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1. Introduction

In this paper, we consider the problem of a lunar artificial satellite of low altitude taking
into account the oblateness (J2) and the equatorial ellipticity (sectorial term C22) of the
Moon. The Lie-Hori [1] perturbation theory method up to the second order is applied to
eliminate the short-period terms of the disturbing potential. The perturbation method up
to the second order is applied to analyze coupling terms. In this work, the long-period
term of the disturbing potential is analyzed. A formula is developed to compute the critical
inclination when the perturbations due to the nonsphericity of the Moon as a function of the
terms of the zonal and sectorial harmonics occur.

An approach is done for a special type of orbit, denominated Sun-synchronous orbit of
Moon’s artificial satellites. The Sun-synchronous orbit is a particular case of an almost polar
orbit. The satellite travels from the North Pole to the South Pole and vice versa, but its orbital
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Table 1: Magnitude orders for J2 and C22.

C20 ≡ −J2 C22

Earth −10−3 2 × 10−6

Moon −2 × 10−4 2 × 10−5

plane is always fixed for an observer that is posted in the Sun. Thus the satellite always passes
approximately on the same point of the surface of the Moon every day in the same hour. In
such a way the satellite can transmit all the data collected for a lunar fixed antenna, during
its orbits. An analysis of Sun-synchronous orbits considering the nonuniform distribution of
mass of the Moon is done for the longitude of the ascending node with an approach based on
Park and Junkins [2].

In [3–5] an analytical theory, is developed to study the orbital motion of lunar artificial
satellites using the method of transformation of Lie [6, 7] as a perturbation method. The main
perturbation is due to the nonspherical gravitational field of the Moon and the attraction of
the Earth. The disturbing body is in circular orbit with the disturbing function developed in
polynomial of Legendre up to the second order. In [8–11] an analytical theory, is developed
with numerical applications taking into account the nonuniform distribution of mass of the
Moon and the perturbation of the third body in elliptical orbit (Earth is considered). The
disturbing function is expanded in Legendre associated functions up to the fourth order.

This paper is developed based on [2, 4], where the perturbation theory method of Lie-
Hori up to the second order is used. Our contribution is characterized by (a) We developed
of a new formula for the critical inclination of second order; (b) we fix g and h to assure the
condition of frozen orbits; (c) we showed that the coefficients J2 and C22 affect the variation of
the eccentricity strongly (it affects the eccentricity directly) in the second order contributing
(especially the C22 term) to increasing the variation of the eccentricity mainly for small
inclinations; (d) the coupled perturbations (nonuniform distribution of mass of the Moon (J2
and C22) and third-body (P2)) help to control the variation of the eccentricity for low-altitude
polar orbits; (e) we presented a new formula to compute inclinations for Sun-synchronous
orbits when it is taking into account the harmonic J2 and C22 in the first-order potential.

This paper has seven sections. In Section 2, the terms due to nonsphericity of the Moon
are presented while Section 3 is devoted to the Hamiltonian of the system. In Section 4, an
approach concerning the critical inclinations is used. In Section 5, an approach concerning the
Sun-synchronous lunar orbits is used. Numeric applications are done in Section 6. Section 7
is devoted to the conclusions.

2. Nonsphericity of the Moon

Besides the fact that the Moon is much less flattened than the Earth, it also causes
perturbations in space vehicles. Table 1 presents orders of magnitude for some zonal and
sectorial harmonics compared with the same parameters for the Earth. The termC20 describes
the equatorial bulge of the Moon, often referred to as the oblateness. The coefficient C22

measures the ellipticity of the equator.
The space vehicle is a point of mass in a three-dimensional orbit with orbital elements:

a (semimajor axis), e (eccentricity), i (inclination), ω (argument of periapsis), Ω (longitude
of the ascending node), and n (mean motion) given by the third Kepler’s law n2a3 = Gm0,
where m0 is the mass of the Moon.
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Then, we will present the Hamiltonian formalism using Delaunay canonical variables
[7] defined as L = √μa, G = L

√
1 − e2, H = G cos i, l = M mean anomaly, g = ω argument of

periapsis, and h = Ω longitude of the ascending node.
The force function, the negative of the total energy as used in physics, is given by

F = H = V − T, (2.1)

here, V is the negative of the potential energy, and T is the kinetic energy. The force function
can be put as [12]:

H =
μ

r
+ R − T =

μ

2a
+ R, (2.2)

or

H =
μ2

2L2
+ R. (2.3)

the function R, comprising all terms of V except the central term, is known as the disturbing
potential. The term due to the unperturbed potential is given by

H0 =
μ2

2L2
. (2.4)

