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The static buckling of a cylindrical shell of a four-lobed cross section of variable thickness subjected
to non-uniform circumferentially compressive loads is investigated based on the thin-shell theory.
Modal displacements of the shell can be described by trigonometric functions, and Fourier’s
approach is used to separate the variables. The governing equations of the shell are reduced to
eight first-order differential equations with variable coefficients in the circumferential coordinate,
and by using the transfer matrix of the shell, these equations can be written in a matrix differential
equation. The transfer matrix is derived from the nonlinear differential equations of the cylindrical
shells by introducing the trigonometric series in the longitudinal direction and applying a numer-
ical integration in the circumferential direction. The transfer matrix approach is used to get the
critical buckling loads and the buckling deformations for symmetrical and antisymmetrical shells.
Computed results indicate the sensitivity of the critical loads and corresponding buckling modes
to the thickness variation of cross section and the radius variation at lobed corners of the shell.
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1. Introduction

The use of cylindrical shells which have noncircular profiles is common in many fields,
such as aerospace, mechanical, civil and marine engineering structures. The displacement
buckling modes of thin elastic shells essentially depend on some determining functions such
as the radius of the curvature of the neutral surface, the shell thickness, the shape of the
shell edges, and so forth. In simple cases when these functions are constant, the buckling
modes occupy the entire shell surface. If the determining functions vary from point to point
of the neutral surface then localization of the displacement buckling modes lies near the
weakest lines on the shell surface, and this kind of problems is too difficult because the
radius of its curvature varies with the circumferential coordinate, closed-form or analytic
solutions cannot be obtained, in general, for this class of shells, numerical or approximate
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techniques are necessary for their analysis. Buckling has become more of a problem in recent
years since the use of high-strength material requires less material for load support-structures
and components have become generally more slender and buckle-prone. Many researchers
have considerable interest in the study of stability problems of circular cylindrical shells
under uniform axial loads with constant thickness and numerous investigations have been
devoted to this, for example [1–9]. Other related references may be found in the well-known
work of Love [10], Flügge [11] and Tovstik [12]. In contrast, the buckling behaviour under
applied non-uniform axial loads has received much less attention, but some of treatments
are found in [13–17], and Song [18] provided a review of research and trends in the area
of stability of unstiffened circular cylindrical shells under non-uniform axial loads. Recently,
with the advent of the high-speed digital computer, the study of vibration and buckling for
shells directed to ones with complex geometry, such as the variability of radius of curvature
and thickness. Using the modified Donell-type stability equations of cylindrical shells with
applying Galerkin’s method, the stability of cylindrical shells with variable thickness under
dynamic external pressure is studied by Sofiyev and Erdem [19]. Eliseeva and Filippov
[20], and Filippov et al. [21] presented the vibration and buckling of cylindrical shells of
variable thickness with slanted and curvelinear edges, respectively, using the asymptotic
and finite element methods. The analytical solutions for axisymmetric transverse vibration of
cylindrical shells with thickness varying in power form due to forces acting in the transverse
direction are derived for the first time by Duan and Koh [22]. Sambandam et al. [23] studied
the buckling characteristics of cross-ply elliptical cylindrical shells under uniform axial loads
based on the higher-order theory and found that an increase in the value of radius-to-
thickness ratio causes the critical load to decrease. Using the generalized beam theory, the
influence of member length on the critical loads of elliptical cylindrical shells under uniform
compression is studied by Silvestre [24]. A treatise on the use of the transfer matrix approach
for mechanical science problems is presented by Tesar and Fillo [25]. However, the problem
of stability of the shell-type structures treated here which are composed of circular cylindrical
panels and flat plates with circumferential variable thickness under non-uniform loads does
not appear to have been dealt with in the literature. The aim of this paper is to present
the buckling behaviour of an isotropic cylindrical shell with a four-lobed cross section of
circumferentially varying thickness, subjected to non-uniformly compressive loads, using
the transfer matrix method and modeled on the thin-shell theory. The transfer matrix is
derived from the nonlinear differential equations system for the cylindrical shell by numerical
integration. The method is applied to symmetrical and antisymmetrical shells. The critical
buckling loads and corresponding buckling deformations of the shell are presented. The
influences of the thickness variation and radius variation on the buckling characteristics are
examined. The results are cited in tabular and graphical forms.

