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flow induced by constantly accelerating plate, and flow imposed by a plate that applies a constant
tangential stress to the fluid. In order to solve these problems, the sine and cosine transformations
are used, and exact solutions for the velocity distribution are found in terms of definite integrals.
The cases for which the time goes to infinity and the distance between two side walls goes to
infinity are compared with the cases for flows over a plane wall in the absence of the side walls.
These provide to know the required time to attain the steady-state and what is the distance between
the side walls for which the measured value of the velocity or the stress would be unaffected by
the presence of the side walls.
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1. Introduction

The flow of a viscous fluid over a plane wall with different boundary and initial conditions
has been investigated by many authors. The fluid over a plane wall is initially at rest and is set
in motion under the application of a body force considered by Erdoğan [1]. He has shown that
there are similarities between the flows considered and Stokes’ first and second problems.
The flow over a plate, which is initially at rest and is suddenly moved in its own plane with
different boundary and initial conditions, has been considered in [2–5]. The flows over a
plane wall can be realized due to the impulsive motion of a plate, generated by the constant
acceleration of a plate, caused by the oscillation of a plate and due to the application of the
tangential stress to the fluid. The extension of these flow systems to the flows in a rotating
system [6–9], to the flows of non-Newtonian fluid [10–18] was made by many authors. In
[1–18], the authors assumed that the plate extends to infinity. It is well known that the plate
is bounded by two side walls and the effect of the side walls is very important. If one wishes
to know what is the distance between the side walls for which the measured value of the
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velocity or stress or temperature would be unaffected by the presence of the side walls, it is
necessary to investigate the flows over the plate between two side walls. The effects of the
side walls for some flows have been considered in [19–25].

The aim of this paper is to investigate the effects of the side walls on the unsteady
flow over a plane wall. Four illustrative examples are considered. They are flow due to the
impulsive motion of a plate, flow caused by oscillation of a plate, flow due to the constant
acceleration of the plate and the flow generated by tangential stress on the fluid. It is well
known that the solution of the governing equation for the flow of second-grade fluid over a
plane wall obtained by the Laplace transform method is failed [16, 26, 27]. For the flow over a
plane wall bounded by two side walls, the shear stress at the bottom wall cannot be calculated
by the expression obtained by the Laplace transform method [28–31]. For this reason, in this
paper, the Fourier transform method is used.

The first problem considered is the flow due to impulsive motion of a plate. The
velocity and the flux across a plane normal to the flow are given in terms of definite integrals.
In the limiting cases when time goes to infinity, the solution reduces to the steady-state, and
when the distance between two side walls goes to infinity, the solution reduces to the flow
over a plate. The second problem considered is the flow due to the oscillation of a plane wall.
Two solutions are given in terms of definite integrals. It is important fact that the starting
solution can be represented as the sum of the steady-state and transient solutions. For large
values of time, the transient solutions disappear. The limiting cases when time goes to infinity,
the distance between two side walls goes to infinity and the frequency of the oscillation goes
to zero are discussed. The third problem is the flow induced by a constantly accelerating plate.
In the limiting case when the distance between the side walls goes to infinity, the solution
reduces to the flow over a plate, which can be expressed in terms of a tabulated function. The
fourth problem is the flow induced by a plate that applies a constant stress to the fluid. The
limiting cases when the time goes to infinity and when the distance between the side walls
goes to infinity are discussed. It is a very important fact that these four examples show that
the required time to attain the steady-state is affected by the side walls.

2. Flow due to the Impulsive Motion of a Plane Wall

The fluid is over a plane wall and between two side walls perpendicular to the plate, The
x-axis is taken along the plate, the y-axis and z-axis are perpendicular to the x-axis. Flow
geometry and coordinate system are illustrated in Figure 1. The distance between the side
walls is 2b and z-axis extends to infinity. The governing equation is

∂u

∂t
= ν

(
∂2u

∂y2
+
∂2u

∂z2

)
, (2.1)

where u(y, z, t) is the velocity; ν is kinematic viscosity of the fluid and t is time. The boundary
and initial conditions are

u(±b, z, t) = 0 ∀t,
u
(
y, 0, t

)
= U for t > 0, −b < y < b,

u
(
y,∞, t

)
= 0 ∀t, −b ≤ y ≤ b,

u
(
y, z, 0

)
= 0 for − b ≤ y ≤ b, z > 0.

