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function. The stability analysis of both strategies was carried out by using the standard Lyapunov
stability theory. Finally, numerical simulations validate the effectiveness of both control approaches
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1. Introduction

Studying, modeling, and controlling the optical tweezers system (OT) has been the subject
of sustained interest during the last years [1, 2] because this system is envisioned as a
challenging problem, as well as a problem with several potential and actual applications.
For instance, the OT system can be used to manipulate micro particles with the advantage
of avoiding the necessity of using invasive techniques (see [3–7], to mention only a few
references).

The OT system consists of a focused laser beam, able to trap and manipulate one
or more micro particles suspended in a colloid or frictionless medium. Researchers of life
sciences have used this system in a number of applications where a micro particle must be
transported from one position to another [8–11]. Many other examples of the applications
of the OT can be found in the specialized literature. For example, in [12] dual beam optical
tweezers have been used to measure the distance dependence of colloidal friction coefficients
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with results in agreement with low-Reynolds numbers calculations. Another useful and
common application presented in [8] is to use the OT to stretch a microtubule on its main
axis by fixing two beads to its ends, which is a standard procedure to measure static forces
on extended tubes, as well as the dynamic effect that happens when these elongations are
carried out at high speeds. Despite the existence of many applications of this device, most
of them have been developed from a rather practical standpoint, where performance and
theoretical aspects were completely ignored or, at best, only slightly treated. However, in
practice, moving a microparticle to a very specific location requires the use of techniques
offered by new developments in modern Control Theory.

In this work we propose two control strategies for moving a micro particle from one
initial position to another final rest position, by manipulating the laser focus of the OT system,
under the assumption that a damping force is present in the medium. The first manipulation
strategy is based on the fact that the damping coefficient of the medium is known, whilst, in
the second one, only an estimation of this parameter is available, which in practice is more
realistic due to the difficulty to estimate this coefficient because it is related to the medium
density that its own value is temperature environment depending. To justify both strategies
we use the traditional Lyapunov method in conjunction with a saturation function. It is
important to mention that our control models are based on the previous works of [2, 13],
and it is assumed that the optical trapping force is perfectly modeled by a Gaussian function,
which is directly related to the potential energy generated by the Gaussian laser beam. Finally,
we mention that the corresponding open loop of the selected model can render a micro
particle to the origin, if it is located close enough to the geometric center of the beam or
inside the stability domain. However, the open loop control model is useless if more complex
tasks have to be carried out or the thermal noise has to be considered, as usually happens
in actual applications. For instance, a suitable feedback state allows to reduce the position
fluctuations produced by the thermal noise, as will be shown in the numerical simulations.

The rest of this work is organized as follows. In Section 2 we present the physical
model of the OT system. In Section 3 we develop two alternative approaches to solve the OT
system positioning problem. Also, in this section we present the corresponding numerical
simulations. The conclusions are presented in Section 4. Finally, the proof of an important
lemma for the obtained results is included in the appendix.

2. Nonlinear Dynamics Model of the OT System

The simplified model of the OT system consists of a spherical microparticle of radius r and
mass m, which is immersed in a viscous medium and trapped in a potential optical field.
The particle is restricted to be inside the (x, y)-plane (see Figure 1). The particle motion is
described by the generalized coordinates x and y, while the control actions are represented
by the position coordinates of the laser focus (x0, y0) (this vector position is related with the
geometrical center of the laser beam with a gaussian intensity profile). The corresponding
motion equations for the OT control model, already obtained in [2], are given by

mẍ +
2 ln(2)p0(x − x0)

a2
exp

[
− ln(2)

(
(x − x0)2

a2
+

(
y − y0

)2

b2

)]
= −βẋ + Fx(t),

mÿ +
2 ln(2)p0

(
y − y0

)
b2

exp

[
− ln(2)

(
(x − x0)2

a2
+

(
y − y0

)2

b2

)]
= −βẏ + Fy(t).

(2.1)
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Figure 1: The OT system.

where p0 is the well depth, a and b are related to the waist of the beam dimensions, βẋ and
βẏ are the drag forces presented in the colloidal medium; with β > 0, being the damping
coefficient, Fx(t) and Fy(t) are the independent external Langevin forces (random thermal),
where the random forces will be modeled as white noise signals [14, 15].

Comment 1. It is easy to show by simple linearization that the above system has one stable
equilibrium point, defined by (x0, y0, 0, 0), which is locally exponentially stable, and a set of
unstable equilibrium points given by (x → ±∞, y → ±∞, 0, 0). It means that if the particle
is located far enough from the centroid (x0, y0), then it cannot be trapped by the Gaussian
potential, unless we move the centroid to a neighborhood near the particle. In other words,
the above system is locally stable in an open loop.