Considering the lunar equatorial plane as the reference plane, the disturbing potential
can be written in the form [13] of

VM = −
μ

r

[
5∑
n=2

(
R0

r

)n

JnPn
(
sinφ

)
−
(
R0

r

)2

C22P22
(
sinφ

)
cos 2λ −

(
R0

r

)3

C31
(
sinφ

)
cosλ

]
,

(2.5)

where μ is the Lunar gravitational constant, R0 is the equatorial radius of the Moon (R0 =
1738 km), Pn represent the Legendre polynomial, Pnm represent the associated Legendre
polynomial, the angle φ is the latitude of the orbit with respect to the equator of the Moon, the
angle λ is the longitude measured from the direction of the longest axis of the Moon, where
λ = λ′−λ22, since λ′ is the longitude reckoned from any fixed direction, and λ22 is the longitude
of the Moon’s longest meridian from the same fixed direction. However, λ22 will contain the
time explicitly (see [4, 13], for a detailed discussion). Using spherical trigonometry, we have
sinφ = sin i sin(f + g), where f is the true anomaly.

The following assumptions have been made [4, 14] and will be used in this work: (a)
the motion of the Moon is uniform (librations are neglected); (b) the lunar equator lies in the
ecliptic (we neglect the inclination of about 1.5◦ of the lunar equator to the ecliptic, and the
inclination of the lunar orbit to the ecliptic of about 5◦); (c) the longitude of the lunar longest
meridian is equal to the mean longitude of the Earth (librations are neglected); (d) the mean
longitude of the Earth, λ⊗, is equal to λ22. See De Saedeleer [4] for a detailed discussion.
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Since the variables Ω and λ⊗ appear only as a combination of Ω − λ⊗, where λ⊗ =
nMt + const, with nM being the lunar mean motion, the degree of freedom can be reduced by
choosing as a new variable h = Ω−λ⊗. A new term must then be added to the Hamiltonian in
order to get ḣ = −∂H/∂H = nM. The Hamiltonian is still time-dependent through λ⊗. Since
the longest meridian is always pointing toward the Earth, it is possible to choose a rotating
system whose x-axis passes through this meridian.

Regarding the Earth’s potential, the dominant coefficient is J2. The rest are of higher-
order terms [15]. In contrast to the Earth, the first harmonics of the Lunar potential are all
almost of the same order (see Table 1). This fact complicates the choice of the harmonic where
the potential can be truncated and this makes its choice a little arbitrary. The influence of the
Earth and of the nonsphericity of the Moon on the stability of lunar satellites was also pointed
out by [16] but sectorial harmonics were not considered. In terms of the orbital elements, the
Legendre associated functions for zonal up to J5 and sectorial terms C22 and C31, where the
values for the spherical harmonic coefficients are given in the Appendix C, can be written in
the following form [13, 14]:

P2
(
sinφ

)
=

1
2

{
3sin2(i)sin2(f + g

)
− 1

}
,

P3
(
sinφ

)
=

5
2

sin3(i)sin3(f + g
)
− 3

2
sin(i) sin

(
f + g

)
,

P4
(
sinφ

)
=

35
8

sin4(i)sin4(f + g
)
− 15

4
sin2(i)sin2(f + g
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+

3
8
,
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)
=

63
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)
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P22
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sinφ
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= 3 − 3sin2(i)sin2(f + g

)
,

P22
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cos 2λ = 6

(
ξ2cos2(f) + χ2sin2(f) + 2ξχ sin
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2f
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− 3

(
1 − sin2(i)sin2(f + g
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,

P31
(
sinφ

)
cosλ =

(
15
8
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cos(h) cos
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f + g

)
+
(−3

4
− 15

8
s2
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c sin(h) sin
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)

−15
8
s2 cos(h) cos
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)
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(2.6)

where

ξ = cos
(
g
)

cos(h) − cos(i) sin
(
g
)

sin(h),

χ = − sin
(
g
)

cos(h) − cos(i) cos
(
g
)

sin(h),

s = sin(i), c = cos(i).

(2.7)
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In this paper, are taken into only the terms due to J2 and C22 accout. The zonal
perturbation due to the oblateness J2 is defined by [3] H20 = ε(μ/r3)P20(sinφ), where
ε = J2R

2
0. However, the disturbing potential is

H20 = ε
μ

4r3

(
1 − 3cos2(i) − 3sin2(i) cos

(
2f + 2g

))
. (2.8)

Substituting the relation μ = n2a3, using the Cayley’s tables [17] to express the true
anomaly in terms of the mean anomaly, and with some algebraic manipulations, we get

H20 =
3
8
ε
(((

5e2 − 2
)

cos2(i) + 2 − 5e2
)

cos
(
2g + 3l

)
+
(

7e − 7ecos2(i)
)

cos
(
2g + 3l

)
+
(
−17e2cos2(i) + 17e2

)
cos

(
2g + 4l

)
+
(
−e + ecos2(i)

)
cos

(
2g + l

)

+9
(

cos2(i) − 1
3

)(
2
9
+

2
3
e cos(l) +

1
3
e2 + e2 cos(2l)

))
n2.

