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1. Introduction

This paper presents numerical and analytical results for optimal low-thrust limited-power
transfers between orbits with small eccentricities in a noncentral gravity field that includes
the second zonal harmonic J2 in the gravitational potential. This study has been motivated by
the renewed interest in the use of low-thrust propulsion systems in space missions verified
in the last two decades due to the development and the successes of two space mission
powered by ionic propulsion: Deep Space One and SMART 1. Several researchers have
obtained numerical and sometimes analytical solutions for a number of specific initial orbits
and specific thrust profiles in central or noncentral gravity field [1–26].
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It is assumed that the thrust direction is free and the thrust magnitude is unbounded
[5, 27], that is, there exist no constraints on control variables. It is supposed that the orbital
changes caused by the thrust and the perturbations due to the oblateness of the central body
have the same order of magnitude. The optimization problem is formulated as a Mayer
problem of optimal control with position and velocity vectors—Cartesian elements—as
state variables. After applying the Pontryagin Maximum Principle [28], successive Mathieu
transformations are performed and a suitable set of orbital elements is introduced. Hori
method—a perturbation technique based on Lie series [29]—is applied in solving the
canonical system of differential equations that governs the optimal trajectories. For transfers
between close quasicircular orbits, new set of nonsingular orbital elements is introduced and
the new Hamiltonian and the generating function, determined through the algorithm of Hori
method, are transformed to these new elements through Mathieu transformations. First-order
analytical solutions are obtained for transfers between close quasicircular orbits, considering
maneuvers between near-equatorial orbits or nonequatorial orbits. These solutions are
given in terms of systems of algebraic equations involving the imposed variations of
the orbital elements, the duration of the maneuvers, the effects of the oblateness of the
central body, and the initial values of the adjoint variables. The study of these transfers is
particularly interesting because the orbits found in practice often have a small eccentricity,
and the problem of slight modifications (corrections) of these orbits is frequently met [5].
For transfers between arbitrary orbits, a slightly different set of nonsingular elements is
introduced, and the two-point boundary value problem described by averaged maximum
Hamiltonian, expressed in nonsingular elements, is solved through a shooting method. A
comparison between analytical and numerical results is presented for some maneuvers.

2. Optimal Space Trajectories

A low-thrust limited-power propulsion system, or LP system, is characterized by low-thrust
acceleration level and high specific impulse [5]. The ratio between the maximum thrust
acceleration and the gravity acceleration on the ground, γmax/g0, is between 10−4 and 10−2.
For such system, the fuel consumption is described by the variable J defined as

J =
1
2

∫ t

t0

γ2dt, (2.1)

where γ is the magnitude of the thrust acceleration vector γ , used as control variable. The
consumption variable J is a monotonic decreasing function of the mass m of space vehicle:

J = Pmax

(
1
m
− 1
m0

)
, (2.2)

where Pmax is the maximum power, and m0 is the initial mass. The minimization of the final
value of the fuel consumption Jf is equivalent to the maximization of mf .

The general optimization problem concerned with low-thrust limited-power transfers
(no rendezvous) will be formulated as a Mayer problem of optimal control by using Cartesian
elements as state variables. Consider the motion of a space vehicle M powered by a limited-
power engine in a general gravity field. At time t, the state of the vehicle is defined by the
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Figure 1: Geometry of the transfer problem.

position vector r(t), the velocity vector v(t), and the consumption variable J . The geometry
of the transfer problem is illustrated in Figure 1. The control γ is unconstrained, that is, the
thrust direction is free, and the thrust magnitude is unbounded.

The optimization problem is formulated as follows: it is proposed to transfer the space
vehicle M from the initial state (r0,v0, 0) at the initial time t0 = 0 to the final state (rf ,vf , Jf)
at the specified final time tf , such that the final consumption variable Jf is a minimum. The
state equations are

dr
dt

= v,
dv
dt

= g(r) + γ ,
dJ

dt
=

1
2
γ2, (2.3)

where g(r) is the gravity acceleration. For transfers between orbits with small eccentricities,
the initial and final conditions will be specified in terms of singular orbital elements
introduced in next sections. It is also assumed that tf − t0 and the position of the vehicle
in the initial orbit are specified.

According to the Pontryagin Maximum Principle [28], the optimal thrust acceleration
γ ∗ must be selected from the admissible controls such that the Hamiltonian function H
reaches its maximum. The Hamiltonian function is formed using (2.3),

H = pr•v + pv•(g(r) + γ) +
1
2
pJγ

2, (2.4)

where pr , pv, and pJ are the adjoint variables, and dot denotes the dot product. Since the
optimization problem is unconstrained, γ ∗ is given by

γ ∗ = −
pv
pJ
. (2.5)

The optimal thrust acceleration γ ∗ is modulated [5], and the optimal trajectories are governed
by the maximum Hamiltonian function H∗, obtained from (2.4) and (2.5):

H∗ = pr•v + pv•g(r) −
pv

2

2pJ
. (2.6)
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The consumption variable J is ignorable, and pJ is a first integral. From the
transversality conditions, pJ(tf) = −1; thus,

pJ(t) = −1. (2.7)

Equation (2.6) reduces to

H = pr•v + pv•g(r) +
pv

2

2
. (2.8)

The consumption variable J is determined by simple quadrature.
For noncentral field, the gravity acceleration is given by [30]

g(r) = −
μ

r3
r +
(
∂V2

∂r

)T

, (2.9)

with the disturbing function V2 defined by

V2 = −μJ2

(
ae

2

r3

)
P2
(
sinϕ

)
, (2.10)

where μ is the gravitational parameter, ae is the mean equatorial radius of the central body,
J2 is the coefficient for the second zonal harmonic of the potential, ϕ is the latitude, and P2

is the Legendre polynomial of order 2. (∂V2/∂r) is a row vector of partial derivatives, and
superscript T denotes its transpose.

Using (2.8) and (2.9), the maximum Hamiltonian function can be put in the following
form:

H∗ = H0 +HJ2 +Hγ∗, (2.11)

where

H0 = pr•v − pv•
μ

r3
r,

HJ2 = pv•
(
∂V2

∂r

)T

,

Hγ∗ =
pv

2

2
.

(2.12)

H0 is the undisturbed Hamiltonian function,HJ2 andHγ∗ are disturbing functions concerning
the oblateness of the central body and the optimal thrust acceleration, respectively. HJ2 and
Hγ∗ are assumed to be of the same order of magnitude.
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3. Transformation from Cartesian Elements to a Set of
Orbital Elements

Consider the canonical system of differential equations governed by the undisturbed
Hamiltonian H0:

dr
dt

= v,
dv
dt

= −
μ

r3
r,

dpr

dt
=
μ

r3 (pv − 3(pv•er)er),
dpv
dt

= −pr ,
(3.1)

where er is the unit vector pointing radially outward of the moving frame of reference
(Figure 2). The general solution of the state equations is well known in Astrodynamics
[31], and the general solution of the adjoint equations is obtained through properties of
generalized canonical systems [32], as described in the appendix. Thus,

r =
a
(
1 − e2)

1 + e cos f
er, (3.2)

v =

√
μ

a(1 − e2)
[
e sin fer +

(
1 + e cos f

)
es
]
, (3.3)

pr =
a

r2

{
2apa +

((
1 − e2

)
cosE

)
pe +

( r
a

)sin f
e

(
pω −

(
1 − e3 cosE

)
√

1 − e2
pM

)}
er

+

{
sin f
a

pe −
(
e + cos f

)
ae(1 − e2)

pω +

√
1 − e2 cos f

ae
pM

}
es

+
1

a
√

1 − e2

{(
a

r

)
sinE

[
pI cosω +

(
pΩ

sin I
− pωcotI

)
sinω

]

