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The paper presents a new algorithm for determination of pulse edges of a modulated wave
of a PWM voltage inverter which offers a possibility that natural sampling is realized with an
arbitrary accuracy without applying an iterative procedure. The basic idea is to express the angles
which determine pulse edges of the modulated signal as polynomials of amplitude modulation
index. Geometric interpretation of sampling of the polynomial algorithm is identical with the
geometric interpretation of natural algorithm, but the transcendental equation whose solution
defines pulse edges of the modulated signal is replaced by a simple procedure of finding values of
a polynomial whose coefficients are determined in advance by an exact procedure. This approach
gives the possibility of digital implementation of polynomial sampling method using the low-cost
microprocessor platforms.
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1. Introduction

Pulse width modulation is an important method of the technique of control of power
converters. At the current technological level, three areas within the pulse width modulation
possess certain autonomy as regards the accomplished solutions [1]. These are switching
strategy of pulse width modulation, concerned with generation of edges of switching pulses
[2–10], range of regulation of amplitude of the fundamental harmonic of inverter output
voltage [11–15], and degree of harmonic distortions of inverter output voltage and current
[16–21]. The first PWM techniques are based on the method of the modulating function.

The modulating function contains information regarding the desired waveform,
whereas the signal carrier contains information concerning the switching frequency. Pulse
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edges of a modulated signal are determined by crossings of the modulating function and
signal carrier, which makes the basis of all analog implementations of the modulating
function methods involving natural sampling. Signal at the output of a pulse width
modulator defines the switching function of the inverter branch which controls the on-state
of the switch within the branch. Synthesis of the ac voltage at inverter’s output, regulation of
the amplitude, and frequency are accomplished by the switching actions in inverter branches.

The basic PWM method is related to the mode of determination of pulse edges.
Determination of pulse edges based on crossing of the modulating and carrying signals
belongs to the group of natural sampling techniques.

The basic shortcoming of the natural sampling technique is tied to the transcendental
relation which connects the angles determining pulse edges and modulating function. This
aggravated the application of natural sampling technique in digital and microprocessor
systems applying PWM methods.

Regular sampling method is the basic solution for digital realization of the modulating
function method. The regular sampling method is considerably more flexible since the
modulating function is specified at discrete points; thus it is possible to calculate its values
in advance and interpret them by means of digital words [5, 6, 22]. The natural sampling
method has the advantage over the regular method in so far as the harmonic content linearity,
and range of regulation of the amplitude of the fundamental harmonic are concerned.

Middle of the eighties marks the beginning of the application of the space vector
modulation as the vector approach to PWM for three-phase inverters. The basic advantages
of SVM are related to the following.

(i) Expanded linear range of modulation without injection of the third harmonics into
the sine modulating function [23–25].

(ii) Lower harmonics content in relation to the regular methods based on the sine
modulating function [26].

(iii) Lower switching losses are conditioned by only one change of state [24, 27]

(iv) Simple digital implementation[28, 29]

On the other side in the papers [30, 31], it is shown that the conventional method
of SVM is equivalent to the regular method with modified sine-triangle uniform sampling
PWM with triplen harmonic injected. In the papers [32, 33] a detailed analysis of carrier based
PWM methods is given and their relation with the space vector approach as well. Using the
simple transformations, modulating functions translate from the time domain to the complex
domain, where the reference vector rotates with the angular speed equal to angular frequency
of time modulating functions.

Finally, in the paper [34] it was demonstrated that the calssical method SVM is
identical with the method of modulation sine function injected with triplen harmonics and
regular sampling technique.

Taking into account the relevant literature[34–36], we propose an aproximate
algorithm for PWM sampling according to the modulating function method. Unlike some
other works, in which the natural sampling method was rejected [2, 3, 15], we have accepted
the elements of this technique but have substituted the transcendental equation by an
algebraic expression derived, applying an exact procedure.
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2. Modulating Function Method

General characteristic of this group of methods is that the synthesis of the pulse at the output
of the modulator is carried out on the basis of the reference signal and signal carrier.

The reference signal is a periodic function having the frequency equal to the
fundamental frequency of the inverter output voltage and amplitude which is proportional
to the amplitude of the fundamental harmonic. The modulating function is analytical
representation of the reference signal. In general, this is a function of the following general
form [37]:

m(t) = F(M,ωt), |F(M,ωt)| ≤ 1. (2.1)

Parameter M stands for the modulation amplitude index, and parameter ω for the
fundamental frequency of inverter ac voltage Function F(M,ωt) can be continuous or
discontinuous having first-order interruptions in terms of M [38]. However, a great number
of modulating functions is of the following simpler form:

m(t) =MF(ωt), |F(ωt)| ≤ 1, F(2π −ωt) = −F(ωt). (2.2)

In classical PWM methods the carrier signal is an ac signal of triangular half-periods,
of frequency fc, and amplitude equal to one. The ratio of the carrier signal frequency and
the reference signal frequency determines the frequency index of modulation. In cases when
this is an integer, this index is pulse number p which is characteristic for the synchronized
methods of modulating function. Onother class of these methods is characterized by a
continuous variation of the fundamental frequency for a constant frequency of the carrier
signal. In this case, owing to nonperiodicity of pulses, appearance of subharmonics is possible
having particularly harmful influence on the load at lower fundamental frequencies.