In order to manage the above model in a simple way, we define the following
variables:

x1 = x, x2 = ẋ, xr = x1 − x0,

y1 = y, y2 = ẏ, yr = y1 − y0

(2.2)

and the positive constants

ks =
2 ln(2)p0

a2m
, γ =

β

m
, α =

1
m
. (2.3)
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Thus, system (2.1) can be rewritten as

ẋ1 = x2,

ẋ2 = −1
2
ksxr exp

[
−
(
x2
r

a2
+
y2
r

b2

)]
− γx2 + αFx(t),

ẏ1 = y2,

ẏ2 = −1
2
ksyr exp

[
−
(
x2
r

a2
+
y2
r

b2

)]
− γy2 + αFy(t),

(2.4)

evidently, xr and yr are the new control inputs of system (2.4). From now on, we use q and q̇
to indicate the vector position and the vector velocity of the system, that is, q = [x1, y1] and
q̇ = [x2, y2].

Remark 2.1. Notice that the dynamic model (2.4) is nonaffine in the control variables xr and
yr . Consequently, many standard control strategies cannot be directly applied to manipulate
this kind of system. Also, if the control variables xr and yr are large enough, then the system
loses controllability. Physically, if the particle is located far enough from the laser beam focus,
it is not possible to trap it. However, this inconvenience can be overcome by using a bonded
control or a method based on saturation functions. Fortunately, in the opposite case, that is,
when the control variables xr and yr are small enough (close to zero), the OT system behaves
as a linear system.

We want the reader to notice that system (2.4) is said to be an open loop system if the
controllers x0 and y0 remain constant. In this case, whenever the particle belongs inside its
respective domain of attraction, the open loop system asymptotically attracts it to the origin
(q = 0, q̇ = 0). However, to carry out any control maneuver task, like changing the position of
the particle or making the system more robust against external perturbations such as thermal
noise, we need to apply some control strategy, because the attraction force exerted by the
optical trap is actually a very weak force that decreases exponentially to zero, as long as the
particle moves away from the laser focus (x0, y0).

Before we go any further, we must provide some important considerations related to
our OT controlled model, that help us to establish the scope of this work.

(C.1) The microparticle is restricted to solely move inside the (x, y) plane. The motions
along the z-axis are discarded.

(C.2) We consider the case where the gradient force, generated by the Gaussian potential
energy (induced by the laser beam), is stronger than the scattering force. That is,
the scattering force is not included in the controlled model.

It is important to mention that in almost any work related to the control of the OT
system, the model setup is proposed in such a way that the scattering force is neglected
inside the region, where the system is controlled. In other words, what is looking for is
having a model robust enough, where the gradient force always dominates over the scattering
force (for a detailed treatment of this issue, see [16]). In fact, using feedback control helps to
obtaining a more robust system because it reduces the nondesired effects of non modeled
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dynamics, like the scattering and stochastic forces. However, from the view of physics the
scattering force should be taken into account, in some cases, as mentioned in [17, 18].

We end this section by establishing the control objective of this work.

Problem Statement

In this work we solve the positioning problem of the OT system. This problem consists of
placing a particle trapped by an OT system in a final rest position, given by q = [xf , yf] and
q̇ = 0, starting from any initial position.

3. Stabilization of the OT System

In this section we solve the aforementioned control problem. To this end, we propose two
simple control strategies, both based on the application of the Lyapunov Control Theory in
conjunction with a saturation function. The first control strategy is based on the fact that the
damping coefficient β is known with high precision, while in the second one this restriction
is omitted. Since the stability analysis of the nonlinear dynamic model (2.4) is generally very
difficult to obtain by means of the Lyapunov Method when the thermal noise signals are
present, then for simplicity we assume that external perturbations are Fx(t) = 0 and Fy(t) = 0.
To evaluate the performance of the closed loop system in the presence of the thermal forces
we carried out some numerical simulations and we devoted a section where we discuses the
effect of these forces in our controlled model.

First of all, to avoid large values in the control variable xr and yr , we use a saturation
function, defined as follows.

Definition 3.1. Let M > 0 be a strictly positive real number. We say that σM(w) : R → R is a
saturation function, if it satisfies

(1) σM(w) = 0⇔ w = 0,

(2) wσM(w) ≥ 0 for all w ∈ R,

(3) σM(−w) = −σM(w) for all w ∈ R,

(4) −M ≤ σM(w) ≤M for all w ∈ R.

3.1. First Control Approach

Here we develop a simple control strategy for changing the position of the particle, assuming
that the parameter β is known. To this end, we first introduce a suitable change of variables
to write system (2.4) as two first-order differential equations. Then, using the most simple
quadratic function we derive the needful controllers that assure the asymptotical convergence
at the origin.

Let us introduce the following auxiliary variables:

wx = γ
(
x1 − xf

)
+ x2, wy = γ

(
y1 − yf

)
+ y2. (3.1)
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So, system (2.4) can be easily expressed as

ẇx = −1
2
ksxr exp

[
−
(
x2
r

a2
+
y2
r

b2

)]
,

ẇx = −1
2
ksyr exp

[
−
(
x2
r

a2
+
y2
r

b2

)]
.