+
√

1 − e2
(
a

r

)
cosE

[
pI sinω −

(
pΩ

sin I
− pωcotI

)
cosω

]}
ew,

(3.4)

pv =
1

na
√

1 − e2

{{
2ae sin fpa +

((
1 − e2

)
sin f

)
pe −

(
1 − e2) cos f

e
pω

+

(
1 − e2)3/2

e

(
cos f − 2e

1 + e cos f

)
pM

⎫⎬
⎭er

+

{
2a
(

1 − e2
)(a

r

)
pa +

(
1 − e2

)(
cos f + cosE

)
pe

+

(
1 − e2) sin f

e

(
1 +

1
1 + e cos f

)(
pω −

√
1 − e2pM

)}
es

+
{( r

a

)
cos
(
ω + f

)
pI +

( r
a

)
sin
(
ω + f

)( pΩ
sin I

− pω cot I
)}

ew
}
,

(3.5)
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Figure 2: Frames of reference.

where es and ew are unit vectors along circumferential and normal directions of the moving
frame of reference, respectively; a is the semimajor axis, e is the eccentricity, I is the inclination
of orbital plane, Ω is the longitude of the ascending node, ω is the argument of pericenter, f is

the true anomaly, E is the eccentric anomaly, M is the mean anomaly, n =
√
μ/a3 is the mean

motion, and (r/a), (r/a) sin f , and so forth are functions of the elliptic motion which can
be expressed explicitly in terms of the eccentricity and the mean anomaly through Lagrange
series [31]. The true, eccentric and mean anomalies are related through the equations:

tan
f

2
=

√
1 + e
1 − e tan

E

2
,

M = E − e sinE.

(3.6)

The unit vectors er, es, and ew of the moving frame of reference are written in the fixed frame
of reference as

er =
(
cosΩ cos

(
ω + f

)
− sinΩ sin

(
ω + f

)
cos I

)
i

+
(
sinΩ cos

(
ω + f

)
+ cosΩ sin

(
ω + f

)
cos I

)
j + sin

(
ω + f

)
sin Ik,

es = −
(
cosΩ sin

(
ω + f

)
+ sinΩ cos

(
ω + f

)
cos I

)
i

+
(
− sinΩ sin

(
ω + f

)
+ cosΩ cos

(
ω + f

)
cos I

)
j + cos

(
ω + f

)
sin Ik,

ew = sinΩ sin Ii − cosΩ sin Ij + cos Ik.

(3.7)

Equations (3.2)–(3.5) define a Mathieu transformation between the Cartesian elements
(r,v,pr,pv) and the orbital ones (a, e, I,Ω, ω,M, pa, pe, pI , pΩ, pω, pM). Since the Hamiltonian
function is invariant with respect to this canonical transformation, it follows, from (2.11)
through (3.5), that

H∗ = H0 +HJ2 +Hγ∗ , (3.8)
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where

H0 = npM,

HJ2 =
2
na

∂V ′2
∂M

pa +

√
1 − e2

na2e

[
−
∂V ′2
∂ω

+
√

1 − e2
∂V ′2
∂M

]
pe

+
1

na2
√

1 − e2 sin I

[
−
∂V ′2
∂Ω

+ cos I
∂V ′2
∂ω

]
pI

+
1

na2
√

1 − e2 sin I

∂V ′2
∂I

pΩ +

√
1 − e2

na2e

[
∂V ′2
∂e
− e cot I
(1 − e2)

∂V ′2
∂I

]
pω

+
1
na

[
−2
∂V ′2
∂a
−
(
1 − e2)
ae

∂V ′2
∂e

]
pM

}
,

H∗γ =
1

2n2a2(1 − e2)

{
1
2
(
1 − cos 2f

)[
2aepa +

(
1 − e2

)
pe
]2

+ 2
(

1 − e2
)

sin 2f

[
−apapω −

(
1 − e2)

2e
pepω

]

+ 4
(

1 − e2
)3/2

sin f
( −2e

1 + e cos f
+ cos f

)[
apapM +

(
1 − e2)

2e
pepM

]

+

(
1 − e2)2

2e2

(
1 + cos 2f

)
pω

2

−
2
(
1 − e2)5/2

e2

( −2e
1 + e cos f

+ cos f
)

cos fpωpM

+

(
1 − e2)3

e2

( −2e
1 + e cos f

+ cos f
)2

pM
2 + 4a2

(
1 − e2

)2
(
a

r

)2

pa
2

+ 4a
(

1 − e2
)2
(
a

r

)(
cosE + cos f

)
pape

+
(

1 − e2
)2
(cosE + cos f)2pe

2

+
4a
(
1 − e2)2

e

(
a

r

)
sin f

(
1 +

1
1 + e cos f

)

×
[
papω −

(
1 − e2

)1/2
papM

]

+
2
(
1 − e2)2

e

(
cosE + cos f

)(
1 +

1
1 + e cos f

)

× sin f
[
pepω −

√
1 − e2pepM

]
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+

[(
1 − e2)
e

(
1 +

1
1 + e cos f

)
sin f

[
pω −

√
1 − e2pM

]]2

+
1
2

( r
a

)2
[
pI

2 +
(

pΩ
sin I

− pω cot I
)2
]

+
1
2

( r
a

)2
cos 2

(
ω + f

)[
pI

2 −
(

pΩ
sin I

− pω cot I
)2
]

+
( r
a

)2
sin 2

(
ω + f

)
pI

(
pΩ

sin I
− pω cot I

)}
,

(3.9)

with the disturbing function V ′2 given by

V ′2 =
μ

a

(ae
a

)2
J2

{(
a

r

)3[1
2
− 3

4
sin2I

]
+

3
4

(
a

r

)3

sin2I cos 2
(
ω + f

)}
. (3.10)

The new Hamiltonian function H∗, defined by (3.8)–(3.10), describes the optimal low-
thrust limited-power trajectories in a noncentral gravity field which includes the perturbative
effects of the second zonal harmonic of the gravitational potential.

4. Averaged Maximum Hamiltonian for Optimal Transfers

In order to eliminate the short periodic terms from the maximum Hamiltonian function H∗,
Hori method [29] is applied. It is assumed that H0 is of zero-order and H∗γ is of the first-order
in a small parameter associated to the magnitude of the thrust acceleration, and HJ2 has the
same order of H∗γ .

Consider an infinitesimal canonical transformation:

(
a, e, I,Ω, ω,M, pa, pe, pI , pΩ, pω, pM

)
−→

(
a′, e′, I ′,Ω′, ω′,M′, p′a, p

′
e, p

′
I , p

′
Ω, p

′
ω, p

′
M

)
. (4.1)

The new variables are designated by the prime. According to the algorithm of Hori method
[29], at order 0,

F0 = n′p′M. (4.2)

F0 denotes the new undisturbed Hamiltonian. Now, consider the canonical system described
by F0:

da′

dt
= 0,

de′

dt
= 0,

dI ′

dt
= 0,

dΩ′

dt
= 0,

dω′

dt
= 0,

dM′

dt
= n′,
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dp′a
dt

=
3
2
n′

a′
p′M,

dp′e
dt

= 0,
dp′I
dt

= 0,

dp′Ω
dt

= 0,
dp′ω
dt

= 0,
dp′M
dt

= 0,

(4.3)

general solution of which is given by

a′ = a′0, e′ = e′0, I ′ = I ′0,

Ω′ = Ω′0, ω′ = ω′0, M′ =M′
0 + n

′(t − t0),

p′a = p
′
a0
+

3
2
n′(t − t0)

a′
p′M, p′e = p

′
e0
, p′I = p

′
I0
,

p′Ω = p′Ω0
, p′ω = p′ω0

, p′M = p′M0
.

