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Image registration is a widely used task of image analysis with applications in many fields. Its
classical formulation and current improvements are given in the spatial domain. In this paper
a regularization term based on fractional order derivatives is formulated. This term is defined
and implemented in the frequency domain by translating the energy functional into the frequency
domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization
term leads to a simple formulation and design, being applicable to higher dimensions by using the
corresponding multidimensional Fourier transform. The proposed regularization term allows for a
real gradual transition from a diffusion registration to a curvature registration which is best suited
to some applications and it is not possible in the spatial domain. Results with 3D actual images
show the validity of this approach.
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1. Introduction

Image registration is the process of finding out the global and/or local correspondence
between two images, template T and reference R, of a scene in such a way that the
transformed template matches [1]. This process is needed in various computer vision
applications, such as stereo depth perception, motion analysis, remote sensing, change
detection, object localization, object recognition, image fusion, and so forth. In these
applications, a nonlinear transformation is necessary to correct the local differences between
the images. This nonrigid registration is an ill-posed problem, therefore, it is necessary to
constrain the estimated transformation as much as possible by using some prior knowledge
on the deformation model. A regularization term is then used to preferentially obtain more
likely solutions.
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Recently, new approaches have arisen for regularization terms in nonparametric
image registration, for example, minimal curvature [2], the membrane energy [3], or the
consistent symmetric approaches [4], along with efficient and stable implementations like
using, for example, singular value decomposition [5], a DCT-type factorization [6], additive
operator splitting schemes [7], or approaches which exploit the multiscale nature of the
registration problem [2] or which take advantage of multigrid techniques [8]. In some
applications, it could be interesting a registration scheme based on a regularization term
with gradual stiffness properties, apart from the diffusion [7] and curvature [6] models,
which are based, respectively, on firs-t and second-order derivatives. This paper proposes
a hybrid regularization term based on fractional order derivatives, which can be seen as a
generalization of the diffusion and curvature smoothing terms.

This paper is structured as follows: we start out with the variational framework for
the registration problem, proposing the hybrid regularization term. In the following section,
the energy functional is adapted to handle discrete d-dimensional signal, then it is translated
into the frequency domain, where it is minimized. Next, results show the performance of this
regularizer and finally the conclusions close the paper.

2. Variational Formulation

The d-dimensional reference and template datasets are defined R, T : Ψ ⊂ R
d → R, where

Ψ :=]0, 1[d, and d represents the spatial dimension of the datasets. The registration produces
a displacement field u : R

d → R
d that makes the transformed template dataset similar to

the reference dataset, T(x − u(x)) ≈ R(x), where u(x) = (u1(x) · · ·ud(x))� and x is the spatial
position x = (x1, . . . , xd) ∈ R

d.
The nonparametric registration can be approached in terms of the variational calculus,

by defining the joint energy functional to be minimized:

J[u] := D[R, T ;u] + αS[u]. (2.1)

The energy term D measures the distance between the deformed template dataset and
the reference dataset; S is a penalty term which acts as a regularizer and determines the
smoothness of the displacement field; and α > 0 weights the influence of the regularization.

The distance measure D is chosen depending on the datasets to be registered. When
the intensities of the two datasets are similar (monomodal registration), the sum of squared
differences of the datasets is commonly used [9]. When dealing with datasets from different
sources or modalities (multimodal registration), statistical based measures, for example,
mutual information [10] or correlation ratio [11], are more appropriate.

The regularization term S gives the smoothness characteristics to the displacement
field [6]. In this paper, we propose the following term, which is given by the energy of σ-
order derivatives of u:

Shybr[u] :=
1
2

d∑

l=1

∫

Ψ

∥∥∥Δσ/2ul
∥∥∥

2
dx, (2.2)

with σ ∈ [1, 2] ⊂ R, where Δ ≡ ∇2 ≡ ∇�∇ is the d-dimensional Laplace operator. Note that if
σ = 1, then Δσ/2 = ∇, and a diffusion registration is being performed; if σ = 2, then Δσ/2 = Δ,
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and a curvature registration is in this case performed. A precise definition of the operator
Δσ/2 can be found, for example, in [12], and references therein. The regularization term (2.2)
can be also written as

Shybr[u] :=
1
2
a[u,u] =

1
2

∫

Ψ
〈B[u],B[u]〉

Rddx, (2.3)

where a[u,u] ∈ R is a positive bilinear form, 〈·, ·〉
Rd denotes the dot (or inner) product in R

d,
and B is the following partial differential operator:

