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Several software reliability growth models (SRGMs) have been developed by software developers
in tracking and measuring the growth of reliability. As the size of software system is large and the
number of faults detected during the testing phase becomes large, so the change of the number
of faults that are detected and removed through each debugging becomes sufficiently small
compared with the initial fault content at the beginning of the testing phase. In such a situation, we
can model the software fault detection process as a stochastic process with continuous state space.
In this paper, we propose a new software reliability growth model based on Itô type of stochastic
differential equation. We consider an SDE-based generalized Erlang model with logistic error
detection function. The model is estimated and validated on real-life data sets cited in literature
to show its flexibility. The proposed model integrated with the concept of stochastic differential
equation performs comparatively better than the existing NHPP-based models.
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1. Introduction

Software reliability engineering is a fast growing field. More than 60% of critical applications
are dependent on software. The complexity of business software application is also
increasing.

Customers need products with high performance that can be sustained over time.
Due to high cost of fixing failures, safety concerns, and legal liabilities organizations need
to produce software that is reliable. There are several methodologies to develop software but
questions that need to be addressed are how many times will the software fail and when,
how to estimate testing effort, when to stop testing, and when to release the software. Also,
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for a software product we need to predict/estimate the maintenance effort; for example, how
long must the warranty period must be, once the software is released, how many defects can
be expected at what severity levels, how many engineers are required to support the product,
for how long, and so forth. Software reliability engineering (SRE) addresses all these issues,
from design to testing to maintenance phases.

The Software Reliability Growth Model (SRGM) is a tool of SRE that can be used to
evaluate the software quantitatively, develop test status, schedule status, and monitor the
changes in reliability performance [1]. In the last two decades several Software Reliability
models have been developed in the literature showing that the relationship between the
testing time and the corresponding number of faults removed is either Exponential or S-
shaped or a mix of the two [1–7]. The software includes different types of faults, and each
fault requires different strategies and different amounts of testing effort to remove it.

Ohba [6] refined the Goel-Okumoto model by assuming that the fault detec-
tion/removal rate increases with time and that there are two types of faults in the software.
SRGM proposed by Bittanti et al. [2] and Kapur and Garg [5] has similar forms as that of
Ohba [6] but is developed under different set of assumptions. Bittanti et al. [2] proposed
an SRGM exploiting the fault removal (exposure) rate during the initial and final time
epochs of testing. Whereas, Kapur and Garg [5] describe a fault removal phenomenon,
where they assume that during a removal process of a fault some of the additional faults
might be removed without these faults causing any failure. These models can describe both
exponential and S-shaped growth curves and therefore are termed as flexible models [2, 5, 6].

The systems with distributed computing improve performance of a computing system
and individual users through parallel execution of programs, load balancing and sharing,
and replication of programs and data. Ohba [6] proposed the Hyper-exponential SRGM,
assuming that software consists of different modules. Each module has its characteristics
and thus the faults detected in a particular module have their own peculiarities. Therefore,
the Fault Removal Rate for each module is not the same. He suggested that the fault removal
process for each module is modeled separately and that the total fault removal phenomenon
is the addition of the fault removal process of all the modules. Kapur et al. [1] proposed an
SRGM with three types of fault. The first type is modeled by an Exponential model of Goel
and Okumoto [4]. The second type is modeled by Delayed S-shaped model of Yamada et al.
[7]. The third type is modeled by a three-stage Erlang model proposed by Kapur et al. [1].
The total removal phenomenon is again modeled by the superposition of the three SRGMs
[1, 8]. Later they extended their model to cater for more types of faults [9] by incorporating
logistic rate during the removal process. We have used different forms of FDR used in Kapur
et al. [9] while modeling our proposed SRGM.

