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We investigate a time-dependent circular billiard with a two-frequency driving function and derive
a new simplified form for the map, which is a symplectic nontwist map. Stability boundaries
and reconnection thresholds are derived for fixed points and period-two vortex pairs. An island
interspersal condition is derived such that neighboring island chains of the first frequency are
exactly separated by those of the second. The results show a strong enhancement of the KAM
barrier to chaotic diffusion with increasing second frequency content and overall amplitude.
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1. Introduction

There is much current interest in the construction of billiard maps for systems with moving
walls. For an introduction to the physics of particle confinement with moving walls, see
Loskutov et al. [1]. For single frequency motion, it is well known that Fermi acceleration
does not occur in the Fermi map with smooth wall motion, but does occur for a sawtooth
profile [2]. In the case of the circular billiard Kamphorst and de Carvalho [3] (KdC) have
proven that if the wall motion R(t) is T -periodic and C7 then Fermi acceleration does not
occur, which suggests a need for numerical experiments. Two-frequency techniques were
first used as a means of enhancing plasma wave heating [4]. Indeed, the two-frequency Fermi
map was studied as a simplified model for plasma wave heating [4]. Each frequency carries
its own series of resonances, and parameters are chosen such that the resonant islands are
interspersed at a desired location. For a nearly integrable system each island chain possesses
a surrounding chaotic layer, and it is these layers that “overlap”, destroying local invariant
circles and thereby enhancing local chaoticity. Later on, similar techniques were applied to the
important physical problem of microwave ionization of Rydberg atoms [5]. Here the system
is 3/2 degrees of freedom and one must make several canonical transformations in order to
identify local wave-particle resonances. An experiment was designed and successfully run
[6, 7], which verified a predicted enhancement in the ionization curve.
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Figure 1: Geometry of the circular billiard map.

For billiards the motivating question is the existence or nonexistence of Fermi
acceleration, that is, unbounded energy gain. KdC [3] showed that, based on an unpublished
theorem of Douady [8], space-spanning invariant circles exist in a 2D map for harmonic
oscillations of a circular billiard. On the other hand it has recently been shown that the four-
dimensional time-dependent elliptic billiard exhibits Fermi accleration [9]. Here we modulate
a simplified version of the 2D KdC map with a second frequency in such a way that the total
energy of the two components is preserved, a direct generalization of earlier work [10]. An
island interspersal condition is derived such that the second frequencies’ islands fall exactly
halfway in-between those of the first. The results show significant raising of the KAM barrier
to global diffusion with increasing harmonic content. An important difference from previous
examples is the presence of nontwist islands [11], which occur in pairs and can complicate
the island overlap criterion.

2. The Circular Billiard Map

Following KdC we consider a breathing billiard of radius R = R0(1 +A sin(2πt)), where A is
the oscillation amplitude. In the spirit of the classical Fermi map [2] we fix R = R0 and ignore
multiple collisions with the wall. For specular collisions the angular momentum is conserved
and we map (vr, t) from collision to collision. Figure 1 illustrates the geometry, where the
angular momentum vθ is preserved. As in [10], we neglect variations in R (which we fix at
unity) but retain V (t) = Ṙ to obtain

T :

⎧
⎪⎪⎨

⎪⎪⎩

v′r = vr − 2V (t),

t′ = t +
2v′r

v′2r + v2
θ

(mod1),
(2.1)

where vr is the particle’s radial velocity and V (t) is the specified wall velocity. It has
generating function

F2
(
t′, vr

)
= t′vr − ln

(
v2

r + v
2
θ

)
− 2
∫ t′

V
(
t′
)
dt′ (2.2)
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Figure 2: Comparison of circular billiard map with Fermi map for M = 2 and (a) vθ = 19.94 and (b)
vθ = 19.997. The island centers have been shifted to φ = 0.

and is therefore symplectic. The first equation follows from Figure 1, from which the half-
chord C = (1/2)v′Δt = R sinφ = Rvr/v

′, where φ is the angle between v and vθ. It has unit
Jacobian and when vθ �→ 0, reduces to the area preserving Fermi map. The factors of two arise
from the fact that there is no “there and back” for the billiard map. The same map can also
be obtained by setting R = constant in KdC’s somewhat more complex version. It agrees well
with KdC’s full map.