B[u] :=

(
∂σu1

∂xσ1
+ · · · + ∂σu1

∂xσ
d

, . . . ,
∂σud
∂xσ1

+ · · · + ∂σud
∂xσ

d

)�
. (2.4)

Because digital datasets are handled, which are typically encoded by uniformly
distributed picture elements, the finite difference method is the natural approach to
approximate (2.2):

Shybr[u] ≈ 1
2

d∑

l=1

1
N

∑

∀n

∣∣∣∣∣∣∣

d∑

m=1

σ-times︷ ︸︸ ︷
d−[nm] ∗ · · · ∗ d−[nm] ∗ul

∣∣∣∣∣∣∣

2

, (2.5)

where N = N1N2 . . .Nd is the cardinal of the datasets to be registered, n = (n1, . . . , nd) ∈
N
d is the discrete spatial variable,

∑
∀n(·) =

∑N1−1
n1=0 · · ·

∑Nd−1
nd=0 (·), d−[nm] performs the discrete

backward difference in the mth dimension (i.e., d−[nm] = δ[nm] − δ[nm − 1], δ[nm] being
the Kronecker’s delta for discrete signals [13]), and ∗ denotes linear convolution of discrete
signals. Note that the previous equation is meaningless in the spatial domain for noninteger
values of σ. However, this problem can be approached from a frequency domain point of
view, as it is detailed in following section.

2.1. Translation into the Frequency Domain

This paper proposes a novel regularization term for d-dimensional image registration,
approached in terms of a variational formulation in the Fourier domain. As a starting point,
the joint energy functional (2.1) has to be expressed in the frequency domain, following the
procedure described in [14]. This translation is done by means of Parseval’s theorem [15],
which relates the total energy of the signal in both spatial and frequency domain, that is,
J[u] = J̃[ũ], where

J̃[ũ] := D̃
[
R̃, T̃ ; ũ

]
+ αS̃[ũ], (2.6)

with ũ(ω) = (ũ1(ω), . . . , ũd(ω))� being the frequency counterpart of the displacement field,
ω = (ω1, . . . , ωd) is the d-dimensional variable in the frequency domain, and where the
distance measure D̃ and the regularization term S̃ are now defined in the frequency domain.
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Taking into account that the Fourier transform of a Kronecker’s delta shifted to n0,
δ[nm − n0], is e−jωmn0 [13], and applying Parseval’s theorem to (2.5), the regularization term
is obtained in the frequency domain:

S̃hybr[ũ] =
ν

2

d∑

l=1

∫

Ω

∣∣∣∣∣

d∑

m=1

∣∣∣1 − e−jωm

∣∣∣
2
∣∣∣∣∣

σ

|ũl|2dω, (2.7)

where ν = ((2π)dN)
−1

is a positive real constant and Ω :=] − π,π[d is the d-dimensional
frequency domain. Previous equation can be expressed in matrix form and as a bilinear form
as follows:

S̃hybr[ũ] =
ν

2

∫

Ω

d∑

l=1

d∑

m=1

Ãlm(ω)ũmũ∗l dω

=
ν

2

∫

Ω

(
ũ1 · · · ũd

)

⎛
⎜⎜⎜⎝

Ã11(ω) · · · Ãd1(ω)

...
. . .

...

Ã1d(ω) · · · Ãdd(ω)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ũ∗1
...

ũ∗
d

⎞
⎟⎟⎟⎠dω

=
ν

2

∫

Ω
ũ�Ã�(ω)ũ∗dω

=
ν

2

∫

Ω

〈
Ã(ω)ũ, ũ

〉

Cd
dω =

1
2
ã[ũ, ũ],

(2.8)

where 〈r̃, s̃〉
Cd = r̃�s̃∗ is the complex inner product in C

d, ã[ũ, ũ] ∈ R is a positive bilinear form
in the frequency domain, and Ã is a d × d matrix whose elements are scalar functions which
implement the spatial derivatives in the frequency domain, allowing for their computation
by means of products.