(4.4)

The subscript 0 denotes the constants of integration.
Introducing the general solution defined above into the equation of order 1 of the

algorithm of Hori method, it reduces to

∂S1

∂t
= HJ2 +Hγ∗ − F1. (4.5)

According to [29], the mean value ofHJ2+Hγ∗ must be calculated, and, S1 is obtained through
integration of the remaining part. F1 and S1 are given by the following equations:

F1 = −3
2
n′J2

(ae
a′

)2(
1 − e′2

)−2
{

cos I ′p′Ω +
1
2

(
1 − 5 cos2I ′

)
p′ω

}

+
a′

2μ

⎧⎨
⎩4a′2p′2a +

5
2

(
1 − e′2

)
p′2e +

(
5 − 4e′2

)
2e′2

p′2ω

+
p′2I

2(1 − e′2)

[(
1 +

3
2
e′2
)
+

5
2
e′2 cos 2ω′

]
+

5e′2 sin 2ω′

2(1 − e′2)
p′I

(
p′Ω

sin I ′
− cot I ′p′ω

)

+
1

2(1 − e′2)

(
p′Ω

sin I ′
− cot I ′p′ω

)2[(
1 +

3
2
e′2
)
− 5

2
e′2 cos 2ω′

]⎫⎬
⎭,
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S1 = J2

(ae
a′

)2
{{(

1 − 3
2

sin2I ′
)[(

a′

r ′

)3

−
(

1 − e′2
)−3/2

]
+

3
2

sin2I ′
(
a′

r ′

)3

cos 2
(
ω′ + f ′

)}
a′p′a

+

{
3
2

sin2I ′

e′(1− e′2)

[
−1

2
cos 2

(
ω′ + f ′

)
− e

′

2

(
cos
(
2ω′ +f ′

)
+

1
3

cos
(
2ω′+3f ′

))]

+

(
1 − e′2

)
e′

[(
1
2
− 3

4
sin2I ′

)[(
a′

r ′

)3

−
(

1 − e′2
)−3/2

]

+
3
4

sin2I ′
(
a′

r ′

)3

cos 2
(
ω′ + f ′

)}
p′e

+

{
3
4

sin 2I ′

(1 − e′2)2

[
1
2

cos 2
(
ω′+ f ′

)
+
e′

2

(
cos
(
2ω′ + f ′

)
+

1
3

cos
(
2ω′ + 3f ′

))]}
p′I

+

{
3
2

cos I ′

(1 − e′2)2

[
−
(
f ′ −M′ + e′ sin f ′

)
+

1
2

sin 2
(
ω′ + f ′

)

+
e′

2

(
sin
(
2ω′ + f ′

)
+

1
3

sin
(
2ω′ + 3f ′

))]}
p′Ω

+

{
3
4

(
5 cos2I ′ − 1

)
(1 − e′2)2

(
f ′ −M′ + e′ sin f ′

)

+
1
4

(
3 cos2I ′ − 1

)
e′(1 − e′2)

[(
a′

r ′

)2(
1 − e′2

)
+
(
a′

r ′

)
+ 1

]
sin f ′

+
3
8

sin2I ′

e′(1 − e′2)

[[
−
(
a′

r ′

)2(
1 − e′2

)
−
(
a′

r ′

)
+ 1

]
sin
(
2ω′ + f ′

)

+

[(
a′

r ′

)2(
1 − e′2

)
+
(
a′

r ′

)
+

1
3

]
sin
(
2ω′ + 3f ′

)]

+
3
8

(
3 − 5 cos2I ′

)
(1 − e′2)2

[
sin 2

(
ω′ + f ′

)

+e′
(

sin
(
2ω′ + f ′

)
+

1
3

sin
(
2ω′ + 3f ′

))]}
p′ω

}

+
1
2

√
a′5

μ3

{
8e′ sinE′a′2p′2a + 8

(
1 − e′2

)
sinE′a′p′ap

′
e −

8
√

1 − e′2
e′

cosE′p′ap
′
ω

+
(

1 − e′2
)[
−5

4
e′ sinE′ +

3
4

sin 2E′ − 1
12
e′ sin 3E′

]
p′2e

+

√
1 − e′2
e′

[
5
2
e′ cosE′ − 1

2

(
3 − e′2

)
cos 2E′ +

1
6
e′ cos 3E′

]
p′ep

′
ω
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+
(

1 − e′2
)−1

⎡
⎣p′2I +

(
p′Ω

sin I ′
− p′ω cot I ′

)2
⎤
⎦

×
[(
−e′ + 3

8
e′3
)

sinE′ +
3
8
e′2 sin 2E′ − 1

24
e′3 sin 3E′

]
+
(

1 − e′2
)−1

×

⎡
⎣p′2I cos 2ω′+2p′I

(
p′Ω

sin I ′
− p′ω cot I ′

)
sin 2ω′−

(
p′Ω

sin I ′
− p′ω cot I ′

)2

cos 2ω′
⎤
⎦

×
[(
−5

4
e′ +

5
8
e′3
)

sinE′ +
(

1
4
+

1
8
e′2
)

sin 2E′ +
(
− 1

12
e′ +

1
24
e′3
)

sin 3E′
]

+
(

1 − e′2
)−1/2

[
−p′2I sin 2ω′ + 2p′I

(
p′Ω

sin I ′
− p′ω cot I ′

)
cos 2ω′

+

(
p′Ω

sin I ′
− p′ω cot I ′

)2

sin 2ω′
⎤
⎦

×
[

5
4
e′ cosE′ −

(
1
4
+

1
4
e′2
)

cos 2E′ +
1

12
e′ cos 3E′

]

+
p′2ω
e′2

[(
5
4
e′ − e′3

)
sinE′ +

(
−3

4
+

1
2
e′2
)

sin 2E′ +
1

12
e′ sin 3E′

]}
.

(4.6)

Terms factored by p′M have been omitted in equations above, since only transfers (no rendez-
vous) are considered [2].

It should be noted that the averaged maximum Hamiltonian and the generating
function become singular for circular and/or equatorial orbits. In order to avoid these
singularities, suitable sets of nonsingular elements will be introduced in the next sections.

5. Optimal Transfers between Close Quasicircular Orbits

In this section, approximate first-order analytical solutions will be obtained for transfers
between close quasicircular orbits.

5.1. Transfers between Close Quasicircular Nonequatorial Orbits

Consider the Mathieu transformation [33] defined by

a′′ = a′, h′′ = e′ cosω′, k′′ = e′ sinω′,
I ′′ = I ′, Ω′′ = Ω′, �′′ =M′ +ω′,

(5.1)

p′′a = p
′
a, p′′

h
= p′e cosω′ −

(
p′ω − p′M

e′

)
sinω′, p′′

k
= p′e sinω′ +

(
p′ω − p′M

e′

)
cosω′,

p′′I = p
′
I , p′′Ω = p′Ω, p′′� = p

′
M.