The basic characteristics of the signal at modulator output, irrespective of the method
of edge determination, are the binary form and modulated width. They are transferred to the
states of switching elements by means of the switching function.

Pulse edges at modulator output are most frequently determined by the natural or
regular sampling method on the basis of the reference and carrier signals.

In case of a three-phase inverter modulation function may contain, in addition to the
basic component, components of the order 3kth which neutralize across the load. Application
of the vector modulating function [23] extends the amplitude range.

2.1. Regular Sampling Method

In the regular sampling method the reference signal is discretized, and the pulse edges
are determined by comparing the carrier signal with the reference signal modified in this
way, which implies a digital realization of the method. Therefore, the regular sampling
method has the advantage that microprocessor control is possible compared to the natural
sampling method where the pulse edges should be determined by iterative solution of the
transcendental equation obtained from the condition for crossing of the reference and carrier
(triangular) signals. Figure 1 presents the synthesis of the output voltage of a half-bridge
inverter by applying the modulating function method and regular sampling.
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Figure 1: Synthesis of the output voltage of a half-bridge inverter by applying the modulating function
method and regular sampling.

The interval of 2π radians corresponding to the period of the modulating function will
be divided in p intervals of length Δα = (2π)/p, as shown in Figure 1. Denote the center of
kth interval by αk. At these points modulating functionm(αk) is discretized to a set of p values
which are compared with a triangular signal carrier of the frequency equal to the switching
frequency of the inverter. The average value of the switching function of the inverter branch
is

ak =
1
2
(1 +MF(αk)). (2.3)

The pulse edges centered at αk are

α1,k = αk −
1
2
akΔα,

α2,k = αk +
1
2
akΔα.

(2.4)

Switching function αk(ωt) of the half-bridge is fully determined if the angles of the
pulse edges are known. From (2.4) it can be concluded that for complete determination of
the switching function, it is necessary to determine p pulse widths which correspond to the
cycle of the switching frequency. Alternative voltage at the output is determined by means of
switching function α(ωt) by the following expression:

uA0 = Ud[a(ωt) − 0.5]. (2.5)

The voltage waveform uA0 represents a copy of the periodic sequence of modulator
output pulses. This voltage may be expressed using the Fourier series:

uA0 =
∞∑

n=1

(Bn sin nωt +An cos nωt), (2.6)
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where

An =
1
π

p∑

k=1

∫αk+0.5a(αk)Δα

αk−0.5a(αk)Δα
cos nxdx

=
2
πn

p∑

k=1

cos nαk sin
(
nπ

2p
(1 +MF(αk))

)
,

(2.7a)

Bn =
1
π

p∑

k=1

∫αk−0.5a(αk)Δα

αk−0.5a(αk)Δα
sin nxdx

=
2
πn

p∑

k=1

sin nαk sin
(
nπ

2p
(1 +MF(αk))

)
.

(2.7b)

If the carrier frequency is considerably higher than the reference signal fundamental
frequency (ωc > 15ω), the following approximation is possible in the lower range of the
harmonic spectrum:

sin
(
nπ

2p
(1 +MF(αk))

)
≈ nπ

2p
(1 +MF(αk)). (2.8)

By transforming expressions (2.2) and (2.3) using relation (2.8), we find

lim
p/n→∞

An =
M

2
1
π

∫2π

0
F(ωt) cos(ωt)dωt, (2.9)

lim
p/n→∞

Bn =
M

2
1
π

∫2π

0
F(ωt) sin

∫2π

0
F(ωt) sin(ωt)dωt. (2.10)

Expressions (2.9) and (2.10) show that the lower part of the harmonic spectrum of inverter
output voltage corresponds to the reference signal frequency spectrum with a scale factor of
M/2.

From (2.9) and (2.10) one calculates the current distortion factor [12], which is one of
qualitative indexes of a PWM inverter:

DIS
(
M,p

)
=

100
C1

√√√√
∞∑

n=2

C2
n

n2
%, C2

n = A2
n + B

2
n. (2.11)

C1 and Cn are amplitudes of the fundamental and nth harmonic of the inverter output
voltage.