2. Theory and Formulation of the Problem

It has been mentioned in Section 1 that the problem structure is modeled by thin-shell theory.
In order to have a better representation, the shell geometry and governing equations are
modeled as separate parts. The formulation of these parts is presented below.

2.1. Geometrical Formulation

We consider an isotropic, elastic, cylindrical shell of a four-lobed cross section profile
expressed by the equation r = af(θ), where r is the varied radius along the cross section
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midline, a is the reference radius of curvature, chosen to be the radius of a circle having the
same circumference as the four-lobed profile, and f(θ) is a prescribed function of θ and can
be described as

f(θ) = a1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

secθ, ρ = 0, 0 < θ < θ1

(1 − ζ)(sin θ + cos θ) +
√

ζ2 − (1 − ζ)2( 1 − 2 sin θ cos θ), θ1 < θ < 900 − θ1

cos ec θ, ρ = 0, 900 − θ1 < θ < 900

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(2.1)

a1 =
A1

a
, ζ =

R1

A1
, θ1 = tan−1 (1 − ζ). (2.2)

L1 and L2 are the axial and circumferential lengths of the middle surface of the shell, and
the thickness H(θ) is varying continuously in the circumferential direction. The cylindrical
coordinates (x, s, z) are taken to define the position of a point on the middle surface of the
shell, as shown in Figure 1(a), and Figure 1(b) shows the four-lobed cross section profile of
the middle surface, with the apothem denoted byA1, and the radius of curvature at the lobed
corners by R1. While u, υ and w are the deflection displacements of the middle surface of the
shell in the longitudinal, circumferential and transverse directions, respectively. We suppose
that the shell thickness H at any point along the circumference is small and depends on the
coordinate θ and takes the following form:

H(θ) = h0ϕ(θ), (2.3)

where h0 is a small parameter, chosen to be the average thickness of the shell over the length
L2. For the cylindrical shell which its cross section is obtained by the cutaway the circle of
the radius r0 from the circle of the radius R0 (see Figure 1(c)) function ϕ(θ)has the form:
ϕ(θ) = 1 + δ(1 − cos θ), where δ is the amplitude of thickness variation, δ= d/ h0, and d is
the distance between the circles centers. In general case h0 = H(θ = 0) is the minimum value
of ϕ(θ) while hm = H(θ = π) is the maximum value of ϕ(θ), and in case of d = 0 the shell
has constant thickness h0. The dependence of the shell thickness ratio η = hm/ h0 on δ has the
form η = 1 + 2δ.

2.2. Governing Equations

For a general circular cylindrical shell subjected to a non-uniform circumferentially
compressive load p(θ), the static equilibrium equations of forces, based on the Goldenveizer-
Novozhilov theory [26, 27], can be shown to be of the following forms:

N ′
x +N

•
sx − P(θ)u′′ = 0, N ′

xs +N
•
s +

Qs

R
− P(θ)υ′′ = 0,

Q′x +Q
•
s −

Ns

R
− P(θ)w′′ = 0, M′

x +M
•
sx −Qx = 0,

M′
xs +M

•
s −Qs = 0, Ss −Qs −M′

sx = 0, Nxs −Nsx −
Msx

R
= 0,

(2.4)
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Figure 1: Coordinate system and geometry of a variable axial loaded cylindrical shell of four-lobed cross
section with circumferential variable thickness.