The resulting frequency operator Ã(ω) is therefore a diagonal matrix which produces
a displacement field whose components are decoupled. Then, Ã(ω) can be written as

Ã(ω) = Id ⊗ K̃(ω), (2.9)

where Id is the d × d identity matrix, ⊗ denotes the Kronecker product, and the lth element of
the diagonal of Ã(ω), the so-named K̃(ω), is given by

K̃(ω) =

(
2

d∑

m=1

(1 − cosωm)

)σ

. (2.10)
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The regularization term (2.7) finally results in

S̃hybr[ũ] =
ν

2

∫

Ω
K̃(ω)‖ũ‖2dω. (2.11)

It should be noted that the regularization terms for diffusion and curvature registration
are particular cases of (2.10), and therefore the smoother Shybr can actually be seen as a
generalized regularization term which allows for a registration technique which is between
the diffusion (σ = 1) and curvature (σ = 2) cases, because it simultaneously includes partial
features of both schemes if σ ∈]1, 2[.

2.2. Minimization in the Frequency Domain of the Energy Functional

According to the variational calculus, a necessary condition for a minimizer ũ of the joint
energy functional (2.6) is that the first variation of J̃[ũ] in any direction (also known as the
Gâteaux derivative) vanishes for all suitable perturbations z̃, that is,

δJ̃[ũ; z̃] = δD̃
[
R̃, T̃ ; ũ; z̃

]
+ αδS̃[ũ; z̃] = 0, ∀z̃ ∈ C

d. (2.12)

For the Gâteaux derivative of D̃, we find

δD̃
[
R̃, T̃ ; ũ; z̃

]
= lim

ε→ 0

1
ε

(
D̃
[
R̃, T̃ ; ũ + εz̃

]
− D̃
[
R̃, T̃ ; ũ

])

= ν
∫

Ω

〈
f̃(ω), z̃

〉

Cd
dω,

(2.13)

where the so-called force field in the frequency domain, f̃(ω), depends on the particular
choice of the distance measure [16], f̃(ω) = d − FT{∇D[R, T ;u]} ∈ C

d.
For the Gâteaux derivative of S̃, the following expression is obtained (detailed in the

appendix ):

δS̃[ũ; z̃] = lim
ε→ 0

1
2ε

(ã[ũ + εz̃, ũ + εz̃] − ã[ũ, ũ])

= ã[ũ, z̃] = ν
∫

Ω

〈
Ã(ω)ũ, z̃

〉

Cd
dω,

(2.14)

where (2.8) has been used. Note that any energy-based smoother S̃ can be incorporated into
this framework, as long as it can be expressed in terms of (2.8). Finally, we can write (2.12) as

δJ̃[ũ; z̃] = ν
∫

Ω

〈
f̃(ω) + αÃ(ω)ũ, z̃

〉

Cd
dω = 0, ∀z̃ ∈ C

d, (2.15)
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which leads to the Euler-Lagrange equation in the frequency domain:

f̃(ω) + αÃ(ω)ũ(ω) = 0. (2.16)

Solving the previous equation in the frequency domain provides a stable implementation for
the computation of a numerical solution for the displacement field, and in a more efficient
way than existing approaches if the multidimensional fast Fourier transform is used.

2.3. Frequency Implementation of the E-L Equations

To solve the Euler-Lagrange equations (2.16) formulated in the frequency domain, a time-
marching scheme can be employed, yielding the following iteration:

∂tũ(ω, t) + f̃(ω, t) + αÃ(ω)ũ(ω, t) = 0, (2.17)

where ∂tũ(ω, t) = (∂tũ1(ω, t), . . . , ∂tũd(ω, t))
� (in the steady-state ∂tũ(ω, t) = 0 and (2.17)

holds (2.16)). In order to solve (2.17), the time t is discretized, t := ξτ, τ > 0 being the time-
step and ξ ∈ N being the iteration index, and then the time derivative of ũ(ω, t) is replaced by
its discrete approximation (first backward difference). Using the notation ũ(ξ)(ω) := ũ(ω, ξτ),
the iterative scheme is the following:

ũ(ξ)(ω) =
(
I + ταÃ(ω)

)−1(
ũ(ξ−1)(ω) − τ f̃(ξ−1)(ω)

)
, (2.18)

where I denotes the identity on the domain Ω, and where ũ(ξ)(ω) is usually initialized to
zero, ũ(0)(ω) := 0.

As shown in (2.9), the frequency components of the displacement field are
independent (i.e., they are not coupled). In this case, the matrix inversion in (2.18) does
disappear due to the fact that the multiplication of a circulant block matrix and a column
block vector becomes a Hadamard (i.e., pointwise) product of their respective spectra in the
frequency domain [17]. Then, the iteration for the lth component is given by

ũ
(ξ)
l (ω) = H(ω)

(
ũ
(ξ−1)
l (ω) − η−1f̃

(ξ−1)
l (ω)

)
, (2.19)

where

η :=
1
τ
,

K(ω) := αK̃(ω),

H(ω) :=
η

η +K(ω)
.