Regulation amplitude factor is defined in [13] as a ratio of the maximum output
voltage of PWM inverter Ul−lmax and imput DC voltage Ud.
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2.2. Space Vector Modulation and Relation with Modulating Functions

The basic elements of PWM using the method of modulating function are reference signals
which represent mapping of defined phase voltages on three phase loads of inverters and
carrier signal which determines switching frequency of inverter’s branch. These elements
are necessary for the synthesis of the switching function (a; b; c) of the branch three-phase
inverter, and these functions are linearly related to the phase and line AC voltages:

∥∥∥∥∥∥∥∥

uAn

uBn

uCn

∥∥∥∥∥∥∥∥
=
Ud

3

∥∥∥∥∥∥∥∥

2 −1 −1

−1 2 −1

−1 −1 2

∥∥∥∥∥∥∥∥
∗

∥∥∥∥∥∥∥∥

a

b

c

∥∥∥∥∥∥∥∥
, (2.12)

∥∥∥∥∥∥∥∥

uAB

uBC

uCA

∥∥∥∥∥∥∥∥
= Ud

∥∥∥∥∥∥∥∥

1 −1 0

0 1 −1

−1 0 1

∥∥∥∥∥∥∥∥
∗

∥∥∥∥∥∥∥∥

a

b

c

∥∥∥∥∥∥∥∥
. (2.13)

Differently from this, phase approaches to modulating, the basic elements of SVM are
reference voltage vectors and switching state of inverter. Reference voltage vector is given
using the transformation of phase voltage (A,B,C) systems on AC load of inverter into the
rotating voltage vector in αβ system using the equation of the transformation (2.14), the
geometrical interpretation of which is shown in Figure 4:

ur(ω t) =
2
3
∥∥1 ej2π/3 ej4π/3

∥∥ ∗ ‖uA,B,C‖3×1. (2.14)

It is possible to realize eight different switching states of inverter and corresponding space
vectors which are given by the formula (2.15) depending on the position of the switching
elements in the branches of that inverter:

us(k) =

⎧
⎨

⎩

2
3
Ud ej(k−1)π/3, k = 1, · · · , 6

0, k = 0, 7.
, (2.15)

The area (Figure 2) which is placed between the vectors us(k) i us(k + 1) determines
kth switching sector of the reference voltages vector. There are six such switching sectors, and
each of them is divided into Nc of switching segments (shadowed part in the Figure 2).

The essence of PWM using the method of space vector is in approximation of average
value of reference rotating vector inside the switching segment Tc using two active vectors
(2.15) which map the state of the inverter switch. Thus, it follows

1
Tc

∫ t2

t1

ur(ω t)dt =
Tk
Tc

us(k) +
Tk+z
Tc

us(k + z), (2.16)



Mathematical Problems in Engineering 7

k = 3 k = 2

k = 6k = 5

k = 4

jβ

S2

S1

S6

S5

S4

S3

2
3
Ud ; k = 1 α

Figure 2: Active voltage space vectors in (αβ) reference frame.

where Tk, Tk+z are the times which correspond to switch states k and k + z. If it is assumed
that the reference vector inside the switching sector is invariable, then it follows

ur =
Tk
Tc

us(k) +
Tk+z
Tc

us(k + z), (2.17)

with Tk + Tk+z ≤ Tc. Thus, it follows that the time difference between the switching cycles and
the time which corresponds to the states k and k + z of inverter is complemented with time
in which inverter takes the state 0 or the state 7 without changing of average value of the
reference vector:

Tc = Tk + Tk+z + T0 + T7. (2.18)

The way in which the zero states are inserted into the switching segment defines the
basic characteristics of the modulation. By the conventional method of space vector the equal
parts of both zero states are inside the switching sector. Also, the sequence of successive
switching states is formed of contiguous vectors us(k) and us(k + 1).

Although the method of space vector may initially seem radically different from the
method of modulating function, it is possible to construct a modulating function starting
from the SVM method and vice versa. During the construction of the modulating function, it
is first necessary to define the locus of the space vector. If the referent space vector is defined
by the formula

ur(ωt) = Ume
jωt, Um =M

Ud√
3
, 0 ≤M ≤ 1, (2.19)

then this trajectory is a circle as shown in Figure 2.
Continual vector modulating function which is derived from the classic method of

SVM is acquired in the following way.
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Inside each sector the switching segment is formed as a symmetrical sequence of
switching states formed of consecutive vectors. By applying this principle to the times
active consecutive vectors states, the times of active and zero states in kth sector are
found:

Tk =MTc sin
(
kπ

3
−ωt

)
,

Tk+1 =MTc sin
(
ωt − (k − 1)π

3

)
,

T0 = Tc −MTc cos
(
(2k − 1)π

6
−ωt

)
.

(2.20)

The switching segment in kth sector is arranged in accordance with the symmetry
requirement and the requirement that the change of switching state is performed by changing
only one coordinate. Thus, the time sequence in any segment is formed in the following
way:

T0

4
=⇒ Tk

2
=⇒ Tk+1

2
=⇒ T0

2
=⇒ Tk+1

2
=⇒ Tk

2
=⇒ T0

4
. (2.21)

Using the invariance property of time sequence inside the segment Tc, we find the
average value of switching function of inverter’s branch.