where Nx,Ns and Qx,Qs are the normal and transverse shearing forces in the x and
s directions, respectively, Nsx and Nxs are the in-plane shearing forces, Mx,Ms and
Mxs,Msx are the bending moment and the twisting moment, respectively, Ss is the
equivalent (Kelvin-Kirchoff) shearing force, R is the radius of curvature of the middle surface,
′≡ ∂/∂x, and •≡ ∂/∂s. We assume that the shell is loaded along the circumferential coordinate
with non-uniform axial loads p(θ) which vary with θ, where the compressive load does not
reach its critical value at which the shell loses stability. Generally, the form of the non-uniform
load may be expressed as:

p(θ) = p0g(θ), (2.5)

where g(θ) is a given function of θ and p0 is a constant. We assume that the shell is loaded by
axially non-uniform loads P(θ) and takes the form as in [13]:

p(θ) = p0(1 + 2 cos θ), g(θ) = 1 + 2 cos θ (2.6)
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and the sketch depicting this load is given in Figure 1(d). The applied load in this form
establishes two zones on the shell surface: one is the compressive zone,Q1, for (0 < θ < 2π/3)
where the buckling load factor is a maximum and the thickness is a minimum and the other
is the tensile zone, Q2, for (2π/3 < θ < π) where the buckling load factor is a minimum and
the thickness is a maximum, as shown in this figure. Note that p(θ) = p0 in the case of applied
uniform axial loads. Hereby, we deduce the following ratio of critical loads:

μ =
pC for uniform load

pC for non-uniform load
, (2.7)

pC is the lowest value of applied compressive loads and named by the critical load.
The relations between strains and deflections for the cylindrical shells used here are

taken from [28] as follows:

εx = u′, εs = υ• +
w

R
, γxs = υ′ + u•, γxz = w′ + ψx = 0,

γsz = w• + ψs −
υ

R
= 0, kx = ψ ′x, ks = ψ•s +

υ• +w/R
R

, ksx = ψ ′s, kxs = ψ•x +
υ′

R
,

(2.8)

where εx and εs are the normal strains of the middle surface of the shell, γxs, γxz and γsz are
the shear strains, and the quantities kx, ks, ksx and kxs representing the change of curvature
and the twist of the middle surface, ψx is the bending slope, and ψs is the angular rotation.
The components of force and moment resultants in terms of (2.8) are given as:

Nx = D(εx + νεs ), Ns = D(εs + νεx), Nxs =
D(1 − ν)γxs

2
,

Mx = K(kx + νks), Ms = K(ks + νkx), Msx = k(1 − ν)ksx.
(2.9)

From (2.4)–(2.9), with eliminating the variablesQx,Qs,Nx,Nxs,Mx,Mxs and Msx which are
not differentiated with respect to s, the system of the partial differential equations for the state
variables u, υ,w, ψs,Ms, Ss,Ns and Nsx of the shell is obtained as follows:

u• =
2

D(1 − ν)Nsx
+

(
H2

6R

)

ψ ′s − υ
′, υ• =

Ns

D
− w
R
− νu′, w• =

υ

r
− ψs,

ψ•s =
Ms

K
+ νψ ′x −

Ns

RD
−
( ν

R

)
u′, M•

s = Ss − 2K(1 − ν)ψ ′′s,

S•s =
Ns

R
− νM′′

s +K
(

1 − ν2
)
w′′′ + P(θ)w′′, N•

s = P(θ)υ
′′ − Ss

R
−N ′

sx,

N•
sx = D

(
1 − ν2

)
u′′ + P(θ)u′′ − νN ′

s.

(2.10)

The quantities D and K, respectively, are the extensional and flexural rigidities expressed in
terms of the Young’s modulus E, Poisson’s ratio ν and the wall thickness H(θ) as the form:
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D = EH/(1 − ν2) and K = EH3/12(1 − ν2), and on considering the variable thickness of the
shell, using (2.3), they take the form:

D =
(

Eh0

1 − ν2

)

ϕ(θ) = D0ϕ(θ),

K =

(
E(h0)

3

1 − ν2

)

ϕ3(θ) = K0ϕ
3(θ),

(2.11)

where D0 and K0 are the reference extensional and flexural rigidities of the shell, chosen to
be the averages on the middle surface of the shell over the length L2.