(2.2)
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Figure 1: Flow geometry and coordinate system.

The shear stress at the bottom wall cannot be calculated by the expression for velocity
obtained by the Laplace transform method [28–31]. For this reason, an expression for velocity
by using the sine transform method is obtained.

The first boundary condition suggests that u(y, z, t) can be written in the following
form:

u

U
=
∑
n=0

fn(z, t) cos kny, (2.3)

where kn = (2n + 1)π/2b. The sine transform of fn(z, t) [32] is

fn =
∫∞

0
fn sin λzdz, (2.4)

and fn(0) = 0. The problem reduces to the solution of the following ordinary differential
equation:

f
′
n + ν

(
k2
n + λ

2
)
fn =

4(−1)nνλ
(2n + 1)π

, (2.5)

where a prime denotes differentiation with respect to t. The solution is

fn =
4(−1)n

(2n + 1)π
λ

λ2 + k2
n

[
1 − e−(k2

n+λ
2)νt

]
. (2.6)
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The inverse of fn is given by the relation [32]

fn =
2
π

∫∞
0
fn sin λzdλ, (2.7)

and inserting the expression for fn into this equation, one finds

fn =
8(−1)n

(2n + 1)π2

∫∞
0

λ sin λz

λ2 + k2
n

dλ − 8(−1)n

(2n + 1)π2

∫∞
0

λ sin λz

λ2 + k2
n

e−(k
2
n+λ

2)νtdλ. (2.8)

The first integral is

∫∞
0

λ sinλz
λ2 + k2

n

dλ =
π

2
e−knz, (2.9)

and since [28]

4
π

∑
n=0

(−1)n

2n + 1
e−knz cos kny = 1 − 2

π

∫∞
0

coshλy
λ coshλb

sin λzdλ, (2.10)

the velocity becomes

u

U
= 1 − 2

π

∫∞
0

coshλy
λ coshλb

sin λzdλ − 4
π

∑
n=0

(−1)n cos kny
knb

∫∞
0

λ sin λz

λ2 + k2
n

e−(k
2
n+λ

2)νtdλ, (2.11)

or

u

U
=

2
π

tan−1 cos
(
πy/2b

)
sinh(πz/2b)

− 2
π

∑
n=0

(−1)n cos kny
2n + 1

×
{

2e−knz −
[
e−knzerfc

(
z

2
√
νt
− kn
√
νt

)
+ eknzerfc

(
z

2
√
νt

+ kn
√
νt

)]}
.

(2.12)

In the limiting case, when t goes to infinity, (2.11) reduces to

u

U
= 1 − 2

π

∫∞
0

coshλy
λ coshλb

sin λzdλ. (2.13)

This is the expression for velocity in the case of the steady-state.
When b goes to infinity in (2.11), since

∫∞
0

sin λz

λ
e−λ

2νtdλ =
π

2
erf

z

2
√
νt
, (2.14)
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Figure 2: The variation of u/U with z/b for various values of νt/b2, at y = 0, with and without side walls;
R = Ub/ν.

one finds

u

U
= erfc

z

2
√
νt
. (2.15)

The variation of u/U with z/b for various values of νt/b2, at y = 0, with and without side
walls is illustrated in Figure 2. It is clearly seen from the figure that the required time to attain
the steady-state in the presence of the side walls is shorter than that of the case in the absence
of the side walls.