(2.9)

For the sectorial perturbation, we get [13, 14]

H22 = δ
μ

r3

(
6ξ2cos2(f) + 6χ2sen2(f) + 12ξχsen

(
2f

)
− 3 + 3s2sen2(f + g

))
, (2.10)

where δ = C22R
2
0 (R0 is the equatorial radius of the Moon; R0 = 1738 km).

With some manipulations, we get

H22 = −45
16
δn2

×
[(

e2 − 2
5

)
(cos i − 1)2 cos

(
2l + 2g − 2h

)
− 1

3
(cos i + 1)2

(
e2 − 2

5

)
cos

(
2l − 2g − 2h

)

+ (cos i + 1)2
(
e2 − 2

5

)
cos

(
2l + 2g + 2h

)
− 1

3

(
e2 − 2

5

)
(cos i − 1)2 cos

(
2l − 2g + 2h

)

− 17
5
e2(cos i − 1)2 cos

(
4l + 2g − 2h

)
− 7

5
e(cos i − 1)2 cos

(
3l + 2g − 2h

)

+
17
15
e2(cos i + 1)2 cos

(
4l − 2g − 2h

)
+

7
15
e(cos i + 1)2 cos

(
3l − 2g − 2h

)

− 7
5
e(cos i + 1)2 cos

(
3l + 2g + 2h

)
− 17

5
e2(cos i + 1)2 cos

(
4l + 2g + 2h

)

+
7

15
e(cos i − 1)2 cos

(
3l − 2g + 2h

)
+

17
15
e2(cos i − 1)2 cos

(
4l − 2g + 2h

)

− 1
15
e(cos i + 1)2 cos

(
l − 2g − 2h

)
+

1
5
e(cos i − 1)2 cos

(
l + 2g − 2h

)



6 Mathematical Problems in Engineering
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(2.11)

where the disturbing potential is written in the form R = H20 +H22.

3. The Hamiltonian System

We find in the literature several papers that use the method of the average to calculate
perturbations of long-period on artificial satellites of the Moon, such as [18–23]. However,
our objective here is to compute analytically secular and periodic perturbations up to the
second order and, using this, to analyze the coupling terms relating the harmonic coefficients.
The Lie-Hori [1] perturbation method is applied to eliminate short-period terms of the
Hamiltonian.

In [24], a different approach is proposed for the canonical version of Hori method. The
reference [24] showed that the ordinary differential equation with an auxiliary parameter t∗

as independent variable, introduced through Hori auxiliary system, can be replaced by a
partial differential equation in time t.

In what follows, first the Lie-Hori [1] method will be shortly presented and then
applied to the problem of the orbital motion of the satellite around the Moon.

Consider the mth order equation of the algorithm of the perturbation method proposed
by Hori [1]:

{H0, Sm} + Ψm = H∗m, (3.1)

where braces stand for the Poisson brackets, H∗0 is the undisturbed Hamiltonian, and Ψm

is a function obtained from the preceding orders, involving H∗0 , Hm, Sk, H∗
k
, and Hk, k =

1, . . . , m − 1. All of these functions are written in terms of the new set of canonical variables
(ξ, η) and defined through the following equations:

H
(
x, y

)
= H0

(
x, y

)
+
∑
k=1

εkHk

(
x, y

)
,

H∗
(
ξ, η

)
= H∗0

(
ξ, η

)
+
∑
k=1

εkHk

(
ξ, η

)
,

εS
(
ξ, η

)
=
∑
k=1

εkSk
(
ξ, η

)
,

(3.2)
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where (x, y) is the original set of canonical variables, H(x, y) is the original Hamiltonian,
H∗(ξ, η) the new Hamiltonian and S(ξ, η) is the generating function of the canonical
transformation, (x, y) → (ξ, η). The transformation is such that the new canonical system
has some advantages for the solution.