For a simply supported shell, the solution of the system of (2.10) is sought as follows:

u(x, s) = U(s) cos βx, (υ(x, s), w(x, s)) =
(
V (s),W(s)

)
sin βx, ψs(x, s) = ψs(s) sin βx,

(Nx(x, s),Ns(x, s), Qs(x, s), Ss(x, s)) =
(
Nx(s),Ns(s), Qs(s), Ss(s)

)
sin βx,

(Nxs(x, s),Nsx(x, s), Qx(x, s)) =
(
Nxs(s),Nsx(s), Qx(s)

)
cos βx,

(Mx(x, s),Ms(x, s)) =
(
Mx(s),Ms(s)

)
sin βx,

(Mxs(x, s),Msx(x, s)) =
(
Mxs(s),Msx(s)

)
cos βx, β =

mπ

L1
, m = 1, 2, . . . ,

(2.12)

where m is the axial half-wave number, and the quantities U(s), V (s), . . . are the state
variables and undetermined functions of s.

3. Matrix Form of the Governing Equations

The differential equations as shown previously are modified to a suitable form and solved
numerically. Hence, by substituting (2.12) into (2.10), after appropriate algebraic operations
and taking relations (2.11) into account, the system of buckling equations of the shell can
be written in nonlinear ordinary differential equations referred to the variable s only are
obtained, in the following matrix form:

a
d

ds

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ũ

Ṽ

W̃

ψ̃s

M̃s

S̃s

Ñs

Ñsx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 V12 0 V14 0 0 0 V18

V21 0 V23 0 0 0 V27 0

0 V32 0 V34 0 0 0 0

V41 0 V43 0 V45 0 V47 0

0 0 0 V54 0 V56 0 0

0 0 V63 0 V65 0 V67 0

0 V72 0 0 0 V76 0 V78

V81 0 0 0 0 0 V87 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ũ

Ṽ

W̃

ψ̃s

M̃s

S̃s

Ñs

Ñsx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.1)
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By using the state vector of fundamental unknowns Z(s), system (3.1) can be written as:

(

a
d

ds

)

{Z(s)} = [V (s)]{Z(s)}, (3.2)

{Z(s)} =
{
Ũ, Ṽ , W̃, ψ̃s, M̃s, S̃s, Ñs, Ñsx

}T
,

(
Ũ, Ṽ , W̃

)
= k0

(
U,V ,W

)
, ψ̃s =

(
k0

β

)

ψs, M̃s =
(

1
β2

)

Ms,

(
S̃s, Ñs, Ñsx

)
=
(

1
β3

)(
Ss,Ns,Nsx

)
.

(3.3)

For the noncircular cylindrical shell which cross section profile is obtained by function (r =
af(θ)), the hypotenuse (ds) of a right triangle whose sides are infinitesimal distances along
the surface coordinates of the shell takes the following form: (ds)2 = (dr)2 + (rdθ)2, then we
have

ds

a
=

√

(
f(θ)

)2 +
(
df(θ)
dθ

)2

dθ. (3.4)

Using (3.4), the system of buckling equations (3.2) takes the following form:

(
d

dθ

)

{Z(θ)} = Ψ(θ)[V (θ)]{Z(θ)}, (3.5)

where Ψ(θ) =
√
(
f(θ)

)2 +
(
df(θ)/dθ

)2, and the coefficients matrix [V (θ)] are given as:

V12 = −
(mπ

l

)
, V14 =

(mπ

l

)2
(
h2

6

)

ϕ, V18 =
(mπ

l

)2
(
h2

6
(1 − ν)ϕ

)

, V21 = ν
(mπ

l

)
,

V23 = −ρ, V27 =
(mπ

l

)3
(

h2

12ϕ

)

