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The inverse eigenvalue problem of constructing symmetric positive semidefinite matrixD (written
as D ≥ 0) and real-valued skew-symmetric matrix G (i.e., GT = −G) of order n for the quadratic
pencilQ(λ) := λ2Ma +λ(D+G)+Ka, whereMa > 0,Ka ≥ 0 are given analytical mass and stiffness
matrices, so that Q(λ) has a prescribed subset of eigenvalues and eigenvectors, is considered.
Necessary and sufficient conditions under which this quadratic inverse eigenvalue problem is
solvable are specified.
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1. Introduction

Vibrating structures such as beams, buildings, bridges, highways, and large space structures,
are distributed parameter systems. While it is desirable to obtain a solution of a vibration
problem in its own natural setting of distributed parameter systems; due to the lack of
appropriate computational methods, in practice, very often a distributed parameter system
is first discretized to a matrix second-order model (referred to as an analytical model)
using techniques of finite elements or finite differences and then an approximate solution
is obtained from the solution of the problem in the analytical model. A matrix second-order
model of the free motion of a vibrating system is a system of differential equations of the form

Maẍ(t) + (Da +Ga)ẋ(t) +Kax(t) = 0, (1.1)

where Ma, Da, Ga, and Ka are, respectively, analytical mass, damping, gyroscopic and
stiffness matrices.

The system represented by (1.1) is called damped gyroscopic system. The gyroscopic
matrix Ga is always skew symmetric and, in general, the mass matrix Ma is symmetric
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and positive definite and Da,Ka are symmetric positive semidefinite; the system is called
symmetric definite system. If the gyroscopic force is not present, then the system is called
nongyroscopic.

It is well known that all solutions of the differential equation of (1.1) can be obtained
via the algebraic equation

(
λ2Ma + λ(Da +Ga) +Ka

)
x = 0. (1.2)

Complex numbers λ and nonzero vectors x for which this relation holds are, respectively, the
eigenvalues and eigenvectors of the system. The “forward” problem is, of course, to find the
eigenvalues and eigenvectors when the coefficient matrices are given. Many authors have
devoted to this kind of problem and a series of good results have been made (see, e.g.,
[1–7]). Generally speaking, very often natural frequencies and mode shapes (eigenvalues
and eigenvectors) of an analytical model described by (1.2) do not match very well with
experimentally measured frequencies and mode shapes obtained from a real-life vibrating
structure. Thus, a vibration engineer needs to update the theoretical analytical model to
ensure its validity for future use. In view of in analytical model (1.1) for structure dynamics,
the mass and stiffness are, in general, clearly defined by physical parameters. However, the
effect of damping and Coriolis forces on structural dynamic systems is not well understood
because it is purely dynamics property that cannot be measured statically. Our main interest
in this paper is the corresponding inverse problem, given partially measured information
about eigenvalues and eigenvectors, we reconstruct the damping and gyroscopic matrices
to produce an adjusted analytical model with modal properties that closely match the
experimental modal data. Recently, the quadratic inverse eigenvalue problems over the
complex field have been well studied and there now exists a wealth of information. Many
papers have been written (see, e.g., [8–15]), and a complete book [16] has been devoted to
the subject. In the present paper we will consider an inverse problem related to damped
gyroscopic second-order systems.

Problem P

Given a pair of matrices (Λ, X) in the form

Λ = diag
{
λ1, λ2, . . . , λ2l−1, λ2l, λ2l+1, . . . , λp

} ∈ Cp×p, (1.3)

X =
[
x1, x2, . . . , x2l−1, x2l, x2l+1, . . . , xp

] ∈ Cn×p, (1.4)

where Λ and X are closed under complex conjugation in the sense that λ2j = λ2j−1 ∈ C, x2j =
x2j−1 ∈ Cn for j = 1, . . . , l, and λk ∈ R, xk ∈ Rn for k = 2l+ 1, . . . , p,we find symmetric positive
semidefinite matrix D and real-valued skew-symmetric matrix G that satisfy the following
equation:

MaXΛ2 + (D +G)XΛ +KaX = 0. (1.5)
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In other words, each pair (λt, xt), t = 1, . . . , p, is an eigenpair of the quadratic pencil

Q(λ) := λ2Ma + λ(D +G) +Ka, (1.6)

where Ma > 0 and Ka ≥ 0 are given analytical mass and stiffness matrices.
The goal of this paper is to derive the necessary and sufficient conditions on the

spectral information under which the inverse problem is solvable. Our proof is constructive.
As a byproduct, numerical algorithm can also be developed thence. A numerical example
will be discussed in Section 3.