A number of faults are detected and removed during the long-testing period before
the system is released to the market. However, the users then find number of faults and
the software company then releases an updated version of the system. Thus in this case
the number of faults that remain in the system can be considered to be a stochastic process
with continuous state space [10]. Yamada et al. [11] proposed a simple software reliability
growth model to describe the fault detection process during the testing phase by applying Itô
type Stochastic Differential Equation (SDE) and obtain several software reliability measures
using the probability distribution of the stochastic process. Later on, they proposed a
flexible Stochastic Differential Equation Model describing a fault-detection process during
the system-testing phase of the distributed development environment [12]. Lee et al. [13]
used SDEs to represent a per-fault detection rate that incorporate an irregular fluctuation
instead of an NHPP, and consider a per-fault detection rate that depends on the testing time t.
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In this paper, we will use SDEs to represent fault-detection rate that incorporate an irregular
fluctuation. We consider a composite model called generalized SRGM that includes three
different types of faults, for example, simple, hard, and complex. Fault detection rates for
hard and complex faults are assumed to be time dependent that can incorporate learning
as the testing progresses. In practice, it is more realistic to describe different rates for three
different types of faults. This model can further be extended to n-type of faults.

For the estimation of the parameters of the proposed model, Statistical Package for
Social Sciences (SPSS) is used. The goodness-of-fit of the proposed model is compared with
NHPP-based Generalised Erlang Model [1, 8]. The proposed model provides significant
improved goodness-of-fit results. The paper is organized as follows. Section 2 presents the
model formulation for the proposed model. Sections 3 and 4 give the method used for
parameter estimation and criteria used for validation and evaluation of the proposed model.
We conclude the paper in Section 5.

2. Framework for Modeling

2.1. Notations for the Proposed SRGM using SDE

(N(t)): The number of faults detected during the testing time t and is a random
variable.

E(N(t)): Expected number of faults detected in the time interval (0, t] during
testing phase.

a: Total fault content.

a1, a2, a3: Initial fault content for simple, hard, and complex types of faults.

b1, b2, b3: Fault detection rates for simple, hard, and complex faults.

E(N1(t)), E(N2(t)), E(N3(t)): Mean number of fault for simple, hard, and complex
faults.

σ1, σ2, σ3: Positive constant that represents the magnitude of the irregular
fluctuations for simple, hard, and complex faults.

γ1(t), γ2(t), γ3(t): Standardized Gaussian White Noise for simple, hard, and
complex faults.

P1, P2, P3: Proportion of simple, hard, and complex faults in total fault content of
the software.

β: Constant parameter representing a learning phenomenon in the Fault Removal
Rate function.

2.2. Assumptions for the Proposed SRGM using SDE

(1) The Software fault-detection process is modeled as a stochastic process with a
continuous state space.

(2) The number of faults remaining in the software system gradually decreases as the
testing procedure goes on.

(3) Software is subject to failures during execution caused by faults remaining in the
software.
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(4) The faults existing in the software are of three types: simple, hard, and complex.
They are distinguished by the amount of testing effort needed to remove them.

(5) During the fault isolation/removal, no new fault is introduced into the system and
the faults are debugged perfectly.

2.3. SDE Modeling for Different Categories of Faults

2.3.1. Framework for Modeling for Proposed SRGM

Several SRGMs are based on the assumption of NHPP, treating the fault detection process
during the testing phase as a discrete counting process. Recently Yamada et al. [11] asserted
that if the size of the software system is large then the number of the faults detected during
the testing phase is also large and change in the number of faults, which are corrected and
removed through each debugging, becomes small compared with the initial faults content
at the beginning of the testing phase. So, in order to describe the stochastic behavior of the
fault detection process, we can use a Stochastic Model with continuous state space. Since the
latent faults in the software system are detected and eliminated during the testing phase,
the number of faults remaining in the software system gradually decreases as the testing
progresses. Therefore, it is reasonable to assume the following differential equation:

dN(t)
dt

= r(t)[a −N(t)], (2.1)

where r(t) is a fault-detection rate per remaining fault at testing time t.
However, the behavior of r(t) is not completely known since it is subject to random

effects such as the testing effort expenditure, the skill level of the testers, and the testing tools
and thus might have irregular fluctuation. Thus, we have

r(t) = b(t) + noise. (2.2)