On the other hand, the average value of the switching function which is obtained
from the process of regular symmetrical sampling on appropriate segment is a(ωt) = 0.5[1 +
F(M,ωt)]. By balancing of this formula with the obtained average values using SVM method,
we find the well-known vector modulating function:

F(M,ωt) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M cos(ωt − 30◦) (0◦ ≤ ωt < 60◦) ∨ (180◦ ≤ ωt < 240◦),

M
√

3 cos(ωt) (60◦ ≤ ωt < 120◦) ∨ (240◦ ≤ ωt < 300◦),

M cos(ωt + 30◦) (120◦ ≤ ωt < 180◦) ∨ (300◦ ≤ ωt < 360◦).

(2.22)

Using the analog procedure and the possibility of the synthesis of the reference vector by
nonconsecutive space vectors, discontinuous modulating functions may be found which are
treated and analyzed in [32, 37, 39]. In the overmodulation range it is possible to construct
modulating functions till transition in the range of six-step modulating. In the work [40]
transition modulating function (2.23) is demonstrated. This modulating function is used in
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the range of over modulation where the trajectory of the locus space vector is partially an arc
of circle and partially a side of the hexago;

Ftr(M,ωt) =M

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(30◦ −ωt)
cos(x)

, ωt ∈ (0, 30◦ − x] ∪ (30◦ + x, 60◦],

1, ωt ∈ (30◦ − x, 30◦ + x],

√
3

cos(ωt)
cos(x)

, ωt ∈ (60◦, 90◦ − x] ∪ (90◦ + x, 120◦],

√
3tg(x)

90◦ −ωt
x

, ωt ∈ (90◦ − x, 90◦ + x],

cos(30◦ +ωt)
cos(x)

, ωt ∈ (120◦, 150◦ − x] ∪ (150◦ + x, 180◦],

−1, ωt ∈ (150◦ − x, 150◦ + x],

(2.23)

Ftr(M,ωt + 180◦) = −Ftr(M,ωt), 0 < x <
π

6
. (2.24)

Transition modulating function (2.23) has two boundary cases of which the first appears
when x → 0, and it represents the vector modulating function (2.22), and the second case
appears when x → π/6 and represents trapezoidal modulating function.

3. Approximate Sampling Algorithum

In the approximate algorithm, instead of an iterative procedure for finding the angle of a
pulse edge, a procedure of direct determination of an approximate solution is applied. The
angle of a pulse edge is considered as function of the amplitude index of modulation, with
the pulse number as a parameter, which is realistic since the amplitude index of modulation
varies continuously whereas the pulse number remains constant within a single range of
fequency control and varies discretely from a higher to a lower integer value. In this method
the angle of pulse edge is approximated by a polynomial whose highest degree determines a
measure of goodness of the obtained solution compared to the natural sampling and does
not influence the applicability of the approximation. The polynomial approximations are
without restrictions readily applicable to all known modulating functions and triangular
carrier signal.

3.1. Mathematical Fundation of the Approximate Sampling Method

The reference signal (the modulating function) is specified by expression (2.2). The carrier is
a periodic ac signal of triangular half-periods. Reference and carrier signal phase positions
are synchronized by a common zero. There are two possibilities leading to different values
of pulse angles. In the first case, the phase zeros of half-periods of the same sign (s = 1) are
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synchronized, whereas in the second the phase zeros of half-periods of different signs (s = 0)
are synchronized. The expression for the ith carrier segment may be written in the form

fsi = (−1)i+s−1 2p
π

(
αi −

iπ

p

)
,

(2i − 1)π
2p

< αi ≤
(2i + 1)π

2p
,

αi = ω ti; i = 0, . . . , 2p.

(3.1)

The pulse widths are determined by the solutions of the successive series of equations

Ψ
(
αi,M, p

)
= (−1)i+s−1 2p

π

(
αi −

iπ

p

)
−M F(αi) = 0, i = 0, . . . , 2p. (3.2)

The modulator output signal can be synthesized if, in addition to the zero edge, the (p −
1)th successive edge is also known. The remaining edges are determined from the following
simple relation:

α2p−1 = 2π−, i = 1, 2, . . . , p − 1. (3.3)

However, the sequences of successive equations (3.2) are, as a rule, transcendental
in nature. Instead of using the iterative procedure, which is inconvenient from both PWM
signal control and synthesis standpoints, it is possible to apply an approximation procedure
to obtain analytical expressions for calculating the pulse width depending on the amplitude
index value. The convenience lies in the fact that the inverter output voltage amplitude
and frequency regulation are performed through continuous changes in the amplitude
index Mand discrete changes in the frequency index (p). Thus, the angles of pulse edges
are invariant with respect to variations in reference and carrier frequencies at a constant
frequency index value (p = const.).

Speaking in mathematical terms, this fact means that the frequency index p is treated
as a parameter whose possible changes are discrete from one, higher, integer value to another,
lower one.