In this paper we will adopt the following notation. Cm×n, Rm×n denote the set of all
m×n complex and real matrices, respectively.ORn×n denotes the set of all orthogonal matrices
in Rn×n. Capital letters A,B,C, . . . denote matrices, lower case letters denote column vectors,
Greek letters denote scalars, α denotes the conjugate of the complex number α, AT denotes
the transpose of the matrixA, In denotes the n×n identity matrix, andA+ denotes the Moore-
Penrose generalized inverse of A. We write A > 0 (A ≥ 0) if A is real symmetric positive
definite (positive semi-definite).

2. Solvability Conditions for Problem P

Let αi = Re(λi) (the real part of the complex number λi), βi = Im(λi) (the imaginary part of
the complex number λi), yi = Re(xi), zi = Im(xi) for i = 1, 3, . . . , 2l − 1. Define

Λ̃ = diag

{[
α1 β1

−β1 α1

]
, . . . ,

[
α2l−1 β2l−1

−β2l−1 α2l−1

]
, λ2l+1, . . . , λp

}
∈ Rp×p, (2.1)

X̃ =
[
y1, z1, . . . , y2l−1, z2l−1, x2l+1, . . . , xp

] ∈ Rn×p, (2.2)

C = D +G. (2.3)

Then the equation of (1.5) can be written equivalently as

MaX̃Λ̃2 + CX̃Λ̃ +KaX̃ = 0, (2.4)

and the relations of C,D, and G are

D =
1
2

(
C + CT

)
, G =

1
2

(
C − CT

)
. (2.5)

In order to solve the equation of (2.4), we shall introduce some lemmas.

Lemma 2.1 (see [17]). If A ∈ Rm×l, F ∈ Rq×l, then ZA = F has a solution Z ∈ Rq×m if and only if
FA+A = F. In this case, the general solution of the equation can be described as Z = FA+ + L(Im −
AA+), where L ∈ Rq×m is an arbitrary matrix.
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Lemma 2.2 (see [18, 19]). Let A ∈ Rm×m, B ∈ Rm×l, then

ZBT + BZT = A (2.6)

has a solution Z ∈ Rm×l if and only if

A = AT, (Im − BB+)A(Im − BB+) = 0. (2.7)

When condition (2.7) is satisfied, a particular solution of (2.6) is

Z0 =
1
2
A(B+)T +

1
2
(Im − BB+)A(B+)T , (2.8)

and the general solution of (2.6) can be expressed as

Z = Z0 + 2V − VB+B − BV T (B+)T − (Im − BB+)VB+B, (2.9)

where V ∈ Rm×l is an arbitrary matrix.

Lemma 2.3 (see [20]). Let H̃ = [H̃ij] be a real symmetric matrix partitioned into 2×2 blocks, where
H̃11 and H̃22 are square submatrices. Then H̃ is a symmetric positive semi-definite matrix if and only
if

H̃11 ≥ 0, H̃22 − H̃21H̃
+
11H̃12 ≥ 0, rank

(
H̃11

)
= rank

([
H̃11, H̃12

])
. (2.10)

Lemma 2.3 directly results in the following lemma.

Lemma 2.4. Let H̃ = [H̃ij] ∈ Rn×n be a real symmetric matrix partitioned into 2 × 2 blocks, where
H̃11 ∈ Rr×r is the known symmetric submatrix, and H̃12, H̃22 are two unknown submatrices. Then
there exist matrices H̃12, H̃22 such that H̃ is a symmetric positive semi-definite matrix if and only if
H̃11 ≥ 0. Furthermore, all submatrices H̃12, H̃22 can be expressed as

H̃12 = H̃11Y, H̃22 = YTH̃11Y +H, (2.11)

where Y ∈ Rr×(n−r) is an arbitrary matrix and H ∈ R(n−r)×(n−r) is an arbitrary symmetric positive
semi-definite matrix.

By Lemma 2.1, the equation of (2.4) with respect to unknown matrix C ∈ Rn×n has a
solution if and only if

(
MaX̃Λ̃2 +KaX̃

)
(X̃Λ̃)

+
X̃Λ̃ = MaX̃Λ̃2 +KaX̃. (2.12)
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In this case, the general solution of (2.4) can be written as

C = C0 +W
(
In − X̃Λ̃

(
X̃Λ̃

)+)
, (2.13)

where W ∈ Rn×n is an arbitrary matrix and

C0 = −
(
MaX̃Λ̃2 +KaX̃

)
(X̃Λ̃)

+
. (2.14)