(5.2)
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The new set of canonical variables, designated by the double prime, is nonsingular for circular
nonequatorial orbits.

Introducing (5.2) into (4.6) and using the expansions of the elliptic motion in terms of
eccentricity and mean anomaly [31], one finds that the new averaged maximum Hamiltonian
and the generating function are written up to the zeroth order in eccentricity as

F1 = −3
2
nJ2

(ae
a

)2
cos IpΩ +

a

2μ

{
4a2p2

a +
5
2

(
p2
h + p

2
k

)
+

1
2

(
p2
I +

p2
Ω

sin2I

)}
,

S1 =
3
2
J2

(ae
a

)2
{
apasin2I cos 2� + ph

[
cos � +

1
4

sin2I

(
−5 cos � +

7
3

cos 3�
)]

+ pk
[

sin � +
1
4

sin2I

(
−7 sin � +

7
3

sin 3�
)]

+
1
4
pI sin 2I cos 2� +

1
2
pΩ cos I sin 2�

}

+
1
2

√
a5

μ3

{
8apa

[
ph sin � − pk cos �

]
− 1

2

[
3phpk +

pΩ
sin I

pI

]
cos 2�

+
1
4

[
3
(
p2
h − p

2
k

)
+ p2

I −
p2
Ω

sin2I

]
sin 2�

}
.

(5.3)

Double prime is omitted to simplify the notation.
For transfers between close orbits, F1 and S1 can be linearized around a suitable

reference orbit, and an approximate first-order analytical solution can be determined. This
solution is given by

Δx = Ap0 + B, (5.4)

where Δx = [Δα Δh Δk ΔI ΔΩ′]T , p0 is the 5 × 1 vector of initial value of the adjoint
variables, A is a 5 × 5 symmetric matrix concerning the optimal thrust acceleration and B
is a 5 × 1 vector containing the perturbative effects of the oblateness of the central body. The
variables α = a/a and pα = apa are introduced to make the adjoint and the state vectors
dimensionless, and the variables Ω′ = Ω sin I and pΩ′ = pΩ/ sin I are introduced to simplify
the matrix A. The adjoint vector is constant. The matrix A and the vector B are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

aαα aαh aαk 0 0

ahα ahh ahk 0 0

akα akh akk 0 0

0 0 0 aII aIΩ′

0 0 0 aΩ′I aΩ′Ω′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.5)
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

bα

bh

bk

bI

bΩ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.6)

where

aαα = 4

√√√a5

μ3
�

∣∣∣∣∣∣
�f

�0

,

aαh = ahα = 4

√√√a5

μ3
sin �

∣∣∣∣∣∣
�f

�0

,

aαk = akα = −4

√√√a5

μ3
cos �

∣∣∣∣∣∣
�f

�0

,

ahh =

√√√a5

μ3

[
5
2
� +

3
4

sin 2�
]∣∣∣∣∣∣

�f

�0

,

ahk = akh = −3
4

√√√a5

μ3
cos 2�

∣∣∣∣∣∣
�f

�0

,

akk =

√√√a5

μ3

[
5
2
� − 3

4
sin 2�

]∣∣∣∣∣∣
�f

�0

,

aII =

√√√a5

μ3

[
1
2
� +

1
4

sin 2�
]∣∣∣∣∣∣

�f

�0

,

aIΩ′ = aΩ′I = −
1
4

√√√a5

μ3
cos 2�

∣∣∣∣∣∣
�f

�0

,

aΩ′Ω′ =

√√√a5

μ3

[
1
2
� − 1

4
sin 2�

]∣∣∣∣∣∣
�f

�0

,

bα = ε sin2 I cos 2�
∣∣∣�f
�0
,
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bh = ε

[
cos � +

1
4

sin2I

(
−5 cos � +

7
3

cos 3�
)]∣∣∣∣

�f

�0

,

bk = ε

[
sin � +

1
4

sin2I

(
−7 sin � +

7
3

sin 3�
)]∣∣∣∣

�f

�0

,

bI =
ε

4
sin 2I cos 2�

∣∣∣�f
�0

,

bΩ′ = −
ε

2
sin 2I

(
� − 1

2
sin 2�

)∣∣∣∣
�f

�0

,

(5.7)

with �f = �0 + n(tf − t0), t0 is the initial time, tf is the final time, and ε = (3/2)J2(ae/a)
2. The

overbar denotes the orbital elements of the reference orbit.
The analytical solution defined by (5.4)–(5.7) is in agreement with the ones obtained

through different approaches in [6, 10]. In [6] the optimization problem is formulated with
Gauss equations in nonsingular orbital elements as state equations, and in [10] Hori method
is applied after the transformation of variables. Equations (5.4)–(5.7) represent a complete
first-order analytical solution for optimal low-thrust limited-power transfers between close
quasicircular nonequatorial orbits in a gravity field that includes the second zonal harmonic
J2 in the gravitational potential. These equations contain arbitrary constants of integration
that must be determined to satisfy the two-point boundary value problem of going from
the initial orbit at the time t0 = 0 to the final orbit at the specified final time tf = T . Since
they are linear in these constants, the boundary value problem can be solved by simple
techniques.

An approximate expression for the optimal thrust acceleration γ ∗ can be obtained from
(3.5) and (5.2), by using the expansions of the elliptic motion, and it is given, up to the zeroth
order in eccentricity, by

γ ∗ =
1
na

{(
ph sin � − pk cos �

)
er + 2

(
pα + ph cos � + pk sin �

)
es

+
(
pI cos � + pΩ′ sin �

)
ew
}
.

(5.8)

According to Section 2, the optimal fuel consumption variable J is determined by
simple quadrature of the last differential equation in (2.3), with γ ∗ given by (5.8). An
approximate expression for J is given by

ΔJ =
1
2

{
aααp

2
α + 2aαhpαph + 2aαkpαpk + ahhp2

h + 2ahkphpk + akkp2
k

+aIIp2
I + 2ah Ω′pIpΩ′ + aΩ′Ω′p2

Ω′

}
.

(5.9)

For transfers involving a large number of revolutions, (5.4)–(5.7) can be greatly
simplified by neglecting the short periodic terms in comparison to the secular ones, and,
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the system of algebraic can be solved analytically. Thus,

pα =
1
4

√
μ3

a5

(
Δα

Δ�

)
,

ph =
2
5

√
μ3

a5

(
Δh

Δ�

)
,

pk =
2
5

√
μ3

a5

(
Δk

Δ�

)
,

pI = 2

√
μ3

a5

(
ΔI

Δ�

)
,

pΩ′ = 2

√
μ3

a5

[(
ΔΩ sin I

Δ�

)
+
ε

2
sin 2I

]
.

(5.10)

Introducing these equations into (5.8) and (5.9), γ ∗ and J are obtained explicitly in terms of
the imposed variations of the orbital elements, the perturbative effects due to the oblateness
of the central body and the duration of the maneuver:

γ ∗ =
μ

a2

{
2
5

(
Δh

Δ�
sin � − Δk

Δ�
cos �

)
er +

(
1
2
Δα

Δ�
+

4
5

(
Δh

Δ�
cos � +

Δk

Δ�
sin �

))
es

+2
(
ΔI

Δ�
cos � +

[
ΔΩ

Δ�
+ ε cos I

]
sin I sin �

)
ew
}
,

(5.11)

ΔJ

Δ�
=

1
4

√
μ3

a5

{
1
2

(
Δα

Δ�

)2

+
4
5

(
Δh2 + Δk2

Δ�
2

)
+ 4

((
ΔI

Δ�

)2

+
[
ΔΩ

Δ�
+ ε cos I

]2

sin2 I

)}
.