(2.20)

H(ω) is a d-dimensional low pass filter, it has its maximum at the frequencies of the
DC component. The values of H(ω) are less or equal than one and are the reciprocal
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Figure 1: Spectra of d-dimensional filters, d = 2, η = 1, α = 1. (a)H(ω) for diffusion (σ = 1), (b)H(ω) for
the hybrid case (σ = 1.5), (c)H(ω) for curvature (σ = 2), (d) comparison of the frequency responses.

of 1 + η−1K(ω), therefore the matrix inversion necessary for solving (2.18) has become a
pointwise division. H(ω) is then the pseudoinverse filter of K(ω), which corresponds to
a d-dimensional high pass filter that contains the frequency representation of the spatial
derivatives, and the constant η is related to the width of the transition band of filter
H(ω).

The frequency point of view allows to understand the internal forces, with the
restrictions imposed on the displacement field by the regularizer, as a low pass filtering.
In (2.19), each component of the displacement field as well as the driving external forces,
weighted by the value η−1, is low pass filtered. Figure 1 depicts the frequency spectra of filters
H(ω) for the diffusion, curvature and hybrid cases. Filter H(ω) for curvature registration
(Figure 1(c)) shows a wider passband and a narrower transition band than filter H(ω) for
diffusion registration (Figure 1(a)). As expected, filters obtained with the hybrid approach
show an intermediate behavior between the diffusion and curvature cases, see Figures 1(b)
and 1(d).

The practical implementation takes into account that datasets are discrete and then
the spatial variable x gives rise to the discrete spatial index n = (n1, . . . , nd), where nl =
0, . . . ,Nl − 1 with l = 1, . . . , d. In the same way, the frequency domain is also discretized
and index k = (k1, . . . , kd), with kq = 0, . . . ,Nq − 1, and q = 1, . . . , d, corresponds with
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Figure 2: 3D view of two cylinders of an engine block: (a) reference dataset and (b) template dataset.

the frequencies ((2π/N1)k1, . . . , (2π/Nd)kd) where the spectra are evaluated. Then, the
expression that implements the iterative scheme is the following:

u
(ξ)
l [n] = IFFT

{
H[k] · FFT

{
u
(ξ−1)
l [n] − η−1f

(ξ−1)
l [n]

}}
, (2.21)

where H[k] = (1 + η−1αK̃[k])−1, and K̃[k] = (2
∑d

q=1(1 − cos((2π/Nq)kq)))
σ
. It should

be noted that the proposed frequency domain implementation has the same complexity
regardless the value of σ, that is, the same for diffusion, curvature, or intermediate
registration scenarios. This implementation is, in terms of efficiency, two times faster than
the fastest implementation available in the spatial domain [18], which is the DCT-based
algorithm included in the FLIRT toolbox [19] for the diffusion and curvature registration
methods.

3. Results

In this section, the proposed regularization term is tested on a experiment involving three-
dimensional (d = 3) industrial images (obtained from the CT scan of two mechanical pieces
[20]). The reference and template volumes are 256× 256× 128-sized and are shown on the left
and on the right, respectively, of Figure 2. To assess the validity of the proposed formulation,
convenient quantitative measures are chosen: the peak signal-to-noise ratio (PSNR) and the
correlation ratio (CR). Before the registration process, the values for these measures are
PSNR = 15.82 dB, and CR = 48.30%, respectively. The distance measure chosen for the
registration is the sum of squared differences (SSDs), the smoothing term is the proposed
hybrid regularizer and the parameter η is set to a value of η = 1.

Figure 3 shows the results obtained with the proposed method using σ = 1,
σ = 2 and a fractional σ. Table 1 summarizes the simulation parameters αo and ξo (i.e.,
optimal regularization parameter and optimal number of iterations, resp., in terms of the
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Figure 3: Registration results of two cylinders of an engine block: (a) diffusion (σ = 1); (b) curvature (σ =
2); (c) hybrid with σ = 1.75. Table 1 summarizes the simulation parameters and quantifies numerically the
results of registration.

Table 1: Parameters and numerical results for the registration of 3D industrial images. Each row
corresponds, respectively, to registered datasets shown in Figure 3.