Let γ(t) be a standard Gaussian white noise and σ a positive constant representing a
magnitude of the irregular fluctuations. So (2.2) can be written as

r(t) = b(t) + σ γ(t). (2.3)

Hence, (2.1) becomes

dN(t)
dt

=
[
b(t) + σγ(t)

]
[a −N(t)]. (2.4)

Equation (2.4) can be extended to the following stochastic differential equation of an Itô Type
[10, 11]:

dN(t) =
[
b(t) − 1

2
σ2

]
[a −N(t)]dt + σ[a −N(t)]dw(t), (2.5)
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where W(t) is a one-dimensional Wiener process, which is formally defined as an integration
of the white noise γ(t) with respect to time t. Use Itô formula solution to (2.5); and use initial
condition N(0) = 0 as follows [10, 11]:

N(t) = a

[

1 − exp

{

−
∫ t

0
b(x)dx − σW(t)

}]

. (2.6)

The Wiener process W(t) is a Gaussian process and it has the following properties:

Pr[w(0) = 0] = 1,

E[w(t)] = 0,

E
[
w(t)w

(
t′
)]

= min
[
t, t′

]
.

(2.7)

In this paper, we consider three different fault detection rates, that is, constant for simple and
time dependent for hard and complex faults. In practical situation it has been observed that a
large number of simple (trivial) faults are easily detected at the early stages of testing while
fault removal may become extremely difficult in the later stages.

We now briefly describe the Generalised Erlang model with logistic error detection
function. The proposed model is based on Generalised Erlang model with logistic error
detection function and SDE as described below.

Generalized Erlang Model with Logistic Error Detection Function [9, 14–16]

The model assumes that the testing phase consists of three processes, namely, failure,
observation, fault detection, and fault removal. The software faults are categorized into three
types according to the amount of testing effort needed to remove them. The time delay
between the failure observation and the subsequent fault removal is assumed to represent
the testing effort. The faults are classified as simple if the time delay between the failure
observation, fault detection and removal is negligible. For the simple faults, the fault removal
phenomenon is modeled by the exponential model of Goel and Okumoto [4], that is,

m1(t) = a1

(
1 − e−b1t

)
. (2.8)

It is assumed that the hard faults consume more testing effort when compared with simple
faults. This means that the testing team will have to spend more time to analyze the cause
of the failure and therefore requires greater efforts to remove them. Hence the removal
process for such faults is modeled as a two-stage process. The first stage describes the failure
observation process. The second stage of the two-stage process describes the delayed fault
removal process. During this stage the fault removal rate is assumed to be time dependent.
The reason for this assumption is to incorporate the effect of learning on the removal process.
With each fault removal insight is gained into the nature of faults present and function
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described, called logistic function, can account for that. So its mean value function will be
given by [9, 14–16]

m2(t) =
a2
[
1 − {1 + b2t}e−b2t

]

1 + βe−b2t
. (2.9)

There can be components still having harder faults or complex faults. These faults can require
more effort for removal after isolation. Hence they need to be modeled with greater time lag
between failure observation and removal. The first stage describes the failure observation
process, the second stage describes the fault isolation process, and the third stage describes
the fault removal process. During this stage the fault removal rate is assumed to be time
dependent. Logistic learning function is used again to represent the knowledge gained by
the removal team. Hence its mean value function will be given by [9, 14–16]

m3(t) =
a3
[
1 − (

1 + b3t + b2
3t

2/2
)
e−b3t

]

1 + βe−b3t
. (2.10)

The total removal phenomenon is modeled by the superposition of the three NHPP, that is,

m(t) = m1(t) +m2(t) +m3(t),

m(t) = a1

(
1 − e−b1t

)
+
a2
[
1 − (1 + b2t)e−b2.t

]