(5.12)

5.2. Transfers between Close Quasicircular Near-Equatorial Orbits

Consider the Mathieu transformation [33] defined by

a′′ = a′, ξ′′ = e′ cos(ω′ + Ω′), η′′ = e′ sin(ω′ + Ω′),

P ′′ = sin
(
I ′

2

)
cosΩ′, Q′′ = sin

(
I ′

2

)
sinΩ′, λ′′ =M′ +ω′ + Ω′,

(5.13)
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p′′a = pa,

p′′
ξ
= p′e cos(ω′ + Ω′) −

(
p′ω − p′M

e′

)
sin(ω′ + Ω′),

p′′η = p
′
e sin(ω′ + Ω′) +

(
p′ω − p′M

e′

)
cos(ω′ + Ω′),

p′′P = p′I
2 cosΩ′

cos(I ′/2)
−
(
p′Ω − p

′
ω

) sinΩ′

sin(I ′/2)
,

p′′Q = p′I
2 sinΩ′

cos(I ′/2)
+
(
p′Ω − p

′
ω

) cosΩ′

sin(I ′/2)
,

p′′
λ
= p′M.

(5.14)

The new set of canonical variables, designated by the double prime, is nonsingular for circular
equatorial orbits.

Introducing (5.14) into (4.6) and using the expansions of the elliptic motion in terms of
eccentricity and mean anomaly [31], one finds that the new averaged maximum Hamiltonian
and the generating function are written up to the zeroth order in eccentricity and first-order
in inclination as

F1 =
3
2
nJ2

(ae
a

)2(
QpP − PpQ

)
+
a

2μ

{
4a2p2

a +
5
2

(
p2
ξ + p

2
η

)
+

1
8

(
p2
P + p2

Q

)}
, (5.15)

S1 =
3
2
J2

(ae
a

)2
{
pξ cosλ + pη sinλ +

1
2
(
QpP + PpQ

)
sin 2λ +

1
2
(
PpP −QpQ

)
cos 2λ

}

+
1
2

√
a5

μ3

{
8apa

(
pξ sinλ − pη cosλ

)
+
[

3
4

(
p2
ξ − p

2
η

)
+

1
16

(
p2
P − p

2
Q

)]
sin 2λ

−
[

3
2
pξpη +

1
8
pPpQ

]
cos 2λ

}
.

(5.16)

Double prime is omitted to simplify the notation.
For transfers between close orbits, F1 and S1 can be linearized around a suitable

reference orbit, and an approximate first-order analytical solution can be determined. This
solution is given by

Δx = Cp0 +D, (5.17)

where Δx = [Δα Δξ Δη ΔP ΔQ]T , p0 is the 5×1 vector of initial value of the adjoint variables,
C is a 5×5 matrix concerning the optimal thrust acceleration, andD is a 5×1 vector containing
the perturbative effects of the oblateness of the central body. The matrix C and the vector D
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are given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cαα cαξ cαη 0 0

cξα cξξ cξη 0 0

cηα cηξ cηη 0 0

0 0 0 cPP cPQ

0 0 0 cQP cQQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.18)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

dξ

dη

dP

dQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.19)

where

cαα = 4

√√√a5

μ3
λ

∣∣∣∣∣∣
λf

λ0

, cαξ = cξα = 4

√√√a5

μ3
sinλ

∣∣∣∣∣∣
λf

λ0

,

cαη = cηα = −4

√√√a5

μ3
cosλ

∣∣∣∣∣∣
λf

λ0

, cξξ =

√√√a5

μ3

[
5
2
λ +

3
4

sin 2λ
]∣∣∣∣∣∣

λf

λ0

,

cξη = cηξ = −
3
4

√√√a5

μ3
cos 2λ

∣∣∣∣∣∣
λf

λ0

, cηη =

√√√a5

μ3

[
5
2
λ − 3

4
sin 2λ

]∣∣∣∣∣∣
λf

λ0

,

cPP =
1
8

√√√a5

μ3

[
Δλ cos εΔλ +

1
2

sin
(
(2 + ε)λf − ελ0

)
− 1

2
sin
(
(2 + ε)λ0 − ελf

)]
,

cPQ =
1
8

√√√a5

μ3

[
Δλ sin εΔλ − 1

2
cos
(
(2 + ε)λf − ελ0

)
+

1
2

cos
(
(2 + ε)λ0 − ελf

)]
,

cQP =
1
8

√√√a5

μ3

[
−Δλ sin εΔλ − 1

2
cos
(
(2 + ε)λf − ελ0

)
+

1
2

cos
(
(2 + ε)λ0 − ελf

)]
,
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cQQ =
1
8

√√√a5

μ3

[
Δλ cos εΔλ − 1

2
sin
(
(2 + ε)λf − ελ0

)
+

1
2

sin
(
(2 + ε)λ0 − ελf

)]
,

dξ =
3
2
J2

(
ae
a

)2

cosλ

∣∣∣∣∣
λf

λ0

, dη =
3
2
J2

(
ae
a

)2

sinλ

∣∣∣∣∣
λf

λ0

,

dP = P0

{[
cos εΔλ − 1

2
ε cos

(
ελf − (2 + ε)λ0

)
+

1
2
ε cos

(
ελ0 − (2 + ε)λf

)]
− 1
}

+Q0

[
sin εΔλ +

1
2
ε sin

(
ελf − (2 + ε)λ0

)
− 1

2
ε sin

(
ελ0 − (2 + ε)λf

)]
,

dQ = Q0

{[
cos εΔλ +

1
2
ε cos

(
ελf − (2 + ε)λ0

)
− 1

2
ε cos

(
ελ0 − (2 + ε)λf

)]
− 1
}

+ P0

[
− sin εΔλ +

1
2
ε sin

(
ελf − (2 + ε)λ0

)
− 1

2
ε sin

(
ελ0 − (2 + ε)λf

)]
.

(5.20)

The adjoint variables are

pa = pa0 ,

pξ = pξ0 ,

pη = pη0 ,

pP = pP0 cos εΔλ + pQ0 sin εΔλ,

pQ = −pP0 sin εΔλ + pQ0 cos εΔλ,

(5.21)

where Δλ = λf −λ0 = n(tf −t0). The overbar denotes the orbital elements of the reference orbit.
Equations (5.20) do not contain higher order terms in ε as appear implicitly in the solution
presented in [7].

The analytical solution defined by (5.17)–(5.21) is in agreement with the ones obtained
through different approaches in [7, 10]. In [7] the optimization problem is formulated with
Gauss equations in nonsingular orbital elements as state equations, and in [10] Hori method
is applied after the transformation of variables. Equations (5.17)–(5.21) represent a complete
first-order analytical solution for optimal low-thrust limited-power transfers between close
quasicircular near-equatorial orbits in a gravity field that includes the second zonal harmonic
J2 in the gravitational potential. These equations contain arbitrary constants of integration
that must be determined to satisfy the two-point boundary value problem of going from
the initial orbit at the time t0 = 0 to the final orbit at the specified final time tf = T . Since
they are linear in these constants, the boundary value problem can be solved by simple
techniques.
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As described in Section 5.1, approximate expressions can be obtained for the optimal
thrust acceleration γ ∗ and the fuel consumption J . These expressions are given by

γ ∗ =
1
na

{(
pξ sinλ − pη cosλ

)
er + 2

(
pα + pξ cosλ + pη sinλ

)
es +

1
2
(
pP cosλ + pQ sinλ

)
ew
}
,

ΔJ =
1
2

{
cααp

2
α + 2cαξpαpξ + 2cαηpαpη + cξξp2

ξ + 2cξηpξpη + cηηp2
η

+cPPp2
P +

(
cPQ + cQP

)
pPpQ + cQQp2

Q

}
.