In order to determine the functions Sm and H∗m, Hori introduces an auxiliary
parameter t∗ through the following system of canonical equations [1]:

dξi
dt∗

=
∂H∗0
∂ηi

,
dηi
dt∗

= −
∂H∗0
∂ξi

, i = 1, . . . , n. (3.3)

Accordingly, (3.1) reduces to

dSm
dt∗

= Ψm −H∗m, (3.4)

with Ψm written in terms of the general solution of the system (3.3), involving 2n constants
of integration. Equation (3.4) has two unknown functions: Sm and H∗m.

The Poisson brackets are defined as

{
x, y

}
=
∂x

∂L

∂y

∂l
− ∂x
∂l

∂y

∂L
+
∂x

∂G

∂y

∂g
− ∂x
∂g

∂y

∂G
+
∂x

∂H

∂y

∂h
− ∂x
∂h

∂y

∂H
(3.5)

with respect to the classical Delaunay variables set l, g, h, L, G, H. Since only l, g, h, L are
explicitly present in the Hamiltonian, the partial derivatives with respect to L, G, H are
computed as ∂/∂L = (∂/∂L) + (η2/eL)(∂/∂e), (∂/∂G) = −(η/eL)(∂/∂e) + (c/Lηs)(∂/∂i),
(∂/∂H) = −(1/Lηs)(∂/∂i) where the bracket indicates the derivative with respect to L
occurring explicitly, and c, s, η are c = cos i, s = sin i, η =

√
1 − e2.

To solve (3.4), we separated in secular and periodic part as it is done by the principle of
the mean [7]. Using (3.3) and (3.4), Hori [1] writes the equations that define the integration
theory based on average principle to determine the new Hamiltonian and the generating
function as follows.

Order zero:

H∗0 = H0. (3.6)

Order one:

H∗1 = H1s,

S1 =
∫
H1pdτ.

(3.7)
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Order two:

H∗2 = H2s +
1
2
{
H1 +H∗1 , S1

}
s,

S2 =
∫(

F2p +
1
2
{
H1 +H∗1 , S1

}
p

)
dτ,

· · ·

(3.8)

where, at each function, the index s represents the secular part of the function and the index
p the periodic part of the function. See Hori [1] for a detailed discussion.

The Hamiltonian of the dynamical system associated to the problem of the orbital
motion of the satellite around the Moon can be written in the following form:

H = H0 +H20 +H22, (3.9)

where

H0 =
μ2

2L2
+ nMH, (3.10)

The term nMH is added to reduce the degree of freedom, since the mean longitude of
the Earth is time-dependent [14]. Here, the term nMH is taken as order zero as suggested by
Breiter [25].

Now, doing

H20 = εH1,

H22 = δH2,
(3.11)

we get,

H = H0 + εH1 + δH2. (3.12)

With the purpose of applications of the perturbation method, the terms of the
Hamiltonian are written in the following form:

H
(0)
0 =

μ2

2L2
+ nMH,

H
(1)
1 = εH1 + δH2.

(3.13)

The disturbing terms are represented in the first order of the applied method. To
eliminate the short-period terms of equation (3.13), the method of Lie-Hori [1] perturbation
theory is applied. In this work long-period terms are calculated, substituting the result in
the planetary equations of Lagrange [26]. The equations of motion are integrated and finally
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the results analyzed. With a simplified model for the disturbing potential it is possible to do
analyses for the orbital motion of the satellite.

Applying the method of Hori [1] to our problem to eliminate the terms of short period,
we get the following:

Order zero:

H∗0 = H0 =
μ2

2L2
+ nMH. (3.14)

Order one:

H∗1 =
(
H

(1)
1

)
s
=

1
2π

∫2π

0
H

(1)
1 dl,

S1 =
∫
H1pdτ = −1

β

∫(
H

(1)
1 −H∗1

)
dl,

(3.15)

where β = ∂H(0)
0 /∂L.

Order two:

H∗2 =
1
2

{
H

(1)
1 +H∗1 , S1

}
s
=

1
2π

∫2π

0

1
2

{
H

(1)
1 +H∗1 , S1

}
dl. (3.16)

4. Critical Inclination

We consider now the problem of a lunar artificial satellite with low altitude taking into
account the oblateness (J2) and the equatorial ellipticity (sectorial term C22) of the Moon.
The first order long-period disturbing potential (order of the method of perturbation theory)
obtained by the Hori method algorithm can be written as

k1 =
1
8
n2
(

6εcos2(i) − 3εe2 − 2ε − 18δ cos(2h)e2 + 18δ cos(2h)e2cos2(i) − 12δ cos(2h)

+12δ cos(2h)cos2(i) + 9εcos2(i)e2
)
,

(4.1)

where ε = J2R
2
0eδ = C22R

2
0 and k1 = H∗1 .