The volume flux across a plane normal to the flow is given by

Q =
∫b

−b

∫∞
0
udy dz. (2.16)

Inserting (2.11) into this equation and using the integral [33]

∫∞
0

sin λzdλ =
1
z

(2.17)

and the integral

∫∞
0

e−(λ
2+k2

n)νt

λ2 + k2
n

dλ =
π

2kn
erfc

(
kn
√
νt
)
, (2.18)
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one finds

Q

Ub2
=

4
π
F(∞) − 4

∑
n=0

1
b3k3

n

erfc
(
kn
√
νt
)
, (2.19)

where F(∞) is given by a definite integral

F(∞) =
∫∞

0

ξ − tanh ξ
ξ3

dξ, (2.20)

and the numerical value of F(∞) is 0.8525867976 correct to ten decimal places [30]. The
comparison of the values of the volume flux in the case of the steady-state gives

F(∞) =
8
π2

∑
n=0

(2n + 1)−3. (2.21)

The shear stress at the bottom wall can be calculated by (2.11). Taking the derivative
of (2.11) with respect to zand then putting z = 0, one finds

(σxz)z=0

ρU2
= −

[
ν

Ub cos π
(
y/(2b)

) + 2
ν

U

∑
n=0

(−1)n cos kny

bkn
√
νt

ierfc
(
kn
√
νt
)]
, (2.22)

where

ierfc x =
∫∞
x

erfc ξdξ (2.23)

is the integral of the complementary error function, which can be obtained from the tables
[34]. When t goes to infinity since ierfc (∞) = 0, (2.22) reduces to the expression for the
steady-state

(σxz)z=0

ρU2
= − ν

Ub cos π
(
y/(2b)

) . (2.24)

In the absence of the side walls, namely, when b goes to infinity, since ierfc (0) = 1/
√
π , (2.22)

reduces to

(σxz)z=0

ρU2
= − 1

U

√
ν

πt
. (2.25)



Mathematical Problems in Engineering 7

3. Flow due to Oscillation of a Plane Wall

The flow over a plane wall which is initially at rest and the plate begins to oscillate in its
own plane is termed Stokes’ second problem [35]. The x-axis is taken along the plate; the
y-axis and z-axis are perpendicular to the x-axis. The distance between the side walls is 2b,
and the z-axis extends to infinity. The governing equation is (2.1). The boundary and initial
conditions are

u(±b, z, t) = 0 ∀t,

u
(
y, 0, t

)
= U cos ωt or U sin ωt for t > 0, −b < y < b,

u
(
y,∞, t

)
= 0 ∀t, −b ≤ y ≤ b,

u
(
y, z, 0

)
= 0 for − b ≤ y ≤ b, −z > 0.

(3.1)

The first boundary condition suggests that u(y, z, t) can be written in the following form:

u

U
=
∑
n=0

fn(z, t) cos kny, (3.2)

where kn = (2n + 1)π/2b. The sine transform of fn(z, t) is

fn =
∫∞

0
fn sin λzdz (3.3)

and fn(0) = 0. The problem reduces to the solution of the following ordinary differential
equation:

f
′
n + ν

(
k2
n + λ

2
)
fn =

4(−1)nνλ
(2n + 1)π

cos ωt, (3.4)

where a prime denotes differentiation with respect to t. The solution is

fn =
4(−1)n

(2n + 1)π

{
ν2λ

(
λ2 + k2

n

)
ω2 + ν2

(
λ2 + k2

n

)2
cos ωt +

ωνλ

ω2 + ν2
(
λ2 + k2

n

)2
sin ωt

−
ν2λ

(
λ2 + k2

n

)
ω2 + ν2

(
λ2 + k2

n

)2
e−(λ

2+k2
n)νt

}
,

(3.5)

respectively,

fn =
4(−1)n

(2n + 1)π

{
− ωνλ

ω2 + ν2
(
λ2 + k2

n

)2
cos ωt +

ν2λ
(
λ2 + k2

n

)
ω2 + ν2

(
λ2 + k2

n

)2
sin ωt

+
ωνλ

ω2 + ν2
(
λ2 + k2

n

)2
e−(λ

2+k2
n)νt

}
,

(3.6)
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The inverse of fn is given by the relation

fn =
2
π

∫∞
0
fn sin λzdλ, (3.7)

and inserting the expression for fn into this equation, one finds

fn =
8(−1)n

(2n + 1)π2

[
(cosωt)

