes the following form:

R =
−i

2abk log(b/a)V +
1 (k)

⎡

⎢
⎣

2ikη1

π

∞∑

m=1

V +
1

(
β
(1)
m

)
P1

(
b, β

(1)
m

)

χ′1

(
β
(1)
m

)(
β
(1)
m − k

) +
bη1

2V +
1 (k)

⎤

⎥
⎦, (5.2a)
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Figure 7: Junction of perfectly conducting and impedance loaded coaxial waveguides (l → ∞).

or

R =
−i

2abk log(b/a)V +
2 (k)

⎡

⎢
⎣−

2ikη2

π

∞∑

m=1

V +
2

(
β
(2)
m

)
P1

(
a, β

(2)
m

)

χ′2

(
β
(2)
m

)(
β
(2)
m − k

) +
aη2

2V +
2 (k)

⎤

⎥
⎦, (5.2b)

which is nothing but the results related to the junction of perfectly conducting and impedance
coaxial waveguides shown in Figure 7.

Equations (5.2a) and (5.2b) are obtained by using the Wiener-Hopf equations in (5.1a)
and (5.1b), respectively. It can be checked easily that the two expressions are equivalent.
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Figure 8: Amplitude of the reflection coefficient versus the frequency for different values of η2.

P1(b, β
(1)
m ) and P1(a, β

(2)
m ) appearing in the above expressions are to be determined through

the solution of the following 2 sets of infinite systems of algebraic equations:

V +
1

(
β
(2)
n

)
P1

(
a, β

(2)
n

)
+

4k2η1η2

π2ab

V +
1

(
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(2)
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(
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)
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⎜
⎝
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−
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)
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(5.3)
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Finally, for |η2| → 0, the results obtained in the present work to that previously
obtained in [3]. Indeed, from Figure 8 we can see that for decreasing values of |η2|, the curves
approach the result related to the finite-length impedance loading in the outer conductor of a
coaxial waveguide obtained in [3] (solid line in Figure 8). This can be considered as a check
of the analysis made in this paper.

6. Conclusion

In the present work the propagation of TEM wave in a coaxial waveguide with finite-length
impedance loading is investigated rigorously through the Wiener-Hopf technique. In order
to obtain the explicit expressions of the reflection coefficient, the problem is first reduced into
two coupled modified Wiener-Hopf equations and then solved exactly in a formal sense by
using the factorization and decomposition procedures. The formal solution involves infinite
series with 8 sets of unknown coefficients satisfying 8 infinite sets of algebraic equations
which are solved numerically. The advantage of the present method is that the solution
obtained here is valid for all frequencies and impedance lengths. Furthermore, it is observed
that for certain values of the surface impedances full reflection occurs, showing that this
configuration may be used as a band-stop filter.

Finally, it is noteworthy that the Weiner-Hopf solution provided here could be
extended to treat the case where the lengths of the impedances on the inner and outer
conductors are different. Other future work could lie in the investigation of wave propagation
in coaxial waveguides with successive finite-length impedance loadings.
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