, V32 = ρ, V34 = −
(mπ

l

)
, V41 = −νρ,

V43 = −ν
(mπ

l

)2
, V45 =

1
hϕ3

, V46 =
ρh

12ϕ2
, V54 = 2(1 − ν)h

(mπ

l

)2
ϕ2,

V56 = 1, V63 =

(
1 − ν2)(mπ/l)4ϕ3

2
−

pg

(mπ/l)
, V65 = ν

(mπ

l

)
, V67 = ρ

(mπ

l

)
,

V72 = −
pg

(mπ/l)
, V76 = −ρ, V78 =

mπ

l
, V81 =

ϕ
(
1 − ν2)(12/h2)

mπl
−

pg

(mπ/l)
,

(3.6)

V87 = −ν(mπ/l) in terms of the following dimensionless shell parameters: curvature
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parameter ρ = a/R, buckling load factor p = p0(a2/K0), l = L1/a, and h = h0/a. The state
vector {Z(θ)} of fundamental unknowns can be easily expressed as:

{Z(θ)} = [Y (θ)]{Z(0)}, (3.7)

by using the transfer matrix [Y (θ)] of the shell, the substitution of the expression into (3.5)
yields:

(
d

dθ

)

[Y (θ)] = Ψ(θ) [V (θ)][Y (θ)],

[Y (0)] = [I].

(3.8)

The governing system of buckling (3.8) is too complicated to obtain any closed-form solution,
and this problem is highly favorable for solving by numerical methods. Hence, the matrix
[Y (θ)] is obtained by using numerical integration, by use of the Runge-kutta integration
method of forth-order, with the starting value [Y (0)] = [I] (unit matrix) which is given by
taking θ = 0 in (3.7), and its solution depends only on the geometric and martial properties
of the shell. For a plane passing through the central axis in a shell with structural symmetry,
symmetrical and antisymmetrical profiles can be obtained, and consequently, only one-half
of the shell circumference is considered with the boundary conditions at the ends taken to
be the symmetric or antisymmetric type of buckling deformations. Therefore, the boundary
conditions for symmetrical and antisymmetrical bucking deformations are

Ṽ = ψ̃s = 0, S̃sÑsx = 0, Ũ = W̃ = 0, Ñs = M̃s = 0, respectively. (3.9)

4. Buckling Loads and Buckling Modes

The substitution of (3.9) into (3.7) results in the following buckling equations:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Y21 Y23 Y25 Y27

Y41 Y43 Y45 Y47

Y61 Y63 Y65 Y67

Y81 Y83 Y85 Y87

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(π)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ũ

W̃

M̃s

Ñs

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
(0)

= 0, for symmetrical modes,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Y12 Y14 Y16 Y18

Y32 Y34 Y36 Y38

Y52 Y45 Y56 Y58

Y72 Y74 Y76 Y78

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(π)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṽ

ψ̃s

S̃s

Ñsx

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(0)

= 0, for antisymmetrical modes.

(4.1)
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The matrices [Y (π)] depend on the buckling load factor p and the circumferential angle
θ. Equation (4.1) gives a set of linear homogenous equations with unknown coefficients

{Ũ, W̃, M̃s, Ñs}
T

(0) and {Ṽ , ψ̃s, S̃s, Ñsx}
T

(0), respectively, at θ = 0. For the existence of a
nontrivial solution of these coefficients, the determinant of the coefficient matrix should
be vanished. The standard procedures cannot be employed for obtaining the eigenvalues
of the load factor. The nontrivial solution is found by searching the values p which make
the determinant zero by using Lagrange interpolation procedure. The critical buckling load
of the shell will be the smallest member of this set of values. The buckling deformations
(circumferential buckling displacement mode) at any point of the cross section of the shell, for
each axial half mode m, are determined by calculating the eigenvectors corresponding to the
eigenvalues p by using Gaussian elimination procedure.

5. Computed Results and Discussion

A computer program based on the analysis described herein has been developed to study
the buckling behaviour of the shell under consideration. The critical buckling loads and the
corresponding buckling deformations of the shell are calculated numerically, and some of the
results shown next are for cases that have not as yet been considered in the literature. Our
study is divided into two parts in which the Poisson’s ratio ν takes the value 0.3.