Before analyzing this map we first transform it so that direct comparison with the
Fermi map is possible. First let V (t) = V0 sin(ωt) and introduce the phase φ = ωt. Then, with
vr → 2V0vr, vθ → 2V0vθ and taking M = ω/2πV0 gives

T2 :

⎧
⎪⎪⎨

⎪⎪⎩

v′r = vr − sinφ,

φ′ = φ + (2πM)
v′r

v′2r + v2
θ

(mod2π).
(2.3)

In the limit as vθ → 0 we recover the Fermi map [2], for which φ′ = φ + 2πM/vr . Figure 2
compares the map T2 with the Fermi map. For vθ = 0 the maps are identical but for vθ = 16.5
nontwist features appear at the bottom of the billiard map.

2.1. Stability of Fixed Points

The fixed points are given by φ = (0, π) and

Mvr

v2
r + v2

θ

= k (2.4)
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which occur in pairs

v±r =
1
2

⎛

⎝
M

k
±

√
(
M

k

)2

− 4vθ2

⎞

⎠. (2.5)

They are linearly stable for |τ | = |TrJ| < 2, where J is the Jacobian matrix of the map [2, 12].
We find, for k = 1,

0 < 2πM cosφ
v2
θ
− v2

r
(
v2
r + v2

θ

)2
< 1. (2.6)

With the help of the equilibrium condition (2.4) this yields the stability boundaries.

Saddle-Node Bifurcation (τ = 2)

We have either vr = 0 or

vr = vθ =
M

2
. (2.7)

Period-Doubling Bifurcation (τ = −2)

There is

π

2M
cosφ

(
v2
θ − v

2
r

)
= v2

r . (2.8)

For φ = 0 we find either vr = 0 or

vr =
Mπ

2(π +M)
,

vθ = vr

√

π + 2M
π

,

(2.9)

and for φ = π , either vr = 0 or

vr =
Mπ

2(π −M)
,

vθ = vr

√

π − 2M
π

.

(2.10)

Note that the second case is unlikely to occur, since it requires M < (1/2)π .
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2.2. Reconnection

Reconnection is a global bifurcation wherein fixed points do not change type, but the
separatrix layers surrounding them undergo a topological rearrangement [11]. As the effect
is generic and described in detail elsewhere [11], we will be succinct. Near a resonance we
have the approximate Hamiltonian [2]

H(t, vr , n) = πM ln
(
v2
r + v

2
θ

)
+ cosφδ1(n)

≈ πM ln
(
v2
r + v

2
θ

)
− 2πvr + cosφ,

(2.11)

where δ1(n) =
∑∞

m=−∞ δ(n −m). In deriving (2.11) we Fourier analyzed δ1(n) and averaged
over higher-order resonances. We also Taylor expanded H in the vertical direction.

The reconnection threshold is given by equating the value of H on neighboring
separatrices. With this definition, we calculate H lower = 1 and

Hupper = πMe ln

(
(v+

r )
2 + vθ2

(v−r )
2 + v2

θ

)

− 2π
(
v+
r − v−r

)
− 1, (2.12)

where v±r = (1/2)(Me ±
√

M2
e − 4v2

θ). Equating Hupper = Hlower then gives

1
πMe

= ln

(
1 +
√

1 − ṽ2

ṽ

)

−
√

1 − ṽ2, (2.13)

where ṽ = 2vθ/Me. Figure 3 shows a typical reconnection with M = 20. Equation (2.14)
shows that this occurs for vθ = 9.355, in excellent agreement with the figure. Essentially
perfect agreement occurs for larger M, where the chaotic layer is thinner.

2.3. Vortex Pairs

Vortex pairs also exist for this map. Figure 4 shows such a pair for M = 20 and vθ = 19.94 and
19.997. To understand this structure, consider a general period-two orbit, for which sinφ +
sinφ′ = 0, so that either φ′ = −φ or φ′ = φ−π . The former orbits do not exist for all parameters,
being born in a pitchfork bifurcation. The latter orbits turn out to have φ = π, φ′ = 0, with
2Mvr/(v2

r +v
2
θ) = 1. They are stable for πMe|f ′(vr)| < 1, where f(vr) = vr/(v2

r +v
2
θ). It follows

that vr = v′r and v2
r − 2Mvr + v2

θ
= 0, so that

vr =M ±
√

M2 − v2
θ. (2.14)

Thus, vortex pairs annihilate when vθ = M, in agreement with Figure 4. They are formed
when x-points of adjacent island chains merge. Note that vortex pair configuration is
extremely ephemeral and therefore probably of little importance in particle transport. For
details see [11].
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Figure 3: Circular Billiard map for M = 20 and (a) vθ = 9.4, (b) vθ = 9.3, illustrating reconnection.
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Figure 4: Vortex pair formation for circular billiard map for M = 20 and (a) vθ = 19.99, (b) vθ = 19.997.