We observe that, at the order considered, the disturbing potential has the terms due to
the oblateness (ε), that are secular, and terms due to the equatorial ellipticity of the Moon (δ),
that appear multiplied for cos(2h).

Taking into account (4.1) a formula for the critical inclination is found. In fact,
substituting (4.1) in the planetary equations of Lagrange [26] and solving the equation
dg/dt = 0, we get

cos2(i) =
−ε + 6δ cos(2h)

5(−ε + 2δ cos(2h))
. (4.2)
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Figure 1: Variation of the critical inclination with respect to the longitude of the ascending node where
i-degree and h-rad.

Table 2: Critical inclination for the potential of first order, where: ε = 613.573; δ = 67.496.

Longitude of the ascending
node (h)

Critical inclination for direct
orbits (ic)

Critical inclination for
retrograde orbits (ic)

1 rad 61.10◦ 118.90◦

2 rad 59.98◦ 120.02◦

π/2 58.56◦ 121.45◦

π/3 60.69◦ 119.31◦

π 72.83◦ 107.17◦

this formula was already obtained by De Saedeleer and Henrard [5] and was here derived in
an independent way, observing that in [5] δ = −C22R

2
0. Thus, when we consider the terms due

to the oblateness (J2) and the equatorial ellipticity of the Moon (C22), the critical inclination
depends on the longitude of the ascending node. Figure 1 represents the variation between
the inclination and the longitude of the ascending node. Table 2 represents the values of the
critical inclination for some values of the ascending node.

Now, let us consider the second-order disturbing potential k2 = H∗2 where is given in
the Appendix A (order of the method of perturbation theory); the potential k2 presents:

(a) coefficients of second order (J2
2 , C

2
22),

(b) coupling terms between J2 and C22.

Plugging the equations for the potential in the planetary equations of Lagrange and
solving the equation dg/dt = 0, we present a new formula to compute the critical inclination
taking into account the J2 and C22 terms of the second-order disturbing potential. It is a
function of two variables: the argument of the periapsis (g) and the longitude of the ascending
node (h). When the sectorial term C22 is considered, the first order disturbing potential is a
function of the longitude of the ascending node and of both longitude of the ascending node
and argument of the periapsis to the second order potential. The new formula is given in the
Appendix B.
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We observe that, at the second order, the disturbing potential presents terms due to the
oblateness (ε) and to the equatorial ellipticity of the Moon (δ), that also appear multiplied
by periodic functions. Here, terms of couplings between the oblateness and the equatorial
ellipticity of the Moon (J2, C22) and terms of second order appear. Several scenarios can be
considered. For instance frizzing orbits with particular values of h and g, let us say h = π/2
and g = 3π/2, we get a value of 53.46◦ for the critical inclination taking into account equation
given in the Appendix B. Therefore, the critical inclination taking into account equation (4.2)
is 58.56◦ (see Table 2).

5. Sun-Synchronous Lunar Orbit

Now, an approach is presented for a Lunar Sun-synchronous orbit. The Moon rotates with
angular rate about 360◦ for 27, 32 days, while the Earth rotates with angular rate about 360◦

by day. The perturbation caused by the orbital precession has been studied historically for
orbits centered in the Earth because of near polar orbits the precession is about one degree per
day and to provide attractive Sun-synchronous orbits for many missions around the Earth.
Considering Sun-synchronous orbits for lunar satellites we show that it is not possible to
produce near polar orbits. The precession of the ascending node due to the nonsphericity of
the Moon, when only the effect of the J2 is considered, in (3.3) is well known in Brouwer
theory [27] that the precession of the longitude of the ascending node is given by

dΩ
dt

= −3
2
J2R

2
0n cos i

a2(1 − e2)2
. (5.1)

The Moon’s orbital period is about 27, 32 days and the Earth’s orbital period is about
365, 26 days. Then, for a Sun-synchronous orbit, we have, in lunar day [2]:

dΩ
dt

=
(

27, 35
365, 26

)
360◦/lunar day = 26, 92657◦/lunar day. (5.2)

An inclination for a Sun-synchronous orbit was presented by Park and Junkins [2]
using (5.1) and (5.2), with the following initial conditions: a = 1837.63 km; e = 0. The
calculated inclination is is = 144.82◦. This inclination is not feasible for producing near-polar
orbits, because this orbit does not pass sufficiently near the poles. Considering the disturbing
potential given by (4.1) and substituting in the Lagrange planetary equations [26] to calculate
the variation of the longitude of the ascending node, we get

dΩ
dt

= −3
2

εn

a2(1 − e2)2
cos(i) +

3nδ

2a2
(√

1 − e2
) cos(i)

[(
2 + 3e2

)
cos(2h)

]
, (5.3)

where ε = J2R
2
0, δ = C22R

2
0. This new equation (5.3) gives the precession of the longitude of

the ascending node due to nonsphericity of the Moon when the effect of the J2 and the C22 are
considered. In first approximation the periodic terms due to the J2 are negligible, however,
for the C22 term in the first approximation appears the periodic term cos(2h). When δ = 0, we
obtain the classic solution given by (5.1).
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Figure 2: Variation of the inclination Sun-synchronous (IS in degree) with longitude of the ascending node
(h-rad), a0 = 1838 km, e0 = 0.038.