(5.22)

For transfers involving a large number of revolutions, (5.17)–(5.21) can be greatly
simplified by neglecting the short periodic terms in comparison to the secular ones, and,
the system of algebraic can be solved analytically. Thus,

pα =
1
4

√
μ3

a5

(
Δα

Δλ

)
,

pξ =
2
5

√
μ3

a5

(
Δξ

Δλ

)
,

pη =
2
5

√
μ3

a5

(
Δη

Δλ

)
,

pP =

√
μ3

a5

8

Δλ

[
(P0 + ΔP) cos

(
εΔλ

)
− (Q0 + ΔQ) sin

(
εΔλ

)
− P0

]
,

pQ =

√
μ3

a5

8

Δλ

[
(Q0 + ΔQ) cos

(
εΔλ

)
+ (P0 + ΔP) sin

(
εΔλ

)
−Q0

]
.

(5.23)

The subscript denoting the constants is omitted. Introducing these equations into (5.22), γ ∗

and J are obtained explicitly in terms of the imposed variations of the orbital elements,
the perturbative effects due to the oblateness of the central body and the duration of the
maneuver:

γ ∗ =
μ

a2

{
2
5

(
Δξ

Δλ
sinλ −

Δη

Δλ
cosλ

)
er +

(
1
2
Δα

Δλ
+

4
5

(
Δξ

Δλ
cosλ +

Δη

Δλ
sinλ

))
es

+
4

Δλ

[
Pf cos

(
λ + θf

)
− P0 cos

(
λ + θ0

)
+Qf sin

(
λ + θf

)
−Q0 sin

(
λ + θ0

)]
ew
}
,
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ΔJ

Δλ
=

1
4

√
μ3

a5

{
1
2

(
Δα

Δλ

)2

+
4
5

(
Δξ2 + Δη2

Δλ
2

)

+ 16 cos
(
εΔλ

){(ΔP 2 + ΔQ2

Δλ
2

)
+

4

Δλ
2

sin

(
εΔλ

2

)

×
[
Pf

(
P0 sin

(
εΔλ

2

)
−Q0 cos

(
εΔλ

2

))

+Qf

(
P0 cos

(
εΔλ

2

)
+Q0 sin

(
εΔλ

2

))]}}
,

(5.24)

with θ0 = εn(t − t0) and θf = εn(t − tf).

5.3. General Remarks on Optimal Transfers between Close
Quasicircular Orbits

Considering the analytical solutions described above, general remarks about the effects of the
oblateness of the central body on optimal transfers between close quasicircular orbits can be
stated.

(1) Matrices A and C, defined by (5.5) and (5.18), respectively, can be decomposed into
two square matrices 3 × 3 and 2 × 2. This fact shows that there exists an uncoupling
between the in-plane modifications and the rotation of the orbital plane. Similar
results were obtained by Edelbaum [1] and Marec [3] for transfers in a Newtonian
central field.

(2) There is a normal component of the optimal thrust acceleration that counteracts
the perturbative effects due to the oblateness of the central body. This normal
component is proportional to ε.

(3) In general, the maneuvers in a noncentral gravity field are more expensive than
the maneuvers in Newtonian central field, taking into account that the perturbative
effects due to the oblateness of the central body must be counteracted.

(4) Fuel can be saved for long-time maneuvers which involves modification of the
longitude of the ascending node if the terminal orbits are direct (0◦ < I < 90◦)
and ΔΩ < 0, and if the terminal orbits are retrograde (90◦ < I < 180◦) and ΔΩ > 0.

(5) The extra consumption needed to counteract the perturbative effects due to the
oblateness of the central body reaches its maximum for maneuvers between orbits
with 45◦ or 135◦ of inclination and its minimum (null extra consumption) for
maneuvers between equatorial or polar orbits (the gravity field is symmetric in
these cases).

(6) As the transfer time increases, the extra fuel consumption increases.

(7) The extra fuel consumption is greater for transfers between low orbits.
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Table 1: Maneuver of modification of all orbital elements.

T = tf − t0
ae/a0 Maneuver of modification of all orbital elements

Initial orbit Final orbit Orbital elements

100 0.950 0.900
0.850 0.800

150 0.750 0.700 1.000 1.150 a

0.650 0.600 0.0025 0.0050 e

200 0.550 0.500 30.00◦ 35.0◦ I

0.450 0.400 30.00◦ 37.5◦ Ω

250 0.350 0.300 60.00◦ 62.50◦ ω

0.250 0.200
— 0.150 0.100

6. Optimal Long-Time Transfers between Arbitrary Orbits

In this section the two-point boundary-value problem for long-time transfers between
arbitrary orbits is formulated. In Section 7, this boundary-problem problem will be solved
numerically through a shooting method, and the solution will be compared to the analytical
ones in the case of orbits with small eccentricities.

Since the averaged maximum Hamiltonian, given by (4.6), becomes singular for
circular and/or equatorial orbits, a set of nonsingular elements is introduced.

Consider the Mathieu transformation [33] defined by

a′′ = a′,

ξ′′ = e′ cos(ω′ + Ω′),

η′′ = e′ sin(ω′ + Ω′),

P ′′ = sin
(
I ′

2

)
cosΩ′,

Q′′ = sin
(
I ′

2

)
sinΩ′,

(6.1)

p′′a = p
′
a,

p′′
ξ
= p′e cos(ω′ + Ω′) −

(
p′ω − p′M

e′

)
sin(ω′ + Ω′),

p′′η = p
′
e sin(ω′ + Ω′) +

(
p′ω − p′M

e′

)
cos(ω′ + Ω′),

p′′P = p′I
2 cosΩ′

cos(I ′/2)
−
(
p′Ω − p

′
ω

) sinΩ′

sin(I ′/2)
,

p′′Q = p′I
2 sinΩ′

cos(I ′/2)
+
(
p′Ω − p

′
ω

) cosΩ′

sin(I ′/2)
.