1 + βe−b2t
+
a3
[
1 − (

1 + b3t + b2
3t

2/2
)
e−b3.t

]

1 + βe−b3t
,

(2.11)

where a1 = ap1, a2 = ap2, and a3 = ap3, where p3 = (1 − p1 − p2).
From (2.8), (2.9), and (2.10), it has been observed that the removal rate per fault for

simple faults is a constant b1, whereas for hard and complex faults, these rates are function of
time t and are given, respectively, by

b2(t) =
m′

2(t)
a2 −m2(t)

=
b2
(
1 + β + b2t

) − b2
(
1 + βe−b2t

)

(
1 + β + b2t

)(
1 + βe−b2t

) ,

b3(t) =
m′

3(t)
a3 −m3(t)

=
b3

(
1 + β + b3t + b3

2t2/2
)
− b3

(
1 + βe−b3t

)
(1 + b3t)

(
1 + β + b3t + b3

2t2/2
)(

1 + βe−b3t
) .

(2.12)

Note that b2(t) and b3(t) increases monotonically with time and tend to constants b2 and b3,
respectively, as t → ∞.
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Proposed SRGM

Now in the proposed model considering the three forms of b(t), that is, for simple
represented by a constant FDR, hard and complex faults represented by time dependent
FDR’s, respectively, we have

b1(t) = b1,

b2(t) =
b2
(
1 + β + b2t

) − b2
(
1 + βe−b2t

)

(
1 + β + b2t

)(
1 + βe−b2t

) ,

b3(t) =
b3

(
1 + β + b3t + b3

2t2/2
)
− b3

(
1 + βe−b3t

)
(1 + b3t)

(
1 + β + b3t + b3

2t2/2
)(

1 + βe−b3t
) .

(2.13)

Now considering (2.6) and using the above form of b(t) for different type of faults, we have
the number of faults detected at testing time t given by the following expression for three
types of faults:

N1(t) = a1

[
1 −

{
e−b1t−σ1W1(t)

}]
,

N2(t) = a2

[

1 −
(
1 + β + b2t

){
e−b2t−σ2W2(t)

}

1 + β e−b2t

]

,

N3(t) = a3

[

1 −
(
1 + β + b3t + b2

3t
2/2

){
e−b3t−σ3W3(t)

}

1 + β e−b3t

]

.

(2.14)

Taking Expectation of N1(t), N2(t), and N3(t), respectively, we have

E(N1(t)) = a1

[
1 −

{
e−b1t+σ1

2t/2
}]

,

E(N2(t)) = a2

⎡

⎢
⎣1 −

(
1 + β + b2t

){
e−b2t+σ2

2t/2
}

1 + β e−b2t

⎤

⎥
⎦,

E(N3(t)) = a3

⎡

⎢
⎣1 −

(
1 + β + b3t + b2

3t
2/2

){
e−b3t+σ3

2t/2
}

1 + β e−b3t

⎤

⎥
⎦.

(2.15)

2.4. Modeling Total Fault Removal Phenomenon

Total fault removal phenomenon of the proposed model is the sum of mean removal
phenomenon for simple, hard, and complex faults, that is,

E(N(t)) = E(N1(t)) + E(N2(t)) + E(N3(t)). (2.16)
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This is the mean value function of superimposed removal phenomenon of simple, hard, and
complex faults, respectively.

For proposed SRGM,

E(N(t)) = a1

[
1 −

{
e−b1t+σ2

1 t/2
}]

+ a2

⎡

⎢
⎣1 −

(
1 + β + b2t

){
e−b2t+σ2

2 t/2
}

1 + β e−b2t

⎤

⎥
⎦

+ a3

⎡

⎢
⎣1 −

(
1 + β + b3t + b2

3t
2/2

){
e−b3t+σ2

3 t/2
}

1 + β e−b3t

⎤

⎥
⎦,

(2.17)

where a1 = ap1, a2 = ap2, and a3 = ap3, where p3 = (1 − p1 − p2).