In what follows, the variation of the longitude of the ascending node will be analyzed
to obtain polar or near-polar orbits for some special cases. Using (5.2) and (5.3) we get a new
formula to compute the inclination of Sun-synchronous orbits for Moon’s satellites of low
altitude:

is = π − arccos

⎛
⎝ 1.32730740910−7a2(1 − e2)(3/2)

n
(
ε + δ

(
−2 − e2 + 3e4

)
cos(2h)

)
⎞
⎠, (5.4)

where n is given in rad/s, δ = 67.496 km2; ε = 613.573 km2. Equation (5.4) gives the
inclination depending on the semi-major axis, the eccentricity and on the longitude of
the ascending node. For Sun-synchronous orbits, considering a = 1837.63 km; e = 0;
h = π/2 the calculated inclination is is = 132.35◦. This inclination is not also ideal for
near-polar orbits. Thus, the obtained results are still distant from a polar Sun-synchronous
orbit, but it is important to consider the term due to the Moon’s equatorial ellipticity to
get more realistic results. Figure 2 represents the variation of Sun-synchronous inclinations
with respect to the longitude of the ascending node where a0 = 1838 km and e0 =
0.038. It can be observed in Figure 2 that, fixing h = π/2, we get an inclination of
about 132◦.

6. Applications for Low Altitude Satellites

The disturbing potential (first order (k1) and second order (k2)) is substituted in the
Lagrange’s planetary equations [26] and numerically integrated. Considering the disturbing
potential due to the nonsphericity of the Moon (J2 and C22), numerical applications (long-
period potential) are performed to analyze the variation of the eccentricity for different initial
conditions of the inclination.
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Figure 3: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 30◦, g0 = 3π/2, h0 = π/2 and t-days.
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Figure 4: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 90◦, g0 = 3π/2, h0 = π/2 and t-days.

Figures 3 and 4 represent the comparison for different orders of the disturbing
potential. The variation of the eccentricity for lunar satellites in low altitude is constant
at first order. This happens because the coefficients J2 and C22 do not affect the variation
rate of the eccentricity (as we can verify in Lagrange’s planetary equations). Therefore,
it is important to insert more terms in the potential to get more realistic results as, for
example, to study the lifetimes of low altitude Moon artificial satellites [28], considering
the zonal terms J2, J3 and J5 and the sectorial terms C22 and C31 in the disturbing potential.
When taking into account the disturbing potential of second order considering the effect
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Figure 5: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 30◦, g0 = 3π/2, h0 = π/2 and t-days. Fixing a
value h = π/2 we find a value of 58.56◦ for the critical inclination.

of the nonuniform distribution of mass of the Moon (J2 and C22), the coefficients J2
and C22 affect the variation rate of the eccentricity (as we can verify in the Lagrange’s
planetary equations). For the second order the results shows a small variation of the
eccentricity for larger inclinations and an accentuated increase for small inclinations. This
is due to the C22 term that affects the eccentricity of the satellite directly in second
order.

The expression of the eccentricity is presented in the following form de/dt =
· · · εδ sin(2g) · · · + ε2 sin(2g) + · · · + δ2 sin(2g + 2h) · · · − · · · εδ sin(−2g + 2h) · · · + · · · where
the terms due to the oblateness (ε) and the equatorial ellipticity (δ) appear multiplied by
periodic functions, terms of couplings between J2 and C22 and terms of second order of
the type J2

2 and C2
22. Figures 3 and 4 shows the temporal variation of the eccentricity for

cases where initial conditions are obtained from the frozen orbits condition. For instance
frizzing orbits with particular values of h and g, let us say h = π/2 and g = 3π/2.
Another factor that also contributes for the variation of the eccentricity, using the potential
up to the second order, is the presence of the coefficients of second order terms (J2

2 , C
2
22)

and the coupling terms between J2 and C22. The choice of the initial inclination is very
important to assure a frozen orbit when it is taken into account the second order disturbing
potential.