(6.2)

This transformation of variables is the same one given by (5.12), excepting the fast-phase,
which is unnecessary (short-periodic terms have been eliminated). Double prime designates
the new variables.
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Introducing (6.2) into (4.6), F1 is written as

F1 = −3
2
nJ2

(ae
a

)2(
1 − ξ2 − η2

)−2{(
1 − 2

(
P 2 +Q2

))[(
ξpη − ηpξ

)
+
(
PpQ −QpP

)]

+
1
2

(
1 − 5

(
1 − 2

(
P 2 +Q2

))2
)(
ξpη − ηpξ

)}

+
a

2μ

{
4a2p2

a + p
2
ξ

(
5
2
− 5

2
ξ2 − 2η2

)
+ p2

η

(
5
2
− 5

2
η2 − 2ξ2

)
− ξηpξpη

+
1
2

(
1 − ξ2 − η2

)−1
{(

1 +
3
2
ξ2 +

3
2
η2
)

×
[

1
4

(
p2
P + p2

Q

)
− 1

4
(
PpP +QpQ

)2 +
1
4

(
1 − P 2 −Q2

)−1

×
[(
QpP − PpQ

)2 + 4
(
ξpη − ηpξ

)(
PpQ −QpP

)

+4
(
P 2 +Q2

)(
ξpη − ηpξ

)2
]]

− 5
8

(
1 − P 2 −Q2

)−1[(
ξ2 − η2

)(
P 2 −Q2

)
+ 4ξηPQ

]

×
[[

2
(
ξpη−ηpξ

)
+
(
PpQ−QpP

)]2+
(

1 − P 2 −Q2
)(
p2
P + p2

Q

)]

− 5
2
ξηpPpQ +

5
8

(
ξ2 − η2

)(
p2
P − p

2
Q

)

+
5
2
(
ξpη−ηpξ

)[
−
(
ξ2−η2

)(
PpQ+QpP

)
+ 2ξη

(
PpP −QpQ

)]}
.

(6.3)

Double prime is omitted to simplify the notation. Note that (5.15) is a simplification of (6.3)
for quasicircular near-equatorial orbits.

The two-point boundary-value problem for long-time transfers between arbitrary
orbits is formulated by the following system of canonical differential equations:

dx

dt
=
(
∂F1

∂p

)T

,
dp

dt
= −

(
∂F1

∂x

)T

, (6.4)

where x = [a ξ η P Q]T and p = [pa pξ pη pP pQ]
T , and the boundary-conditions

a(t0) = a0, ξ(t0) = ξ0, η(t0) = η0, P(t0) = P0, Q(t0) = Q0,

a
(
tf
)
= af , ξ

(
tf
)
= ξf , η

(
tf
)
= ηf , P

(
tf
)
= Pf , Q

(
tf
)
= Qf,

(6.5)

with initial time t0 = 0 and final time tf = T . The explicit form of state and adjoint equations
is derived by using MAPLE Software 9, and they are not presented in text because they are
extensive.
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Table 2: Small and moderate amplitude maneuvers.

ae/a0 T = tf − t0 Orbital elements of initial orbit ρ = yf/y0

0.975

100 a = 1.0 1.05 1.10

150 e = 0.0025 1.15 1.20

200 I = 30.00◦ 1.25 1.30

250 Ω = 30.00◦ 1.35 1.40

— ω = 60.00◦ 1.45 1.50

Maneuver of modification of all
orbital elements

4E − 005

8E − 005

0.00012

0.00016

0.0002

0.00024

J

0 0.2 0.4 0.6 0.8 1

ae/a0

T = 100

T = 150

T = 200

T = 250

Figure 3: Consumption for maneuver of modification of all orbital elements.

7. Results

In this section, numerical and analytical results are compared for maneuvers described in
Tables 1 and 2. Earth is the central body, such that J2 = 1.0826 × 10−3. In Table 1, orbital
elements of initial and final orbits are defined for a maneuver of modification of all orbital
elements considering different values of transfer durations T = tf − t0 and ratios ae/a0. In
Table 2, orbital elements of initial orbit, values of transfer duration and ratio ρ = yf/y0,
where y denotes the orbital element that is changed in the maneuver, are defined for small
(orbit corrections) and moderate amplitude maneuvers of modification of semimajor axis
and inclination of the orbital plane. Results are presented in Figures 3 through 8 using
canonical units. In these units, a0 = 1.0 and μ = 1.0. For example, in metric units, taking
ae = 6378.2 km, ρ = 0.950 corresponds to a0 = 6713.89 km, and T = 100 (time units)
corresponds to 24.20 hours (1.008 day), and ρ = 0.150 corresponds to a0 = 42521.34 km, and
T = 250 (time units) corresponds to 964.45 hours (40.185 days). Thus, maneuvers described in
the tables below have duration of 1 to 74 days, approximately. On the other hand, considering
that the value of |γ ∗| is approximately given by

√
2ΔJ/T (short periodic terms are neglected),

|γ ∗| has values between 1.0 × 10−4 and 4.0 × 10−3 (canonical units) for all results presented in
Figures 3–5. These values of magnitude of the thrust acceleration are typical for LP systems
[5, 27].
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Maneuver of modification of semimajor
axis in central field
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Maneuver of modification of semimajor
axis in noncentral field — ae/a0 = 0.55
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Maneuver of modification of semimajor
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Figure 4: Consumption for maneuver of modification of semimajor axis.

Figure 3 shows the consumption J as function of ratio ae/a0 and values of T for the
maneuver of modification of all orbital elements described in Table 1. Figures 4 and 5 show
the consumption J as function of ratio ρ = yf/y0 and T for the small and moderate amplitude
maneuvers described in Table 2, considering that the maneuvers are performed in central or
noncentral gravity field. In these figures, solid line represents analytical solution, and dashed
line represents numerical solution. Analytical solutions, including short periodic terms, are
obtained by solving the linear system of algebraic equations given by (5.4)–(5.7) (transfer
between nonequatorial orbits) with the semimajor axis and the inclination of the reference
orbit defined by a = (a0 + af)/2 and I = (I0 + If)/2, respectively. In order to include the
short periodic terms, it is assumed that the initial position of the vehicle is the pericenter of
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Maneuver of modification of inclination
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Figure 5: Consumption for maneuver of modification of inclination.

the initial orbit. Variables I and Ω are transformed into nonsingular variables P and Q to
compare the analytical results with the numerical results. Numerical solutions are obtained
by solving the two-point boundary value problem described by (6.4) and (6.5) through a
shooting method [34].

Considering the maneuvers described in Tables 1 and 2, Figures 3–5 show that
analytical and numerical solutions yield quite similar values of the consumption J in the
following cases: (i) maneuvers of modification of all orbital elements with ratio ae/a0 < 0.550;
(ii) maneuvers of modification of semimajor axis with ratios ρ < 1.25 and ae/a0 < 0.550; (iii)
maneuvers of modification of inclination with ratios ρ < 1.50 and ae/a0 < 0.550, for all values
of T . For maneuvers with very high ratio ae/a0, analytical and numerical solutions only yield
similar results for the same maneuvers described above for T = 100 (time units).
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Figure 6: Time history of state variables for maneuver of modification of all orbital elements with ae/a0 =
0.950—T = 100 and 250.
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Figure 7: Time history of state variables for maneuver of modification of all orbital elements with ae/a0 =
0.550—T = 100 and 250.
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Figure 8: Time history of state variables for maneuver of modification of all orbital elements with ae/a0 =
0.150—T = 100 and 250.
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Figure 9: Vectors e, h, and N.

Figures 6–8 represent the time history of state variables (nonsingular orbital elements)
for maneuvers of modification of all orbital elements (Table 1) considering three values of
ratios ae/a0—0.150, 0.550, and 0.950—and two values of transfer duration T—100 and 250
(time units). According to these figures, the analytical solution yields a good representation of
the numerical solution for all state variables, excepting the semimajor axis for the maneuver
with ae/a0 = 0.950 and T = 250. The numerical solution shows that the semimajor axis is
strongly perturbed by the oblateness of earth, and its time evolution cannot be described by
the linear approximation given by the analytical solution. On the other hand, the analytical
solutions shows that the amplitude of the short periodic terms decreases as the transfer
duration increases such that these terms can be omitted for very long-time transfers.