3. A Two-Frequency Map

Following the program of [10] we employ the bichromatic wall function

V
(
φ
)
=
Va sin(ωat) + Vb sin(ωbt)

√

V 2
a + V 2

b

, (3.1)
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where Va and Vb are the amplitudes, and ωa and ωb are the frequencies of the two
components. The condition

V 2
a + V 2

b = const (3.2)

maintains constant energy in the two waves, while the frequencies are chosen such that

ωa

ωb
=
a

b
(3.3)

where a and b are coprime integers, in order to maintain periodicity.
Defining the phase φ = ωat/a, the map T2 can be written

T3 :

⎧
⎪⎪⎨

⎪⎪⎩

v′r = vr − V
(
φ
)
,

φ′ = φ +
(

4πM
a + b

)
v′r

v′2r + v2
θ

(mod2π),
(3.4)

where M = ω/π and

ωa

a
=
ωb

b
=

ω

a + b
(3.5)

with ω = (1/2)(ωa +ωb). Thus (3.1) becomes

V
(
φ
)
=

[
sin
(
aφ
)
+ μ sin

(
bφ
)]

√

1 + μ2
, (3.6)

where μ = Vb/Va.

3.1. Island Interspersal

For the map T3 we may distinguish three distinct families: common resonances, which are
shared by both a-and b-fold frequencies and defined by φ �→ φ + 2πk,

vr

v2
r + v2

θ

=
k

Me
(3.7)

with effective Me = 2M/(a + b) or

v2
r −

Me

k
vr + v2

θ = 0 (3.8)
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with solution

v±rk =
1
2

⎛

⎝
Me

k
±

√
(
Me

k

)2

− 4v2
θ

⎞

⎠. (3.9)

The angle φ0 is given by

sinaφ + μ sin bφ = 0. (3.10)

In addition, when μ = 0 there exists a set of fixed points given by aφ �→ aφ + 2πk,
which includes the common set (3.7):

avrk

v2
rk + v

2
θ

=
k

Me
. (3.11)

These fixed points have period P , where P/Q is a/b reduced to the lowest terms. Similarly,
when μ �→ ∞, setting bφ �→ bφ + 2πk yields period-b fixed points, given by

bvrk

v2
rk + v

2
θ

=
k

Me
, (3.12)

which also includes (3.7) as a subset. At intermediate values of μ the a- and b-fold islands at
φ0 = 0 and π are unperturbed, while the other fixed points move according to (3.10), which
locates φ0(μ).

Figure 5 compares the two-frequency Billiard map for a = 3, b = 2, vθ = 16 for μ =
0.0 and μ = 0.25. The general effect follows closely that for the Fermi map [10]. For μ =
0.25 one can see the groups of three a-fold islands interspersed with groups of two b-fold
islands. One can also see chains of five islands, due to nonlinear mixing of the 2 and 3-fold
chains. Increasing the admixture μ causes the amplitude of the b-fold islands to increase to the
point where two neighboring a-chains “overlap.” The net effect is to raise the KAM barrier;
maximal chaos is attained for μ ≈ 0.5. Figure 6 shows the result of iterating a single orbit
with intial condition φ = 0, vr = 10. For μ = 0.0 the orbit hangs up on the twistless torus
near vr = 20, but for μ = 0.5 it breaks through and reaches a new KAM barrier near vr = 70.
Interesting complications can arise due to pairs of islands and their bifurcations. Using the
“two-thirds rule,” one can be quite quantitative about overlap, [10] but that is not our present
goal, which is to demonstrate that the KAM barrier can indeed be raised substantially.

4. Discussion

We have derived a simplified version of the circular billiard map, which promises to be very
useful in parametric studies. As an example we have studied the effects of two frequencies
and demonstrated the raising of the KAM barrier to diffusion. The map can be “straightened”
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Figure 5: A Two-frequency Fermi map for M = 600, a = 3, b = 2, vθ = 16 for (a) μ = 0.0, (b) μ = 0.25.
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Figure 6: Single orbits; 106 iterations for M = 600, a = 3, b = 2, vθ = 16 (a) with μ = 0, (b) μ = 0.5.

by adding appropriate terms to the map. It was surprising to encounter a nontwist map and
one wonders how this fact would manifest itself in the 4D elliptic billiard. We emphasize that
the chaos enhancement effect of using two frequencies is not Fermi acceleration; the motion
is still firmly bounded by the existence of space-spanning invariant circles.
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