2.5. Software Reliability Measures

In this section, we present expression for various software reliability measures. Information
on the current number of detected faults in the system is important to estimate the situation of
the progress on the software testing procedures. Since it is a random variable in our models,
so its expected value can be useful measures. We have already calculated the expected value
for our models in (2.15).

Instantaneous MTBF for Proposed SRGM

The instantaneous MTBF (denoted by MTBFI) is Average Time Between Failure in an interval
dt. The instantaneous mean time between software failures is useful to measure the property
of the frequency of software failure occurrence. The instantaneous MTBF for the proposed
models is given by the following.

For simple faults,

(MTBF)I =
1

a1(b1 − (1/2)σ2)e−(b1−(1/2)σ2)t
. (2.18)

For hard faults,

(MTBF)I =
1

a2
[(

1 + β + b2t
)
/
(
1 + βe−b2t

)]
[A]e−(b2−(1/2)σ2

2)t
, (2.19)

where A = (b2(1 + β + b2t) − b2(1 + βe−b2t))/((1 + β + b2t)(1 + βe−b2t)) − (1/2)σ2
2.
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For complex faults,

(MTBF)I =
1

a3

[(
1 + β + b3t + b3

2t2/2
)
/
(
1 + βe−b3t

)]
[B − (1/2)σ3

2]e−(b3−(1/2)σ3
2)t

, (2.20)

where B denotes (b3(1 + β + b3t + b3
2t2/2) − b3(1 + βe−b3t)(1 + b3t))/((1 + β + b3t + b3

2t2/2)
(1 + βe−b3t))

Cumulative MTBF for Proposed SRGM

The cumulative MTBF is the Average Time Between Failure from the beginning of the test
(i.e., t = 0) up to time t. We have the following cumulative mean time between software
failures (denoted by MTBFC) for the proposed models:

(MTBF)C =
t

E(N(t))
. (2.21)

The cumulative MTBF of the model is given as follows.
Simple faults:

(MTBF)C =
t

a1
[
1 − {

e−b1t+σ1
2t/2

}] . (2.22)

Hard faults:

(MTBF)C =
t

a2
[
1 − (

1 + β + b2t
){

e−b2t+σ2
2t/2

}
/
(
1 + β e−b2t

)] . (2.23)

Complex faults:

(MTBF)C =
t

a3
[
1 − (

1 + β + b3t + b2
3t

2/2
){

e−b3t+σ3
2t/2

}
/
(
1 + β e−b3t

)] . (2.24)

3. Parameter Estimation

Parameter estimation and model validation are important aspects of modeling. The
mathematical equations of the proposed SRGM are nonlinear. Technically, it is more difficult
to find the solution for non-linear models using Least Square method and requires numerical
algorithms to solve it. Statistical software packages such as SPSS help to overcome this
problem. SPSS is a Statistical Package for Social Sciences. For the estimation of the parameters
of the proposed model, Method of Least Square (Nonlinear Regression method) has been
used. Nonlinear Regression is a method of finding a nonlinear model of the relationship
between the dependent variable and a set of independent variables. Unlike traditional linear
regression, which is restricted to estimating linear models, nonlinear regression can estimate
models with arbitrary relationships between independent and dependent variables.
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4. Comparison Criteria for SRGM

The performance of SRGM is judged by its ability to fit the past software fault data (goodness
of fit).

4.1. Goodness of Fit Criteria

The term goodness of fit is used in two different contexts. In one context, it denotes the
question if a sample of data came from a population with a specific distribution. In another
context, it denotes the question of “How good does a mathematical model (e.g., a linear
regression model) fit to the data”?

(a) The Mean Square Fitting Error (MSE)

The model under comparison is used to simulate the fault data, the difference between the
expected values, m̂(ti), and the observed data yi is measured by MSE [1] as follows. MSE =
∑k

i=1((m̂(ti) − yi)
2/k), where k is the number of observations. The lower MSE indicates less

fitting error, thus better goodness of fit.