∫∞
0

ν2λ
(
k2
n + λ

2)
ω2 + ν2

(
k2
n + λ2

)2
sin λzdλ

+ (sinωt)
∫∞

0

ωνλ

ω2 + ν2
(
k2
n + λ2

)2
sin λzdλ

−
∫∞

0

ν2λ
(
k2
n + λ

2)
ω2 + ν2

(
k2
n + λ2

)2
e−(k

2
n+λ

2)νt sin λzdλ

]
,

(3.8)

respectively,

fn =
8(−1)n

(2n + 1)π2

[
−(cos ω)t

∫∞
0

ωνλ

ω2 + ν2
(
k2
n + λ2

)2
sin λzdλ

+ (sin ωt)
∫∞

0

ν2λ
(
k2
n + λ

2)
ω2 + ν2

(
k2
n + λ2

)2
sin λzdλ

+
∫∞

0

ωνλ

ω2 + ν2
(
k2
n + λ2

)2
e−(k

2
n+λ

2)2
νt sin λzdλ

]
.

(3.9)

Since [36]

∫∞
0

λ sin λz

ω2 + ν2
(
k2
n + λ2

)2
dλ =

π

2ων
e−Az sin Bz,

∫∞
0

λ
(
k2
n + λ

2) sin λz

ω2 + ν2
(
k2
n + λ2

)2
dλ =

π

2ν2
e−Az cos Bz,

(3.10)

where

2A2 =

√
k4
n +

ω2

ν2
+ k2

n, 2B2 =

√
k4
n +

ω2

ν2
− k2

n, (3.11)

inserting the integrals into (3.8) and (3.9), one finds

fn =
4(−1)n

(2n + 1)π

[
e−Az cos (ωt − Bz) − 2

π

∫∞
0

ν2λ
(
k2
n + λ

2) sin λz

ω2 + ν2
(
k2
n + λ2

)2
e−(k

2
n+λ

2)νt dλ

]
, (3.12)
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respectively,

fn =
4(−1)n

(2n + 1)π

[
e−Az sin(ωt − Bz) + 2

π

∫∞
0

ωνλ sin λz

ω2 + ν2
(
k2
n + λ2

)2
e−(k

2
n+λ

2)νt dλ

]
. (3.13)

In the limiting case, where t goes to infinity, (3.8) and (3.9) reduce to

fn =
4(−1)n

(2n + 1)π

[
e−Az cos(ωt − Bz)

]
, (3.14)

respectively,

fn =
4(−1)n

(2n + 1)π

[
e−Az sin(ωt − Bz)

]
. (3.15)

When b goes to infinity, (3.8) and (3.9) reduce to [5]

u

U
= e−
√

(ω/2ν)z cos

(
ωt −

√
ω

2ν
z

)
, (3.16)

respectively,

u

U
= e−
√

(ω/2ν)z sin

(
ωt −

√
ω

2ν
z

)
. (3.17)

The variation of u/U with (ω/ν)1/2z for various values of ωt at y = 0, with and without side
walls is illustrated in Figure 3. It is obvious that the required time to attain the steady-state
for the cosine oscillation of the plate is shorter than for the sine oscillation of it. There is an
appreciable effect of the side walls on the disappearance of the transients. More details were
given in [2, 31]. The first terms in (3.12) and (3.13) show the steady-state and the second terms
denote transients. When t goes to infinity the transients disappear. The integrals in (3.12) and
(3.13) can be written as

∫∞
0

λ
(
k2
n + λ

2) sinλz

ω2 + ν2
(
k2
n + λ2

)2
e−(k

2
n+λ

2)νt dλ =
e−k

2
nνt

2v2 (F +G),

∫∞
0

λ sinλz

ω2 + ν2
(
k2
n + λ2

)2
e−(k

2
n+λ

2)νt dλ =
ie−k

2
nνt

2ωv
(F −G),

(3.18)
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Figure 3: The variation of u/U with (ω/ν)1/2z for various values of ωt, at y = 0, with and without side
walls. R = ωb2/ν.

where

F =
∫∞

0

λ sinλz
λ2 + β2

e−λ
2νtdλ, G =

∫∞
0

λ sinλz
λ2 + α2

e−λ
2νtdλ

α2 = k2
n − i

ω

ν
, β2 = k2

n + i
ω

ν
,

∫∞
0

x sin bx

c2 + x2
e−ax

2
dx =

π

4
eac

2
[

2e−bc − ebcerfc
(

b

2
√
a
+ c
√
a

)
− e−bcerfc

(
b

2
√
a
− c
√
a

)]
.