It follows from relation (3.2) that

Ψ
(
iπ

p
, 0, p

)
= 0, Ψ′αi

(
iπ

p
, 0, p

)
/= 0, (3.4)

from which we conclude that there exist unique analytical functions αi = Φ(M) for which the
following holds:

Ψ
(
Φi(M),M, p

)
= 0, Φi(0) =

iπ

p
. (3.5)
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In the neighborhood of M = 0, there exist unique expansions of these functions into power
series:

αi =
iπ

p
+
∞∑

k=1

Ak

(
i, p
)
Mk, i = 1, 2, . . . , p. (3.6)

Coefficients Ak(i, p) are determined from relations

Ak

(
i, p
)
=

(−1)k(s−1)πk

2kpkk!
(−1)ik

dk−1

dαk−1

(
F(αi)k

)
|α1=iπ/p. (3.7)

The uniqueness of αi = Φ(M) is ensured over the range, 0 ≤ M < R, where R denotes the
radius of convergence of series (3.6). In the important case when F(α) = sinα the approximate
value of the radius of convergence is R ≈ (2p/π)0.6672 · · · [41].

The practical application of the derived expressions is possible through the approxi-
mation of series (3.6) to an N-degree polynomial with a remainder term EN(i, p,M) :

αi =
iπ

p
+

N∑

k=1

Ak

(
i, p
)
Mk + EN

(
i, p,M

)
, i = 1, 2, . . . , p (3.8)

In what follows the expression “approximate” will hereupon be replaced by
“polynomial”.

In practice, determination of pulse edges αi by the approximation polynomials
obtained from (3.8) eliminates the iterative numerical procedure. The derived procedure for
pulse width calculation, according to expression (3.8), is a general one as it applies to any
modulating function represented by relation (2.2). For a zero amplitude index value (M = 0)
the modulator output gives a signal whose pulses have identical angular widths.

In most of the modulating functions sine or cosine segments inside the more complex
modulating function exist. This is why we will use the example of a sinusoidal modulating
function to illustrate the method we propose in this work.

In this case, the series of successive transcendental equations whose solutions give the
pulse edge angles is

(−1)i+s−1 2p
π

(
αi −

iπ

p

)
−M sin (αi) = 0, i = 0, . . . , 2p. (3.9)

The coefficients Ak(i, p) calculated according to general expression (3.7) determine the
measure of imbalance in angles αi due to a change in the amplitude index M. In the case
of a sinusoidal reference signal, the coefficient of the kth term of the power series is given by
the expression

Ak

(
i, p
)
=

(−1)k(s−1)πk

22k−1pk
(−1)ik

k−1∑

r=0

(−1)r(k − 2r)k−2

r!(k − 1 − r)! sin(k − 2r)
iπ

p
. (3.10)

Relation Ak(i, p) = −Ak(2p − i, p) provides for the symmetry of pulse angles about the half-
period. In addition, if p is an odd number, then Ak(i, p) = −Ak(p − i, p)) holds, from which it
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follows that pulse edge angles are also symmetrical about the quarter-period of the reference
signal.

The maximum remainder term EN(i, p,M) is a very complicated function of the
frequency and amplitude index. It represents the measure of the deviation of the method
proposed here from the natural method, and it can be investigated efficiently by comparing
the values of angles obtained by applying the polynomial approximation and the iterative
procedure of solving the transcendental equations (3.9).

In the case of a sinusoidal reference signal, the first four coefficients of power
polynomial obtained using relation (3.10) are

A1
(
i, p
)
= (−1)s−1 (−1)iπ

2p
sin

iπ

p
, (3.11a)

A2
(
i, p
)
=
π2

8p2
sin

2iπ
p
, (3.11b)

A3
(
i, p
)
= (−1)s−1 (−1)iπ3

26p3

(
3 sin

3iπ
p
− sin

iπ

p

)
, (3.11c)

A4
(
i, p
)
=

π4

27p4

(
8
3

sin
4iπ
p
− 4

3
sin

2iπ
p

)
. (3.11d)

The coefficients obtained using (3.7) for any modulating function determine polynomial
formulas (3.12a)–(3.12d) for switchning angles:

Π1i(M) =
iπ

p
+A1

(
i, p
)
M, (3.12a)

Π2i(M) = Π1i(M) +A2
(
i, p
)
M2, (3.12b)

Π3i(M) = Π2i(M) +A3
(
i, p
)
M3, (3.12c)

Π4i(M) = Π3i(M) +A4
(
i, p
)
M4. (3.12d)

From expressions (3.12a)–(3.12d) it is possible to obtain the approximate solutions of
transcendental equations (3.9). In view of the phase synchronization between the reference
and carrier signal, it is sufficient to apply some of the expression p − 1 times to obtain the
(p − 1)th successive pulse edge angle. The remaining angles are determined by simply using
the symmetry property from the natural sampling method, which has been preserved in
expressions (3.12a)–(3.12d).Using the property of the symmetry of angles about the quarter-
period of the reference signal, for an odd frequency index value, it is sufficient to apply the
stated expressions and calculate the (p − 1)/2 successive pulse edge angle.
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Table 1: Maximum turncation error values upon a change in M from 0 to 1.