Figures 5 and 6 show the inclination suffering a periodic variation that depends of
the longitude of the ascending node, as we can verify by (4.2). Figure 5 shows a variation
of the inclination for a value below of the critical inclination around 8 degrees in 100 days,
while Figure 6 presents a more accentuated variation for values of the inclination above of
the critical inclination around 50 degrees in 200 days.

Considering the second-order disturbing potential, Figures 7 and 8 represent the
variation rate for the inclination. The variation represented is due to the initial values given
for the argument of the periapsis and for the longitude of the ascending node. The given
initial values for g and h are for the condition of frozen orbits. For instance frizzing orbits
with particular values of h and g, let us say h = π/2 and g = 3π/2. The same comments done
for the eccentricity, including those for the coupling terms (zonal and sectorial), are valid for
the variation of the orbital inclination.
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Figure 6: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 65◦, g0 = 3π/2, h0 = π/2 and t-days. Fixing a
value h = π/2 we find a value of 58.56◦ for the critical inclination.
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Figure 7: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 30◦, g0 = 3π/2, h0 = π/2 and t-days.

Numerical applications with the first and second order disturbing potential are done
taking into account the nonsphericity of the Moon and perturbations from the third-body
in elliptical orbit (Earth is considered) considering the term P2 of the Legendre polynomial
and the eccentricity of the disturbing body up to the second order. Figures 9, 10 and
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Figure 8: Initial conditions: a0 = 1838 km, e0 = 0.038, i0 = 65◦, g0 = 3π/2, h0 = π/2 and t-days.
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Figure 9: Initial conditions: a0 = 1838 km, e0 = 0.038, g = 3π/2, h = π/2, emax = 0.05. Considered
Perturbations: P2, J2, C22 = 0.

11 represent the sum of the potential of the first order with the second order (k1 + k2).
Figure 9 shows that, if J2 /= 0 and C22= 0 the small inclinations cause small oscillations in
the variation of the eccentricity and Figure 10 shows the effect caused by the C22 term,
when J2 = 0, where the small inclinations cause a large increase in the variation of the
eccentricity, as well as we can visualize in Figure 11, where it is taken into account the
P2, J2, and C22 terms. Considering the disturbing potential up to second order, the terms
J2 and C22 that does not cause perturbation in the eccentricity in first order, appear as
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Figure 10: Initial conditions: a0 = 1838 km, e0 = 0.038, g = 3π/2, h = π/2, emax = 0.05. Considered
Perturbations: P2, J2, C22.
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Figure 11: Initial conditions: a0 = 1838 km, e0 = 0.038, g = 3π/2, h = π/2, emax = 0.05. Considered
Perturbations: P2, J2, C22.

disturbing term of the type J2
2 and C2

22 and terms of coupling of the type J2C22 that affects
the eccentricity of the satellite directly. The terms appear due to the perturbation method
used.

The temporal variation of the eccentricity is strongly affected by the initial inclination
(i0). As it can be observed by Figure 11, for i0 < 48.6◦ the variation of the eccentricity presents
great amplitude but, for i0 > 48.6◦, the variation has small amplitude.

Figures 12 and 13 represent the variation of the eccentricity for a lunar satellite of
low altitude considering different terms in the disturbing potential. Figure 12 considered
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Figure 12: Initial conditions: a0 = 1935.79 km, e0 = 0.05, i = 90◦, g = 3π/2, h = π/2, emax = 0.09 and t-days.
Perturbations P2.
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Figure 13: Initial conditions: a0 = 1935.79 km, e0 = 0.05, i = 90◦, g = 3π/2, h = π/2, emax = 0.09 and t-days.
Perturbations P2 + J2 + C22.

third body perturbation and Figure 13 considered nonsphericity of the Moon and third body
(P2) perturbation. A comparison is done between the perturbations for the case where the
inclination is 90◦ (polar orbit). Therefore we can conclude that, besides the term due to
the J2, the sectorial term C22 should also be considered in the disturbing potential to get
more realistic results. For lunar satellites of low altitude it is impracticable to consider real
applications taking into account only the perturbation of the third body (P2). In fact, taking
into account only the perturbation of the third body (P2), the eccentricity of the satellite
increases causing escape from the Moon, or crashing to the Moon in 600 days (see Figure 12).
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We observe that, for a Moon’s artificial satellite orbiting in low altitude, the combination of
the two perturbations help to control the variation of the eccentricity, mainly for inclinations
of 90◦ (see Figure 13).

These results agree with those obtained by d’Avanzo et al. [29] when it is considered
just the effects of the zonal harmonics J2–J5 and a first order potential.