(b) Coefficient of Multiple Determination (R2)

We define this coefficient as the ratio of the sum of squares resulting from the trend model to
that from constant model subtracted from 1 [1], that is, R2 = 1 − residual SS/corrected SS. R2

measures the percentage of the total variation about the mean accounted for the fitted curve.
It ranges in value from 0 to 1. Small values indicate that the model does not fit the data well.
The larger R2 is, the better the model explains the variation in the data.

(c) Prediction Error (PE)

The difference between the observation and prediction of number of failures at any instant of
time i is known as PEi. Lower the value of Prediction Error, better the goodness of fit [17].

(d) Bias

The average of PEs is known as bias. Lower the value of Bias, better the goodness of fit [17].

(e) Variation

The standard deviation of PE is known as variation. Variation =√
(1/(N − 1))

∑
(PEi − Bias)2. Lower the value of Variation, better the goodness of fit

[17].

(f) Root Mean Square Prediction Error

It is a measure of closeness with which a model predicts the observation. RMSPE =√
(Bias2 + Variation2). Lower the value of Root Mean Square Prediction Error, better the

goodness of fit [17].
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Table 1: Schedule of release candidate version in Fedora core 7.

Date Event
1 February 2007 Test 1 release
29 February 2007 Test 2 release
27 March 2007 Test 3 release
24 April 2007 Test 4 release
31 May 2007 Fedora 7 general availability

5. Model Validation

To check the validity of the proposed model and to find out its software reliability growth,
it has been tested on three Data Sets. The Proposed Model has been compared with NHPP-
based Generalised Erlang Model [1, 8]. For the proposed SRGM, the results are better for
given data sets.

DS-I

This data is cited from Brooks and Motley (1980) [18]. The fault data set is for a radar
system of size 124 KLOC (Kilo Lines of Code) tested for 35 weeks in which 1301 faults
were removed. Parameters of SRGM (2.17) were estimated using SPSS software tool. The
Parameter Estimation result and the goodness of fit results for the proposed SRGM are given
in Table 2. The goodness of fit curve for DS-1 is given in Figure 1.

DS-II

This data is cited from Misra [19]. The software was tested for 38 weeks during which 2456.4
computer hours were used and 231 faults were removed. Parameters of SRGM (2.17) were
estimated using SPSS software tool. The Parameter Estimation result and the goodness of fit
results for the proposed SRGM are given in Table 3. The goodness of fit curve for DS-II is
given in Figure 2. Values of p1, p2, and p3 are computed from the actual data set since data
was available separately for each type of fault.

DS-III

This data is cited from Fedora Core Linux [20, 21], which is one of the operating systems
developed under an open source project. The Fedora project is made up of many small-sized
projects. Fedora is a set of projects, sponsored by Red Hat and guided by the Fedora project
board. These projects are developed by a large community of people, who strive to provide
and maintain the very best in free, open source software and standards. The fault count data
collected in this paper are collected in the bug tracking system on the website of Fedora
project in May, 2007. The schedule of release candidate version in Fedora core 7 is shown as
in Table 1.

In this paper, the test data for the end of Test 3 Release version is considered, where 164
faults were detected. The Parameter Estimation result and the goodness of fit results for the
proposed SRGM are given in Table 4. The goodness of fit curve for DS-III is given in Figure 3.