p Π1 Π2 Π3 Π4

6 2.0516 0.4791 0.1284 0.0349
9 0.7845 0.1191 0.0250 0.0029
12 0.5099 0.0631 0.0078 0.0012
15 0.3175 0.0324 0.0032 0.0004

3.2. Influence of Polynomial Degree to the Level of
Approximation of Natural Sampling

The deviations of angles αi, i = 1, 2, . . . , 2p obtained using formulae (2.13), (2.14), (2.15), and
(2.16) from the values found by applying the iterative procedure to expression (3.9) represent
the measure of the remainder term EN(i, p,M). The maximum values of absolute remainder
terms for p = 6, 9, 12, 15 for the amplitude index value varying from zero to one are shown in
Table 1. As can be seen, polynomial approximations yield the same accuracy in determining
the pulse edge angles as that achieved by applying some of the iterative numerical procedures
(e.g., the Newton-Raphson or Gauss-Saidel methods).

However, unlike the mentioned numerical method, formulae (2.13), (2.14), (2.15),
and (2.16) are directly applicable in the form of a microprocessor algorithm. The symmetry
properties of the PWM sequence are preserved even for the low values of frequency index p,
and this permits the algorithm to be applied to the cases where the regular method shows a
tendency toward degrading the harmonic and amplitude performances of inverter output
voltage regulation. It can be seen from Table 1 that the maximum of remainder term is
inversely proportional to the frequency index and directly proportional to the amplitude
index.

3.3. Modified Polynomial Approximation by Using Chebyshev Polynomials

To achieve a higher accuracy of pulse edge with polynomial of lower order, we will apply the
economization procedure by using Chebyshev polynomials [42]. In this way we obtain the
following polynomials:

αi = Πc
1i =

(
iπ

p
−
A4
(
i, p
)

8

)
+

(
A1
(
i, p
)
+

3A3
(
i, p
)

4

)
M, (3.13)

αi = Πc
2i = Πc

1i +
(
A2
(
i, p
)
+A4

(
i, p
))
M2. (3.14)

The use of polynomial (3.4) provides a level of accuracy whose order of magnitude
corresponds to the use of a third-degree polynomial, as shown in Table 2.

When used as a PWM sampling algorithm, the modified polynomial permits computer
time savings and yields a maximum error of 0.1297 degrees, which is comparable to the use
of a nonmodified third-degree polynomial.
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Table 2: Maximum truncation error values upon a change in M from 0 to 1 when a chebyshev polynomial
is Used.

p Πc
1i Πc

2i

6 1.8155 0.1297
9 0.8717 0.0351
12 0.4925 0.0161
15 0.3124 0.0078

4. Analysis of the Results

Because of the odd symmetry of the ac component of the pulse sequence generated by the
method proposed, the Fourier expansion of inverter ac voltage contains only sinusoidal
components. The amplitude of the nth harmonic of voltage is given by expression:

Cn = (−1)s
1
πn

[
1 + (−1)p+n + 2

p−1∑

i=1

(−1)i cos(nαi)

]
. (4.1)

After substituting the expressions for pulse edge angles, αi into (4.1) and then Cn into
(2.11), we find the current distortion factor as a function of the amplitude index, with the
index p figuring as a parameter. The regulation amplitude factor is obtained directly by
applying formula (3.5) for n = 1, depending on the amplitude index M. As the second-
order polynomial algorithm gives relatively small deviations of pulse edge angles from
those obtained using the natural method, the same conclusion applies to the amplitude of
the fundamental harmonic generated by the second-order polynomial algorithm. The use
of polynomial algorithm (3.14) produces a considerable decrease in the distortion factor
in the upper part of amplitude modulation. The results obtained by numerical analysis
and simulations clearly indicate the advantages of the proposed sampling method, at
low-frequency index values, with respect to both the distortion factor and the maximum
achievable modulation amplitude factor.

When the second-degree polynomial algorithms are applied to the sinusoidal
modulating function, the results obtained for p = 6 are already close to the ideal natural
sampling method (Tables 3 and 4). At higher frequency index values, all algorithms converge
to the same distortion factor values and to a common amplitude characteristic of voltage
regulation, as confirmed by experiment.