From (2.5) and (2.13)we have

W
(
In − X̃Λ̃

(
X̃Λ̃

)+)
+
(
In − X̃Λ̃

(
X̃Λ̃

)+)
WT = 2D − C0 − CT

0 . (2.15)

For a fixed symmetric positive semi-definite matrix D, we know, from the lemma (2.2), that
the equation of (2.15) has a solution W ∈ Rn×n if and only if

(X̃Λ̃)
T
DX̃Λ̃ =

1
2

(
X̃Λ̃

)T(
C0 + CT

0

)
X̃Λ̃. (2.16)

Let the singular value decomposition (SVD) of X̃Λ̃ be

X̃Λ̃ = U

[
Σ 0

0 0

]
PT = U1ΣPT

1 , (2.17)

where U = [U1, U2] ∈ ORn×n, P = [P1, P2] ∈ ORp×p, Σ = diag{σ1, . . . , σr} > 0, and define

UTDU =

[
D11 D12

DT
12 D22

]
with D11 ∈ Rr×r . (2.18)

Then (2.16) becomes

ΣD11Σ =
1
2
ΣUT

1

(
C0 + CT

0

)
U1Σ. (2.19)

Clearly, D11 ≥ 0 if and only if

UT
1

(
C0 + CT

0

)
U1 ≥ 0 (2.20)

or equivalently,

(
X̃Λ̃

)T(
C0 + CT

0

)
X̃Λ̃ ≥ 0. (2.21)
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According to Lemma 2.4, we know if condition (2.21) holds, then there are a family of
symmetric positive semi-definite matrices

D = U

[
D11 D11Y

YTD11 YTD11Y +H

]
UT, (2.22)

where D11 = (1/2)UT
1 (C0 + CT

0 )U1, Y ∈ Rr×(n−r) is an arbitrary matrix, and H ∈ R(n−r)×(n−r) is
an arbitrary symmetric positive semi-definite matrix, satisfying the equation of (2.16).

Applying Lemma 2.2 again to the equation of (2.15) yields

W = W0 + 2V − V
(
In − X̃Λ̃

(
X̃Λ̃

)+)

−
(
In − X̃Λ̃

(
X̃Λ̃

)+)
V T

(
In − X̃Λ̃

(
X̃Λ̃

)+)

− X̃Λ̃
(
X̃Λ̃

)+
V
(
In − X̃Λ̃

(
X̃Λ̃

)+)
,

(2.23)

where

W0 =
1
2

(
2D − C0 − CT

0

)(
In − X̃Λ̃

(
X̃Λ̃

)+)

+
1
2
X̃Λ̃

(
X̃Λ̃

)+(
2D − C0 − CT

0

)(
In − X̃Λ̃

(
X̃Λ̃

)+) (2.24)

is a particular solution of (2.15) with D the same as in (2.22), and V ∈ Rn×n is an arbitrary
matrix.

Since C0(In − X̃Λ̃(X̃Λ̃)
+
) = 0, it follows from (2.13) and (2.23) that

G =
1
2

(
C − CT

)

=
1
2

(
C0 − CT

0

)
+
1
2

(
W0

(
In − X̃Λ̃

(
X̃Λ̃

)+) −
(
In − X̃Λ̃

(
X̃Λ̃

)+)
WT

0

)

+
(
In − X̃Λ̃

(
X̃Λ̃

)+)(
V − V T

)(
In − X̃Λ̃

(
X̃Λ̃

)+)

=
1
2

(
C0 − CT

0

)
+
1
2

((
2D − CT

0

)(
In − X̃Λ̃

(
X̃Λ̃

)+) −
(
In − X̃Λ̃

(
X̃Λ̃

)+)
(2D − C0)

)

+
(
In − X̃Λ̃

(
X̃Λ̃

)+)(
V − V T

)(
In − X̃Λ̃

(
X̃Λ̃

)+)

:= G0 +
(
In − X̃Λ̃

(
X̃Λ̃

)+)
J
(
In − X̃Λ̃

(
X̃Λ̃

)+)
,

(2.25)
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where

G0 =
1
2

(
C0 − CT

0

)
+
1
2

(
2D − CT

0

)(
In − X̃Λ̃

(
X̃Λ̃

)+)

− 1
2

(
In − X̃Λ̃

(
X̃Λ̃

)+)
(2D − C0),

(2.26)

and J is an arbitrary skew-symmetric matrix.
By now, we have proved the following result.