5.1. Buckling Results

Consider the buckling of a four-lobed cross section cylindrical shell with circumferential
variable thickness under non-uniform axial loads p(θ), varying over the length L2. The study
of shell buckling is determined by finding the load factor p which equals the eigenvalues of
(4.1) for each value of m, separately. To obtain the buckling loads pB (= p ) we will search the
set of all eigenvalues, and to obtain the critical buckling loads pC(< pB), which correspond to
loss of stability of the shell, we will search the lowest values of this set. The numerical results
presented herein pertain to the buckling loads in the case of uniform and non-uniform loads
for symmetric and antisymmetric type-modes.

The effect of variation in thickness on the buckling loads is presented in Table 1
which gives the fundamental buckling loads factor of a four-lobed cross section cylindrical
shell with radius ratio ζ = 0.5 versus the axial half-wave number m for the specific values
of thickness ratio η, symmetric and antisymmetric type-modes. A-columns and B-columns
correspond to applied non-uniform and uniform axial loads, respectively.

The results presented in this table show that the increase of the thickness ratio tends to
increase the critical buckling load (bold number) for each value of m. These results confirm
the fact that the effect of increasing the shell flexural rigidity becomes larger than that
of increasing the shell mass when the thickness ratio increases. The buckling loads for
antisymmetrical mode have the highest critical loads. The effect of the non-uniformity loads
makes the shell has critical loads some 2-3 times lower than applied uniform loads, so that the
shell buckles more readily and will be less stable for non-uniform loads. The ratio of critical
loads μ takes the values within the (1.1 ∼ 2.9) range and takes the smallest value 1.1 for
the antisymmetrical mode of the shell of constant thickness, and for the shell of variable
thickness, the ratio has the biggest value 2.9. For symmetric modes, the critical buckling
loads pC occurred with m = 5, except for applied axial load with constant thickness which
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occurred with m = 4, and for antisymmetrical modes those occurred with different values of
m (≥ 4) and all for l = 4.

5.2. Buckling Deformations

When a structure subjected usually to compression undergoes visibly large displacement
transverse to the load then it is said to buckle, and for small loads the buckle is elastic
since buckling displacements disappear when the loads are removed. Generally, the buckling
displacements mode is located at the weakest generatrix of the shell where the unsteady
axial compression is a maximum, and the shell has less stiffness. Figures 2 and 3 show the
fundamental circumferential buckling modes of a four-lobed cross section cylindrical shell of
variable thickness under uniform and non-uniform loads corresponding to the critical and
the buckling loads factor listed in Table 1, symmetric and antisymmetric type-modes. The
thick lines show the composition of the circumferential and transverse deflections on the
shell surface while the dotted lines show the original shell shape before buckling case. The
numbers in the parentheses are the axial half-wave number corresponding to the critical or
buckling loads. There are considerable differences between the modes of η = 1 and η > 1 for
the symmetric and antisymmetric types of buckling deformations. For η = 1, in the case of
uniform axial load, the buckling modes are distributed regularly over the shell surface, but for
η > 1, the majority of symmetrical and antisymmetrical buckling modes, the displacements
at the thinner edge are larger than those at the thicker edge, that is, the buckling modes are
localized near the weakest lines on the shell surface. For η = 1, in the case of non-uniform
loads, the buckling modes are located at the weakest generatrix of the shell, where the axial
compression load is a maximum in the compressive zone. For η > 1, the modes of buckling
load are concentrated near the weakest generatrix on the shell surface in the compressive
zone, but the modes of critical load are located at the tensile zone, where the axial load is a
minimum and the thickness is a maximum. This indicates the possibility of a static loss of
stability for the shell at values of pB less than the critical value pC. It can be also opined from
these figures that the buckling behavior for the symmetric pattern is qualitatively similar to
that of antisymmetric mode. Also, it is seen that the mode shapes are similar in the sets of the
buckling modes having the ratio η > 2 for the applied specific loads.