8. Conclusion

In this paper an approach based on canonical transformations is presented for the problem of
optimal low-thrust limited-power maneuvers between close orbits with small eccentricities
in noncentral gravity which includes the perturbative effects of the second zonal harmonic of
the gravitational potential. Analytical first-order solutions are derived through this approach
for transfers between nonequatorial orbits and for transfers between near-equatorial orbits.
These analytical solutions have been compared to a numerical solution for long-time
transfers between arbitrary orbits described by averaged maximum Hamiltonian, expressed
in nonsingular orbital elements. The results show that the analytical solutions yield good
estimates of the fuel consumption for preliminary mission analysis considering maneuvers
with moderate amplitude, ratio ae/a0 and transfers duration. Numerical results also show
that the semimajor axis is strongly perturbed by the oblateness of earth, and its time evolution
cannot be described by the linear approximation given by the analytical solution.

Appendix

The general solution of the differential equations for the adjoint variables pr and pv is
obtained by computing the inverse of the Jacobian matrix of the point transformation between



30 Mathematical Problems in Engineering

the Cartesian elements and the orbital ones, defined by (3.2) and (3.3). This matrix is obtained
through the variations of the orbital elements induced by the variations in the Cartesian
elements, as described below.

Let us consider the inverse of the point transformation defined by (3.2) and (3.3):

a =
r

2 −
(
rv2/μ

) ,

e2 = 1 − h2

μa
,

cos I =
k•h
h

,

cosΩ =
i•N
N

,

cosω =
N•e
Ne

,

cosE =
1
e

(
1 − r

a

)
,

(A.1)

where the eccentricity vector e, the angular momentum vector h, and the nodal vector N,
shown in Figure 9, are given, as function of the Cartesian elements r and v, by the following
equations:

e =
1
μ

[(
v2 −

μ

r

)
r − (r•v)v

]
, (A.2)

h = r × v, (A.3)

N = k × h. (A.4)

Here the symbol × denotes the cross product. Note that the true anomaly f has been replaced
by eccentric anomaly E. These anomalies are related through the following equation:

tan
f

2
=

√
1 + e
1 − e tan

E

2
. (A.5)

Now, consider the variations in the Cartesian elements, δr and δv, given in the moving
frame of reference by

δr = δξ er + δη es + δζ ew,

δv = δu er + δv es + δw ew.
(A.6)
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The variations of the orbital elements—a, e, I, Ω, ω, and E—induced by the variations in the
Cartesian elements, δr and δv, are obtained straightforwardly from (A.1) through (A.6) and
are given by

δa = 2
(
a

r

)2 r•δr
r

+
2a2

μ
v•δv,

δe = −h•δh
μae

+
h2

2μa2e
δa,

δI =
h•δh
h2

cot I − k•δh
h

csc I,

δΩ =
N•δN
N2

cotΩ − i•δN
N

cscΩ

δω =
[
δe

e
+
N•δN
N2

]
cotω − 1

Ne
[N•δe + e•δN]cscω,

δE =
1

e sinE

[
r•δr
ra
− r

a2
δa + cosE δe

]
,

(A.7)

where the variations of the vectors e, h, and N are written as

μδe =
(
v2
sδξ − vsvrδη + 2rvsδv

)
er

+
(
−vsvrδξ +

(
v2
r −

μ

r

)
δη − rvsδu − rvrδv

)
es +

((
v2 −

μ

r

)
δζ − rvrδw

)
ew,

δh = −vsδζ er + (vrδζ − rδw)es +
(
vsδξ − vrδη + rδv

)
ew,

δN =
((
vsδξ − vrδη + rδv

)
sin I cos

(
ω + f

)
− (vrδζ − rδw) cos I

)
er

+
(
−
(
vsδξ − vrδη + rδv

)
sin I sin

(
ω + f

)
− vs cos I δζ

)
es

+
(
(vrδζ − rδw) sin I sin

(
ω + f

)
+ vs sin I cos

(
ω + f

)
δζ
)
ew.

(A.8)

Here vr and vs denote the radial and circumferential components of the velocity vector,
respectively (see (3.3)).
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In the moving fame of reference, e, h, N, and the unit vectors i and k are written as

e =
(
hvs
μ
− 1
)
er −

hvr
μ

es, (A.9)

h = hew =
√
μa(1 − e2)ew, (A.10)

N = h sin I cos
(
ω + f

)
er − h sin I sin

(
ω + f

)
es, (A.11)

i =
(
cosΩ cos

(
ω + f

)
− sinΩ sin

(
ω + f

)
cos I

)
er

−
(
cosΩ sin

(
ω + f

)
+ sinΩ cos

(
ω + f

)
cos I

)
es + sinΩ sin Iew,

(A.12)

k = sin
(
ω + f

)
sin Ier + cos

(
ω + f

)
sin Ies + cos Iew. (A.13)

From (3.2), (3.3), and (A.2) through (A.11), one gets the explicit form of the variations
of the orbital elements—a, e, I, Ω, ω, and E—induced by the variations in the Cartesian
elements, δr and δv. At this point, it is useful to replace the variation in the eccentric anomaly
E by the variation in the mean anomaly M, obtained from the well-known Kepler’s equation

M = E − e sinE. (A.14)

This variation is given by

δM =
( r
a

)
δE − sinEδe. (A.15)

Thus,

δa = 2
(
a

r

)2

δξ +
2e sin f

n
√

1 − e2
δu +

2
√

1 − e2

n

(
a

r

)
δv,

δe =
a
(
1 − e2)
r2

cosE δξ +
sin f
a

δη +

√
1 − e2

na
sin f δu +

√
1 − e2

na

(
cosE + cos f

)
δv,

δI =
1
r

(
cosE sinω +

sinE cosω√
1 − e2

)
δζ +

1

na
√

1 − e2

( r
a

)
cos
(
ω + f

)
δw,

δΩ =
1

r sin I

(
− cosE cosω +

sinE sinω√
1 − e2

)
δζ +

1

na sin I
√

1 − e2

( r
a

)
sin
(
ω + f

)
δw,
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δω =
sin f
er

δξ −
e + cos f
ae(1 − e2)

δη +
cot I
r

(
cosE cosω − sinE sinω√

1 − e2

)
δζ

−
√

1 − e2

nae
cos fδu +

√
1 − e2

nae
sin f

(
1 +

1
1 + e cos f

)
δv

− cot I

na
√

1 − e2

( r
a

)
sin
(
ω + f

)
δw,

δM = −1 − e3 cosE

er
√

1 − e2
sin fδξ +

√
1 − e2

ae
cos fδη

+

(
1 − e2)
nae

(
cos f − 2e

1 + e cos f

)
δu −

(
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nae

sin f
(

1 +
1

1 + e cos f

)
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(A.16)

Equations (A.16) can be put in the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δa

δe

δI

δΩ

δω

δM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Δ−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δξ

δη

δζ

δu

δv

δw

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.17)

where the matrix Δ−1 is inverse Jacobian matrix of the point transformation between the
Cartesian elements and the orbital ones, defined by (3.2) and (3.3).

Following the properties of generalized canonical systems [32], the general solution of
the differential equations for the adjoint variables pr and pv is given by

[
pr

pv

]
=
(
Δ−1

)T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pa

pe

pI

pΩ

pω

pM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.18)

with pr and pv expressed in the moving frame of reference. Equations (3.4) and (3.5) are
obtained straightforwardly from the above equation.
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