(3.19)

4. Flow Induced by a Constantly Accelerating Plate

The plate is initially at rest and has, after time zero, a constant acceleration A. The governing
equation is given by (2.1). The boundary and initial conditions are

u(±b, z, t) = 0 ∀t,

u
(
y, 0, t

)
= At for t > 0, −b < y < b,

u
(
y,∞, t

)
= 0 ∀t, −b ≤ y ≤ b,

u
(
y, z, 0

)
= 0 for − b ≤ y ≤ b, z > 0.

(4.1)
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The first boundary condition suggests that u(y, z, t) can be written in the following form:

u = A
∑
n=0

fn(z, t) cos kny, (4.2)

where kn = (2n + 1)π/2b. The sine transform of fn(z, t) is fn(t) and the initial condition
becomes fn(0) = 0. The problem reduces to the solution of the following ordinary differential
equation:

f
′
n + ν

(
k2
n + λ

2
)
fn =

4(−1)n

(2n + 1)π
λνt, (4.3)

where a prime denotes differentiation with respect to t. The solution is

fn =
4(−1)n

(2n + 1)π

{
λt

k2
n + λ2

− λ

ν
(
k2
n + λ2

)2

[
1 − e−(k2

n+λ
2)νt

]}
. (4.4)

The inverse of fn is given by the relation

fn =
2
π

∫∞
0
fn sinλzdλ, (4.5)

and inserting the expression for fn into this equation, one finds

fn =
8(−1)n

(2n + 1)π2

[
π

2
t −

(
k2
nt
)∫∞

0

sinλz
λ
(
k2
n + λ2

)dλ − 1
ν

∫∞
0

λ sinλz(
k2
n + λ2

)2

[
1 − e−(k2

n+λ
2)νt

]
dλ

]
. (4.6)

In the limiting case when b goes to infinity, one obtains

lim
b→∞

u

A
= t − 2

π

∫∞
0

sinλz
νλ3

(
1 − e−λ2νt

)
dλ (4.7)

or in nondimensional form

u

(Aν)1/3
= 4τi2erfc

ζ

2
√
τ
, (4.8)

where τ = (A2/ν)1/3
t, ζ = (A/ν2)1/3

z and (Aν)1/3 is the characteristic velocity, (ν2/A)1/3 is
the characteristic length and (ν/A2)1/3 is the characteristic time. i2erfcx is the integral of the
complementary error function, which can be obtained from the tables [34]. The variation of
u/(Aν)1/3 with (A/ν2)1/3

z for various values of (ν/A2)1/3
t, at y = 0 is illustrated in Figure 4.

It is clearly seen from the figure that the required time to attain to the flow without the side
walls is short.
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Figure 4: The variation of u/(Aν)1/3 with (A/ν2)1/3
z for various values of (ν/A2)1/3

t, at y = 0, with and
without side walls. R = b/(ν2/A)1/3.

5. Flow Induced by a Plate that Applies a Constant Stress

Suppose that the plane wall suddenly applies a constant tangential stress σ to the fluid. The
governing equation is (2.1), and the boundary and initial conditions are

u(±b, z, t) = 0 ∀t,

u
(
y,∞, t

)
= 0 ∀t, −b ≤ y ≤ b,

u
(
y, z, 0

)
= 0 for − b ≤ y ≤ b, z > 0,

μ

(
∂u

∂z

)
z=0

= −σ.