Regularizer αo ξo PSNR CR αS̃
Diffusion (σ = 1) 50 1995 39.43 dB 99.73% 0.185
Curvature (σ = 2) 65 1950 41.55 dB 99.85% 0.162
Fractional (σ = 1.75) 40 1335 41.64 dB 99.86% 0.159

variational calculus, which are obtained as addressed in [21]), the PSNR, as well as CR,
and the regularization energy for each registration scheme. In these simulations, the highest
value of the similarity measure, the lowest value of the regularization energy, and the
minimum iterations required correspond to the novel approach (for the PSNR measure, an
improvement of 0.5 dB becomes visible, and a value higher than 30 dB is usually considered
a good match of the datasets, as shown in Figures 4 and 5; for the CR, a value of 100% implies
a perfect match of the datasets). An advantage of using σ = 1.75 is that in this way global
rigid transformations are partially corrected because the regularizer is close to the curvature
registration, moreover this value of σ avoids unlikely local curvatures because in this case the
regularizer includes a slight component of diffusion registration. Note that the improvement
in accuracy is not visually perceptible in most real cases (as in this example), but it actually
does exist, at least numerically (see Table 1). Additionally, the proposed registration scheme
with noninteger values of σ can perform the optimal registration in a significantly lower
number of iterations than border cases.

One point to take into account is about the boundary conditions considered,
since spatial domain-based schemes impose Von Neumann boundary conditions, and the
frequency domain-based scheme imposes periodic boundary conditions (actually, due to
the use of the d-dimensional discrete Fourier transform, periodic boundary conditions
arise naturally when computing a numerical solution for the displacement field). Anyway,
when dealing with images where the information is typically contained within a uniform
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Figure 4: Registration of industrial images using the proposed fractional regularization term. First column:
views of the reference dataset. Second column: views of the template dataset. Third column: views of the
registered template (σ = 1.75). First row: front views. Second row: top views. Third row: side views.

background, this difference is hardly noticeable, as has been previously stated by other
authors, see, for example, [5].

4. Conclusions

In this paper, a fractional regularization term is proposed for approaching the variational
image registration problem. The joint energy functional J is translated into the frequency
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Figure 5: Registration of industrial images using the proposed fractional regularization term. First column:
slices of the reference dataset. Second column: slices of the template dataset. Third column: slices of the
registered template (σ = 1.75). First row: coronal slices (slice no. 100). Second row: axial slices (slice no.
64). Third row: sagittal slices (slice no. 30).

domain by means of Parseval’s theorem, and the minimization of the resulting variational
equations is performed entirely in this domain, providing the Euler-Lagrange equation in the
frequency domain with the internal forces for the hybrid regularizer.

The proposed regularization term implemented in the frequency domain allows for a
gradual transition between diffusion registration and curvature registration, thus providing
better registration results in terms of both similarity of the images and smoothness of the
transformation, and in a lower number of iterations of the algorithm. The use of the frequency
domain (especially if the d-FFT is taken into account) reduces considerably the numerical
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complexity and memory requirements of the overall iterative schemes, thus becoming
efficient and fast variational registration techniques.

Appendix

Minimization of the Hybrid Regularization Term Defined in
the Frequency Domain

The Gâteaux derivative of the proposed energy term is given by

δS̃[ũ; z̃] = lim
ε→ 0

1
ε

(
S̃[ũ + εz̃] − S̃[ũ]

)

= lim
ε→ 0

1
2ε

(ã[ũ + εz̃, ũ + εz̃] − ã[ũ, ũ])

= lim
ε→ 0

ν

2ε

∫

Ω
ũ�Ã�ũ∗ + εũ�Ã�z̃∗

+ εz̃�Ã�ũ∗ + ε2z̃�Ã�z̃∗ − ũ�Ã�ũ∗dω

=
ν

2

∫

Ω

〈
Ã(ω)ũ, z̃

〉

Cd
+
〈
z̃, Ã(ω)ũ

〉

Cd
dω

=
ν

2

∫

Ω

〈
Ã(ω)ũ, z̃

〉

Cd
+
〈
Ã(ω)ũ, z̃

〉∗
Cd
dω

=
ν

2

∫

Ω
2R
{〈
Ã(ω)ũ, z̃

〉

Cd

}
dω

= R{ã[ũ, z̃]} = ã[ũ, z̃]

= ν
∫

Ω

〈
Ã(ω)ũ, z̃

〉

Cd
dω,

(A.1)

where it is taken into account that Ã is real and symmetric, therefore, Ã = Ã� = Ã∗.
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