Theorem 2.5. Let Ma > 0, Ka ≥ 0, and let the matrix pair (X,Λ) ∈ Cn×p × Cp×p be given as in
(1.3) and (1.4). Separate matrices Λ and X into real parts and imaginary parts resulting Λ̃ and X̃
expressed as in (2.1) and (2.2). Let the SVD of X̃Λ̃ be (2.17). Then Problem P is solvable if and only
if conditions (2.12) and (2.21) are satisfied, in which case, D and G are given, respectively, by (2.22)
and (2.25).

Note that when rank(X̃Λ̃) = n, that is, X̃Λ̃ is full row rank, then the arbitrary matrices
Y andH in the equation of (2.22) disappear, in this case,D is uniquely determined, and so is
G. Thus, we have the following corollary.

Corollary 2.6. Under the same assumptions as in Theorem 2.5, suppose that rank (X̃Λ̃) = n, if
condition (2.12) and C0 + CT

0 ≥ 0 are satisfied. Then there exist unique matrices D and G such that
(1.5) holds. Furthermore, D and G can be expressed as

D =
1
2

(
C0 + CT

0

)
, G =

1
2

(
C0 − CT

0

)
. (2.27)

3. A Numerical Example

Based on Theorem 2.5 we can state the following algorithm.

Algorithm 3.1. An algorithm for solving Problem P.

(1) Input Ma, Ka, Λ, X.

(2) Separate matrices Λ and X into real parts and imaginary parts resulting Λ̃ and X̃
given as in (2.1) and (2.2).

(3) Compute the SVD of X̃Λ̃ according to (2.17).

(4) If (2.12) and (2.21) hold, then continue, otherwise, go to (1).

(5) Choose matrices Y ∈ Rr×(n−r), H ∈ R(n−r)×(n−r) with H ≥ 0, and J ∈ Rn×n with
JT = −J .

(6) According to (2.22) and (2.25) calculate D and G.
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Example 3.2. Consider a five-DOF system modelled analytically with mass and stiffness
matrices given by

Ma = diag{1, 2, 5, 4, 3},

Ka =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 −20 0 0 0

−20 120 −35 0 0

0 −35 80 −12 0

0 0 −12 95 −40
0 0 0 −40 124

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.1)

The measured eigenvalue and eigenvector matrices Λ and X are given by

Λ = diag
{−1.7894 + 7.6421i −1.7894 − 7.6421i −1.6521 + 3.9178i −1.6521 − 3.9178i

}
,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1696 + 0.6869i 0.1696 − 0.6869i 0.0245 − 0.0615i 0.0245 + 0.0615i

0.3906 + 0.5733i 0.3906 − 0.5733i −0.0820 − 0.2578i −0.0820 + 0.2578i

0.0210 − 0.1166i 0.0210 + 0.1166i −0.3025 − 0.5705i −0.3025 + 0.5705i

−0.0389 + 0.0079i −0.0389 − 0.0079i 0.5205 + 0.2681i 0.5205 − 0.2681i

−0.0486 + 0.0108i −0.0486 − 0.0108i 0.1806 + 0.3605i 0.1806 − 0.3605i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.2)

According to Algorithm 3.1, it is calculated that conditions (2.12) and (2.21) hold. Thus, by
choosing

Y =
[
0.3742 0.3062 0.3707 0.7067

]T
,

H = 10,

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.4512 0.1879 0.0747 −0.4468
0.4512 0 0.2956 −0.0395 0.0506

−0.1879 −0.2956 0 −0.6044 0.5844

−0.0747 0.0395 0.6044 0 0.1974

0.4468 −0.0506 −0.5844 −0.1974 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.3)



Mathematical Problems in Engineering 9

Table 1

(λi, xi) (λ1, x1) (λ2, x2) (λ3, x3) (λ4, x4)
res(λi, xi) 8.6580e-014 8.6580e-014 8.2462e-014 8.2462e-014

we can figure out

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10.8255 −8.5715 −4.6840 0.0327 −7.7270
−8.5715 15.9097 2.6332 1.2234 11.2417

−4.6840 2.6332 9.2185 −0.5837 0.1449

0.0327 1.2234 −0.5837 13.8235 3.2361

−7.7270 11.2417 0.1449 3.2361 26.5027

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 −1.0438 −3.7921 −0.5470 −8.6740
1.0438 −0.0000 6.6747 −0.7391 10.3262

3.7921 −6.6747 −0.0000 −7.0774 −6.2101
0.5470 0.7391 7.0774 −0.0000 12.6496

8.6740 −10.3262 6.2101 −12.6496 −0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.4)

We define the residual as

res(λi, xi) =
∥∥∥
(
λ2iMa + λi(D +G) +Ka

)
xi

∥∥∥, (3.5)

where ‖ · ‖ is the Frobenius norm, and the numerical results shown in Table 1.
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