5.3. Particular Case

We consider a special case for a circular cylindrical shell (ζ = 1, η ≥ 1). Table 2 gives the
fundamental buckling loads factor for a circular cylindrical shell of variable thickness versus
the axial half-wave number under the specific load. As was expected, the symmetric and
antisymmetric type-modes give the same values of buckling loads factor versus the thickness
ratio. It is seen from this table, in the case of applied non-uniform axial loads, the shell will
buckle more easily with increasing of axial half-wave number m because the increasing of
m results in the decreasing of p, whereas for more values of m the shell is less stable. In the
case of applied uniform axial loads and constant thickness (η = 1), the critical buckling load
occurred for m = 1, and an increase of m results in an increase of load factor and the shell
will buckle hardly for m > 1. For m > 10 the shell will be more stable because the values of
buckling load factor increase slightly until reaching their convergence values between (290 ∼
291). Whereas in the case of non-uniform axial loads a very fast convergence is observed in
the lowest critical load value for m ≥ 33. With an increase of thickness ratio η the buckling
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A B A B
ζ = 0.5, η = 1

PB = 40.302(1) PB = 94.051(1)

ζ = 0.5, η = 2

PB = 50.989(1) PB = 136.74(1)

ζ = 0.5, η = 5

PB = 88.279(1) PB = 250.304(1)

ζ = 0.5, η = 1

PC = 15.542(5) PC = 42.455(4)

ζ = 0.5, η = 2

PC = 16.812(5) PC = 49.664(5)

ζ = 0.5, η = 5

PC = 20.978(5) PC = 62.135(5)

ζ = 0.8, η = 1

PB = 103.703(1) PB = 226.304(1)

ζ = 0.8, η = 1

PC = 40.985(7) PC = 120.273(7)

ζ = 0.8, η = 2

PC = 42.310(7) PC = 126.016(7)

ζ = 0.8, η = 5

PC = 54.245(5) PC = 137.392(8)

Figure 2: The symmetric buckling deformations of a cylindrical shell of a four-lobed cross section with
variable thickness. {l = 4, h = 0.02}.
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A B A B

ζ = 0.5, η = 1

PB = 94.246(1) PB = 112.686(1)

ζ = 0.5, η = 2

PB = 168.57(1) PB = 284.263(1)

ζ = 0.5, η = 5

PB = 388.71(1) PB = 953.791(1)

ζ = 0.5, η = 1

PC = 43.135(5) PC = 45.996(5)

ζ = 0.5, η = 2

PC = 55.934(8) PC = 136.385(4)

ζ = 0.5, η = 5

PC = 69.048(8) PC = 201.169(8)
ζ = 0.8, η = 1

PB = 146.421(1) PB = 226.361(1)

ζ = 0.8, η = 1

PC = 110.867(11) PC = 121.653(7)

ζ = 0.8, η = 2

PC = 114.942(12) PC = 320.546(6)

ζ = 0.8, η = 5

PC = 126.578(12) PC = 374.472(12)

Figure 3: The antisymmetric buckling deformations of a cylindrical shell of a four-lobed cross section with
variable thickness. {l = 4, h = 0.02}.
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Table 2: The fundamental buckling loads factor p for symmetric and antisymmetric modes of an axially
loaded cylindrical shell, (ζ = 1, l = 4, h = 0.02).