All that has been mentioned above can be applied to the results for a three-phase
inverter, since its bridge structure consists of three half-bridge structures. The proposed
polynomial algorithms exhibit their major advantages when applied to the vector modulating
function as well. At frequency index values p ≤ 15, a suitably chosen algorithm may give the
maximum values of amplitude characteristic, which are considerably better compared with
the regular sampling method. In addition, the distortion factor is decreased. To illustrate this,
let us say that the polynomial algorithm (3.13) for p = 6 and M = 1 yields the reduced
amplitude of the fundamental harmonic of 0.5672 and a distortion factor DIS = 5.6761%.
In case the regular sampling method is applied under identical conditions, the reduced
amplitude is 0.5521 with a distortion factor DIS = 8.4087%. Algorithm (3.14) gives the reduced
amplitude of 0.5773 and a distortion factor DIS = 10.0245%.
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Table 3: Comparison of amplitude characteristic values for natural (SPWM), regular (RSPWM), and
derived polynomial algorithmic sampling.

M SPWM Π2 RSPWM Πc
2

s = 0; 1 s = 0; 1 s = 0; 1 s = 0; 1
0.1 0.0500 0.0500 0.0483 0.0497
0.2 0.1000 0.1000 0.0966 0.0993
0.3 0.1500 0.1501 0.1448 0.1489
0.4 0.2000 0.2003 0.1929 0.1985
0.5 0.2500 0.2505 0.2410 0.2479
0.6 0.3000 0.3009 0.2889 0.2972
0.7 0.3500 0.3514 0.3367 0.3464
0.8 0.4000 0.4021 0.3843 0.3953
0.9 0.4500 0.4530 0.4317 0.4441
1.0 0.5000 0.5041 0.4788 0.4927

Table 4: Comparison of distortion factor values for natural (SPWM), regular (RSPWM), and derived
polynomial algorithmic sampling.

M SPWM Π2 RSPWM Πc
2

s = 0; 1 s = 0; 1 s = 0; 1 s = 0; 1
0.1 14.0914 14.0913 15.7644 14.0928
0.2 13.117 13.1175 14.7981 13.0883
0.3 12.190 12.1908 13.8556 12.1034
0.4 11.352 11.3554 12.9719 11.1724
0.5 10.629 10.6401 12.1601 10.3177
0.6 10.041 10.0701 11.4392 9.55.76
0.7 9.6108 9.6720 10.8261 8.9166
0.8 9.3862 9.4685 10.3405 8.4213
0.9 9.3532 9.4733 10.0004 8.0984
1.0 9.2787 9.6877 9.8204 7.9690

The odd values of frequency index p imply the use of algorithm (3.14). As far as the
amplitude characteristic is concerned, the best results for p = 9, 21, . . . are achieved with
synchronized half-periods of opposite signs (s = 0), whereas for p = 15, 27, . . . . half-
periods of the same sign (s = 1) should be synchronized. These results are presented in
Figures 3 and 4.

For higher pulse number values, all algorithms converge toward the same values of
amplitude and distortion harmonic indicators (Figures 3 and 4).

5. Implementation of Polynomial Algorithm and Experimental Results

It is known that the basic characteristics of the digital implementation of the natural sampling
are the iterative procedure and the work with the data in the floating point numbers format,
which is a consequence of the transcendental nature of the expressions by which the angles of
impulses edges are determined. Algebraic nature of the formula for the angles (2.13), (2.14),
(2.15), (2.16), (3.13) and (3.14) give the possibility to replace the iterative procedure faster
method of direct computing.



16 Mathematical Problems in Engineering

A
m

pl
it

ud
e

0.55

0.56

0.57

0.58

0.59

0.6

p

0 10 20 30 40

a
b

c
d

Figure 3: Maximum amplitudes of the fundamental harmonic of inverter output voltage obtained using
the vector modulating function (2.22) and (a) polynomial sampling method (3.2), (b) polynomial sampling
method (3.4) for s = 0, (c) polynomial sampling method (3.4) for s = 1, and (d) regular sampling
method.
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Figure 4: The distortion factor DIS(l, p)% of inverter output line voltage obtained using the vector
modulating function (2.22) and (a) polynomial sampling method (3.2), (b) polynomial sampling method
(3.4) for s = 0, (c) polynomial sampling method (3.4) for s = 1, and (d) regular sampling method.

By transition to the time domain we find the formulas which determine the position
of the kth impulse inside the appropriate periods of switching frequency. The software
implementation of a polynomial algorithm is achieved by simulation of the process which is
shown in Figure 5 with the characteristic times determined by the following formulas which
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Figure 5: Graphical representation of main elements of impulse synthesis using polynomial algorithm.

represents the times of intersection of carrier signal and reference signal, given in the explicit
algebraic form of polynome with M as the argument
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(5.2)

In the formula (5.1) we suppose that a(1)0 (k, p) = a(2)0 (k, p) = F(αk); k = 1, 2, . . . , p; s =
0, where αk is the angle of the kth sample of the modulation function determined in such a
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Figure 6: Main elements of impulse synthesis, using regular symmetrical algorithm.

way that the polynomial algorithm becomes a regular algorithm with the characteristic times,
given in the following formula:

t
(1)
kX =

Tc
4
− Tc

4
M FX(αk), ΔkX =

Tc
2

[
1 +

M

2
FX(αk)

]
, X ∈ (A,B,C). (5.3)

The synthesis of impulses on the modulator output is performed by simulation of the
process which is shown in the Figure 6. Detailed microprocessor implementation of regular
symmetrical algorithm is given in [43–45].