7. Conclusions

Using Lie-Hori method, the disturbing potential due to the nonsphericity of the gravitational
field of the Moon is obtained up to first and second order. The disturbing potential is
substituted in Lagrange’s planetary equations and they are numerically integrated. Analyses
for the variations of the orbital elements are done. Terms of couplings between the oblateness
and the equatorial ellipticity of the Moon (J2, C22) and terms of second order of type J2

2
and C2

22 are obtained. A formula is developed to compute the critical inclination when
the effect of the C22 (equatorial ellipticity) term is considered in the Hamiltonian in first
and second order. The critical inclination can be strongly affected by the coefficient due
to the equatorial ellipticity of the Moon and by the longitude of the ascending node. The
formula for the critical inclination for the second order is a function of two variables:
the argument of the periapsis and the longitude of the ascending node. At the first order
this formula is a function of the longitude of the ascending node only. For Lunar low
altitude satellites (LLAS), it is important to take into account both, the terms due to
the oblateness and terms with the equatorial ellipticity of the Moon to get more realistic
results.

The variation of the longitude of the ascending node is analyzed looking Lunar Sun-
synchronous orbits and near-polar orbits. A new formula is obtained to compute inclinations
of Lunar Sun-synchronous orbits when the terms due to the oblateness of the Moon (J2 and
C22) are taken into account. The presented formula to the inclination depends on the semi-
major axis, eccentricity and on the longitude of the ascending node of the satellite. The term
due to the effect of the C22 must be considered for the case of a lunar satellite to analyze the
precession of the longitude of the ascending node.

For a LLAS, when it is considered only the nonsphericity of the Moon in the disturbing
potential, and at the first order, the orbital eccentricity of the satellite is constant along the
time. This happens since the coefficients J2 and C22, at this order, do not affect the variation
rate of the eccentricity directly, therefore it is important to insert more terms in the potential
as, for example, the zonal terms J3, J5 and the sectorial term C31, to get more realistic results.
At the second order, small variations are present. In this case, the small variations of the
eccentricity are due to a combination of the following factors: (a) initial conditions (given to
get frozen orbits) (b) to couplings terms between the oblateness and the equatorial ellipticity
of the Moon (J2, C22) and (c) terms of second order of type J2

2 and C2
22. For small inclinations,

second-order terms (including coupled terms) are greater than 1st order terms. This happens
because the coefficients J2 and C22, at second order, affect the variation of the eccentricity
directly.

To study lifetime of LLAS, due to the characteristics of the mass distribution of the
Moon, it is necessary to take into account up the second order of the disturbing potential
and develop up to the second order the Lie-Hori algorithm. In fact, at first order, the
coefficients do not affect the eccentricity directly while at the second order the coefficients
J2 and C22 affects the eccentricity directly and thus contributing efficiently to more complete
studies.
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Appendices

A. Appendix A

Let us consider the second-order disturbing potential k2 = H∗2 (order of the method of
perturbation theory), where k2 = H∗2 , c = cos i, s = sin i:
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B. Appendix B

Plugging the equations for the potential in the planetary equations of Lagrange and solving
the equation dg/dt = 0, we present a new formula to compute the critical inclination taking
into account the J2 and C22 terms of the second-order disturbing potential. We get
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(
4g − 4h

)
− 11898δ2 cos

(
4g + 4h

)
+
(

15864δ2 + 3966δε
)

cos
(
4g − 2h

)
+
(
−15864δ2 − 3966δε

)
cos

(
4g + 2h

))
/
((
−1056δε + 1728δ2

)
cos

(
−2h + 2g

)
+
(
−1056δε + 1728δ2

)
cos

(
2h + 2g

)
+36666δ2 cos

(
4g − 4h

)
+36666δ2 cos

(
4g+4h

)
+
(
−1104δε + 600ε2 + 576δ2

)
cos

(
2g

)
+
(
−5424δε + 992δ2

)
cos(2h)

−40740δ
(

2
5
ε + δ

)
cos

(
4g

)
+ 27316δ2 cos(4h) + 7488δε − 50868δ2 + 4608ε2

)
.

(B.1)

C. Appendix C

Model given by Akim and Golikov [30] for the spherical harmonic coefficients is

J2 = 2.09006496 × 10−4, J4 = 2.32815 × 10−6, C22 = 2.447305 × 10−5,

J3 = 5.48445 × 10−6, J5 = −3.169113 × 10−6, C31 = 2.871327 × 10−5.
(C.1)
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[22] C. R. H. Solórzano, Third-body perturbation using a single averaged model, M.S. dissertation, National
Institute for Space Research (INPE), São José dos Campos, Brazil, 2002.
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