Symmetric & Antisymmetric Modes
η

1 2 5
m A B μ A B μ A B μ

1 143.814 267.355 1.8 189.854 457.252 2.4 335.448 894.988 2.6
2 135.864 295.683 2.1 164.134 432.286 2.6 241.186 673.852 2.7
3 130.580 301.418 2.3 151.581 411.782 2.7 204.525 581.959 2.8
4 127.165 404.754 3.1 143.553 396.756 2.7 183.601 527.618 2.8
5 124.319 309.743 2.5 137.783 385.323 2.7 169.798 491.308 2.8
6 122.243 312.076 2.5 133.457 376.613 2.8 159.812 464.874 2.9
7 120.566 315.157 2.6 130.102 369.922 2.8 152.083 444.416 2.9
8 119.173 314.672 2.6 127.390 364.647 2.8 145.726 427.695 2.9
9 117.985 312.156 2.6 125.647 360.347 2.8 140.133 413.152 2.9
10 116.947 293.795 2.5 123.156 356.685 2.8 134.853 399.486 2.9

A B A B

ζ = 1, η = 1

PB = 143.814(1)

(i)

PC = 267.355(1)

ζ = 1, η = 2

PB = 189.854(1) PB = 457.252(1)

ζ = 1, η = 5

PB = 335.448(1)
PB = 894.908(1)

ζ = 1, η = 1

PB = 135.864(2) PB = 295.683(2)

(ii)

Figure 4: The circumferential buckling modes of a circular cylindrical shell with variable thickness.

loads increase for the uniform and non-uniform loads, and they are lower values for the shell
when the non-uniform loads applied. For η > 1, the ratio of critical loads μ is nearly equal to
2.9.

Figure 4 shows the circumferential buckling modes of a circular cylindrical shell with
variable thickness under the specific load. It is seen from this figure that the buckling
deformations for applied uniform loads are distributed regularly over the shell surface of
constant thickness, see (i), (ii) in Figure 4. These figures are in quite good agreement with
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Figure 5: Critical buckling loads versus thickness ratio of a four-lobed cross section cylindrical shell with
variable thickness, (l = 4, h = 0.02).

[5]. It can also be seen from this figure that the shell of applied non-uniform loads buckles
more easily than one of applied uniform loads.

Figure 5 shows the variations in the critical buckling loads of a non-uniformly loaded
shell of a four-lobed cross section versus the radius ration ζ, for the specific values of thickness
ratio η. The axial half-wave number of corresponding critical buckling loads is shown in this
figure as (m). It is seen from this figure, for the symmetric and antisymmetric type-modes,
that an increase in the radius ratio ζ causes an increase in the critical loads pC, and when
the foregoing ratio becomes unity the latter quantities take the same values and are assumed
to be for a circular cylindrical shell. It is observed that the critical loads increase with an
increase in the thickness ratio where the shell becomes more stiffness. Upon increasing the
radius ratio, the critical buckling axial half-wave number increases. The nominal axial half-
wave number corresponding to the critical buckling load may be in general depends on the
radius of curvature at the lobed corners of the shell.

6. Conclusions

An approximate analysis for studying the elastic buckling characteristics of circumferentially
non-uniformly axially loaded cylindrical shell of a four-lobed cross section having circumfer-
ential varying thickness is presented. The computed results presented herein pertain to the
buckling loads and the corresponding mode shapes of buckling displacements by using the
transfer matrix approach. The method is based on thin-shell theory and applied to a shell



16 Mathematical Problems in Engineering

of symmetric and antisymmetric type-modes, and the analytic solutions are formulated to
overcome the mathematical difficulties associated with mode coupling caused by variable
shell wall curvature and thickness. The fundamental buckling loads and corresponding
buckling deformations have been presented, and the effects of the thickness ratio of the cross-
section and the non-uniformity of applied load on the critical loads and buckling modes were
examined.

The study showed that the buckling strength for non-uniform loads was lower
than that under uniform axial loads. The deformation of corresponding buckling load are
located at the compressive zone of a small thickness but, in contrast, the deformation of
corresponding critical load are located at the tensile zone of a large thickness, and this
indicates the possibility of a static loss of stability for the shell at values of pB less than the
critical value pC. Generally, the symmetric and antisymmetric buckling deformations take
place in the less stiffened zones of the shell surface where the lobes are located. However, for
the applied uniform and non-uniform axial loads, the critical buckling loads increase with
either increasing radius ratio or increasing thickness ratio and become larger for a circular
cylindrical shell.
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