Modern microcontrollers are equiped with integrated peripheral units designed for
the synthesis of the modulated signals which control the state of switching of inverter
branch. Intel’s microcontroller 8XC196MC/MD is optimized for implementation of PWM
using the method of modulation function [46]. It contains the generator of the modulated
signal which significantly simplifies the programe implementation of selection algorithm
and reduces the need for external hardware devices, enabling the synthesis of three
independent complementary sets of modulated signals, with common switching frequency
and conservatively determined “dead” time. Digital wordWTCwhich determines the period
of switching frequency Tc is defined by

WTC =
106

4p
fXTAL

fmax

Fmax

F
, (5.4)

where

Fmax is the value of the register of maximum frequency of output inverter’s voltage;
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(FFFF) is the fmax maximum value of frequency in (Hz); p pulse number;

fXTAL is the clock frequency on the pin XTAL1 in (MHz).

The times of leading impulses edge are determined in the form of digital words which
are calculated using

WT A1 =
WTC

2
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2
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)
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)
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(5.5)

Similarly, we find the formula for digital words of the trailing edges of impulses, the value of
which is set in the appropriate registers WG COMPx when the counter WG COUNT reaches
the value 0001 H:
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(5.6)

The values of the coefficient a(1)s (k, p) · · · c(1)s (k, p) are normalized and are represented as
double-complementary quantities in fixed point formats in the following way:

KOEFx = 2−15

(
−b15215 +

14∑

i=0

bi2i
)

; bi ∈ {0, 1}. (5.7)

In this kind of representation all previously calculated coefficients are shown with the
accuracy greater than 10−4 in the range of changes from −1 to 0.999 within which are also all
polynomial coefficients.

The coefficients of the leading and trailing edges are placed in the form of pairs of
memory tables so that one table corresponds to the leading impulse edges and the other
to the trailing impulse edges. The number of tables depends on the polynomial degree and
the number of different values of the pulse number. The coefficients which correspond to
the different phases are determined from the same table by applying the suitable index
addressing of the data from the tables. The basic element which determines the conditions
under which a polynomial algorithm can be applied is that the time necessary for realization
of the program must be shorter than half of the carrier signal period. Concerning the memory
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Figure 7: Experimental model

table it is possible to perform certain optimizations using the properties of the symmetry of
pulse angles about the half-period. The amplitude modulation index can be obtained also
from the memory table which shows the output amplitude dependency on the frequency. In
the experiment performed this dependency is linear, and it maps the ratio U/f = const.

The experimental model (Figure 7) is made for the practical realization of the
polynomial algorithm, and it contains three basic units.

(a) Voltage three-phase inverter,with the implemented first degree polynomial algorithm and
the vector modulation function (2.22).

(b) Three-phase asynchronous motorZK100L4;

(i) nominal voltage: 380VΔ;
(ii) rated current: 5, 3AΔ/3, 05AΥ;
(iii) power factor : cosϕ = 0, 81;
(iv) rated power: 2, 2 kW ;
(v) rated speed: 1410 (ob/min).

(c) Electric brakeWBII 2GA1351–1B

(i) rated power: 2 kW ;
(ii) rated speed: 1500 (ob/min).

Experimentally, the possibility of application of the polynomial algorithm as the
modification of the regular selection algorithm for the switching frequency of 2,4 kHz is
confirmed. For higher switching frequencies, the times needed for online computation of the
positions of the impulse edges are critical regarding their asymmetry about the switching
segment. The applications of the polynomial algorithm of the first degree for the output
frequency of 40 Hz with the pulse number p = 60 are achieved. Oscilloscope recordings of
the line voltage and current, obtained by the synthesis according to polynomial algorithm
with the vector modulation function, are shown in the Figure 8.

6. Conclusion

The suggested new sampling PWM algorithm by using the method of modulating function
offers a possibility that natural sampling can be realized without any iterative procedure. It
is shown that the angle of pulse edges can be approximated by a polynomial, the highest
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Figure 8: Oscilogram of line current and phase voltage with vector modulation and polynomial algorithm
of the first degree.

degree of the polynomial determining the measure of approximation of the obtained solution
compared to natural sampling. The economizing procedure of using Chebyshev polinomials
offered the possibility of using polinomials of a lower order, usually of the first- or second-
order, still acomplishing a good approximation of the natural sampling. In terms of simplicity,
this algorithm is comparable to a version of regular sampling method. As regards the
performance concerning the quality of inverter’s output voltage, improvement by application
of the suggested algorithm, which retains all good properties of the natural technique of
PWM, is confirmed by simulation. In addition, possibility of implementation of polynomial
algorithm in the real application is experimentally confirmed.
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