The values of initial fault contents a1, a2, a3 can be calculated from Tables 2, 3, and 4
for the given datasets, that is, DS-I, DS-II, and DS-III using ai = api; i = 1, 2, 3.
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Table 2
(a) Parameter for DS-I (Brooks DS-2 1301 faults)

Models under comparisons Parameter estimation
a b1 b2 b3 β p1 p2 p3 σ1 σ2 σ3

Proposed SRGM 1339 .089 .248 .251 48 .264 .669 .067 .194 .001 .111
Generalized Erlang model [1, 8] 1453 .376 .000 .165 — .011 .000 .989 — — —

(b) Parameter for DS-I

Models under comparison Comparison criteria
R2 MSE Bias Variation RMSPE

Proposed SRGM 1.00 81.3734 −0.06975 9.20469 9.204957
Generalised Erlang model [1, 8] .994 1200.522 0.939148 35.14148 35.15403

Table 3
(a) Parameter for DS-II (Misra 231 faults)

Models under comparisons Parameter estimation
a b1 b2 b3 β p1 p2 p3 σ1 σ2 σ3

Proposed SRGM 420 .059 .104 .378 66.593 .64 .342 .018 .048 .185 .599
Generalised Erlang model [1, 8] 561 .022 .012 .041 — .64 .342 .018 — — —

(b) Parameter for DS-II

Models under Comparison Comparison criteria
R2 MSE Bias Variation RMSPE

Proposed SRGM .998 7.22 −0.7104 2.626231 2.720631
Generalised Erlang model [1, 8] .995 22.09 0.6943 4.711796 4.762687

Table 4
(a) Parameter for DS-III

Models under comparisons Parameter estimation
a b1 b2 b3 β p1 p2 p3 σ1 σ2 σ3

Proposed SRGM 215 .189 .135 .113 8 .220 .640 .140 .328 .072 .346
Generalised Erlang model [1, 8] 195 .063 .011 .075 — .212 .004 .784 — — —

(b) Parameter for DS-III

Models under comparison Comparison criteria
R2 MSE Bias Variation RMSPE

Proposed SRGM .998 5.88010 0.070583 2.541294 2.54227
Generalised Erlang model [1, 8] .997 7.95905 0.149816 2.84224 2.84618

Description of Tables

Tables 2(a), 3(a), and 4(a) show the parameter estimates of proposed model and generalized
Erlang model for data sets DS-I, DS-II, and DS-III, respectively. For data set DS-II, the
proportions of different types of faults are given in the data set and for other data sets
proportions of different types of faults are estimated. With the prior knowledge of proportion
of different types of faults, programmer can act with better strategy for removing these faults.
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Figure 1: Goodness of Fit Curve for DS-I.
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Figure 2: Goodness of Fit Curve for DS-II.

Tables 2(b), 3(b), and 4(b) describe the comparison criteria results for proposed model
and generalized Erlang model. It is clear from the table that proposed model results are better
in comparison with generalized Erlang model for different comparison criteria parameters.

Goodness of Fit Curves for DS-I, DS-II, and DS-III

The curves given in Figures 1 and 2 reflect the initial learning curve at the beginning, as test
members become familiar with the software, followed by growth and then leveling off as the
residual faults become more difficult to uncover.
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Figure 3: Goodness of Fit Curve for DS-III.

6. Conclusion

This paper presents an SRGM for different categories of faults based on Itô type Stochastic
Differential Equations. In this paper, we have extended the SDE approach adopted by
Yamada et al. [12] to the case where the faults are simple, hard, and complex in nature.
The goodness of the fit analysis has been done on three real software failure datasets. The
goodness-of-fit of the proposed Model is compared with NHPP-based Generalized Erlang
model [1, 8]. The results obtained show better fit and wider applicability of the model to
different types of failure datasets. From the numerical illustrations, we see that the Proposed
Model provides improved results with better predictability because of lower MSE, Variation,
RMSPE, Bias and higher R2. The usability of SDE is not only restricted to the model described
in this paper but it can also be extended to improve the results of any other SRGM. The
Proposed Model can also be used by incorporating error generation and various Testing Effort
functions.

Acronyms

MLE: Maximum likelihood estimate
DS: Data set
R2: Coefficient of multiple determination
SPSS: Statistical package for social sciences
MSE: Mean square error
PE: Prediction error
RMSPE: Root mean square prediction error
FDR: Fault detection rate.
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