(5.1)

The minus sign appears, and σ represents the tangential stress exerted on the fluid by the
plate. The first boundary condition suggests that u(y, z, t) can be written in the following
form:

u =
∑
n=0

fn(z, t) cos kny, (5.2)
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where kn = (2n + 1)π/2b. The cosine transform of fn(z, t) is

fn =
∫∞

0
fn cosλzdz, (5.3)

and the initial condition is fn(0) = 0. The problem reduces to the solution of the following
ordinary differential equation:

f
′
n + ν

(
k2
n + λ

2
)
fn =

4(−1)n

(2n + 1)π
σ

ρ
, (5.4)

where a prime denotes differentiation with respect to t. The solution is

fn =
4(−1)n

(2n + 1)π
σ

ρν

1
k2
n + λ2

[
1 − e−(k2

n+λ
2)νt

]
. (5.5)

The inverse of fn is given by the relation [32]

fn =
2
π

∫∞
0
fn cosλzdλ, (5.6)

and inserting the expression for fn into this equation, one finds

fn =
8(−1)nσ

(2n + 1)π2ρν

∫∞
0

cosλz
k2
n + λ2

[
1 − e−(k2

n+λ
2)νt

]
dλ. (5.7)

The velocity u becomes

u =
8σ
ρνπ2

∑
n=0

(−1)n cos kny
2n + 1

∫∞
0

cosλz
k2
n + λ2

[
1 − e−(k2

n+λ
2)νt

]
dλ (5.8)

or

u =
8σ
ρνπ2

∑
n=0

(−1)n cos kny
2n + 1

[
π

2kn

(
e−knz − 1

)
+
∫∞

0

1 − e−(k2
n+λ

2)νt cosλz
k2
n + λ2

dλ

]
. (5.9)

The variation of u/(σ/ρ)1/2 with z/(ρν2/σ)1/2 for various values of (σ/ρν)t, at y = 0,
is illustrated in Figure 5. It is clearly seen from the figure that for large times, the flow becomes
steady in the case of the side walls, but the flow remains time-dependent in the absence of
the side walls. When b goes to infinity, (5.9) becomes

u =
σ

ρν

(
−z + 2

π

∫∞
0

1 − e−λ2νt cosλz
λ2

dλ

)
. (5.10)



14 Mathematical Problems in Engineering

0 0.5 1 1.5 2

u/(σ/ρ)1/2

0

0.5

1

1.5

2

z
/
(ρ
ν

2 /
σ
)1/

2

2

21

1

R =∞
R = 1

Figure 5: The variation of u/(σ/ρ)1/2 with z/(ρν2/σ)1/2 for various values of (σ/ρν)t, at y = 0, with and
without side walls. R = b/(ρν2/σ)1/2.

By using the equality

∫∞
0

1 − e−λ2νt cosλz
λ2

dλ =
π

2
z +
√
πνt ierfc

z

2
√
νt
, (5.11)

one finds

u = 2
σ

ρν

√
νt ierfc

z

2
√
νt
, (5.12)

where ierfc x is he integral of the complementary error function, which can be obtained from
the tables [34].

6. Conclusions

Four types of unsteady flows of incompressible viscous fluids over a plane wall bounded by
two side walls are considered. In order to understand the effects of the side walls, the cases
for which time goes to infinity and the distance between two side walls goes to infinity are
compared with the cases for flows over a plane wall in the absence of the side walls. These
provide to know the required time to attain the steady-state and what is the distance between
the side walls for which the measured value of the velocity or the stress or the temperature
would be unaffected by the presence of the side walls. The flow problems which are the flow
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generated by impulsive motion of a plate, flow due to oscillation of the plate, flow induced
by constantly accelerating plate, and flow due to imposed by a plate that applies a constant
tangential stress to the fluid are solved by the application of the Fourier transform method
to the governing equation of motion. The solutions can be expressed in terms of the definite
integrals. It is shown that the starting solution for the flow of the oscillating plate can be
presented as the sum of the steady-state and the transient solutions. The limiting cases when
the time goes to infinity and the distance between two side walls goes to infinity are obtained
and discussed. For flow induced by a plate that applies a constant stress, for large times the
flow becomes steady in the case of the side walls, but the flow remains time-dependent in the
absence of the side walls.
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