(3.2)

Notice that if the variables wx and wy are brought to zero, we have

wx = 0 = γ
(
x1 − xf

)
+ ẋ1, wy = 0 = γ

(
y1 − yf

)
+ ẏ1. (3.3)

Therefore, as γ > 0, we have

lim
t→∞

x1 = xf , lim
t→∞

x2 = 0, lim
t→∞

y1 = yf , lim
t→∞

y2 = 0. (3.4)

From (3.3) and (3.4), we can design a control strategy that brings system (3.2) to the resting
equilibrium point (wx = 0, wy = 0). In other words, we propose a control strategy which
forces the motion of system (3.2), starting from any arbitrary initial condition (wx(0), wy(0))
towards the resting equilibrium point.

We propose the following very simple feedback controllers

xr = −σa(wx)=̂ − εσa
(

1
λ

(
γ
(
x1 − xf

)
+ x2
))
,

yr = −σb
(
wy

)
=̂ − εσb

(
1
λ

(
γ
(
y1 − yf

)
+ y2

))
,

(3.5)

where ε and λ are strictly positive constants. Now, substituting the two controllers (3.5) into
system (3.2), we have the following closed loop system:

ẇx = −1
2
εksσa

(
1
λ
wx

)
e−(x

2
r /a

2+y2
r /b

2),

ẇy = −1
2
εksσb

(
1
λ
wy

)
e−(x

2
r /a

2+y2
r /b

2).

(3.6)

To show that the above system is asymptotically stable, we introduce the following candidate
Lyapunov function:

V =
1
2
w2
x +

1
2
w2
y. (3.7)

Then, the time derivative of V along of the trajectories of system (3.6) produces

V̇ = −1
2
εks

(
wxσa

(
1
λ
wx

)
+wyσb

(
1
λ
wy

))
e−(ε

2σa((1/λ)wx)
2/a2+ε2σb((1/λ)wy)

2/b2). (3.8)
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Figure 2: OT system in closed loop response to the first control strategy. For comparison, the corresponding
open loop response is shown as a dotted line. As expected, the closed loop response outperforms the open
loop response.

Now, from Definition 3.1 we have that sσa(s/λ) > 0; for all s /= 0 and λ > 0, hence V̇ < 0.
(Note that 0 < e−2ε2 ≤ e−(ε

2σa((1/λ)wx)
2/a2+ε2σb((1/λ)wx)

2/b2) ≤ 1.) That is, the solution of system
(3.6) asymptotically converges to (wx = 0, wy = 0). Therefore, from (3.4), as time goes to
infinity, we also have that q → qf and q̇ → 0. Also, we can show that the obtained closed
loop system is locally exponentially stable. This fact can be seen by a simple linearization of
system (3.6).

We finish this section by introducing the following proposition.

Proposition 3.2. Let us consider the nonlinear system (2.4) in closed loop with the controllers

xr = −εσa
(

1
λ

(
γ
(
x1 − xf

)
+ x2
))
, yr = −εσb

(
1
λ

(
γ
(
y1 − yf

)
+ y2

))
, (3.9)
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where ε > 0 and λ > 0. Then the resulting closed loop system is globally asymptotically stable. Besides,
the closed loop system is locally exponentially stable.

Numerical Simulation

The performance of the proposed control strategy, summarized in Proposition 3.2, was tested
with a numerical simulation. The experiment was designed as follows. The system physical
parameters were fixed as

a = 600μm, b = 600μm, p0 = 1 × 10−14 J,

m = 3.68 × 10−14 kg, β = 3.7 × 10−8 Ns/m,
(3.10)

where β was estimated using the Stokes formula, β = 6πηr, where η ∼= 10−3 kg/(ms) is the
water viscosity and r = 2μm is the particle radius (see [2, 11] for details); the initial condition
was set as (x(0) = 4.5 × 10−4, y(0) = −3.6 × 10−4, ẋ(0) = 0, ẏ(0) = 0), the selected feedback
saturation function was σm(s) = mtanh(s), ε = 1, and λ = a. Figure 2 shows the performance
of the closed loop system in comparison to the corresponding open loop system; in both cases
the task goal was bringing the system to the origin, assuming that the initial condition was
close enough to the origin. Recalling that x0 and y0 are the control actions and are related
with the geometric center of the laser focus; in other words, they represent how the OT focus
must be manipulate to achieve the final desires position (xf , yf). As we can see from this
figure, the closed loop strategy achieves faster settling time than the corresponding open loop
strategy, this is one of the main advantages of using feedback state over open loop system.
(For simplicity, we use CL1 to refer the closed loop response of the first control strategy, i.e.,
system (2.4) in closed loop with (3.9). Similarly, OP denotes the corresponding open loop
response, that is, when x0 = 0 and y0 = 0.)

3.2. Second Control Approach

Here we present an alternative control strategy for achieving positioning of the OT system,
under the assumption that, as already mentioned in the introduction, β is an uncertain
parameter. This is well justified since, in an actual application, the damping coefficient
is related with the medium density, which varies as the surrounding or environment
temperature does.

We start by proposing the following feedback controllers:

xr = −εσa
(

1
ε

(
k1
(
x1 − xf

)
+ k2x2

))
=̂ − εσa

(
1
ε
vx

)
,

yr = −εσb
(

1
ε

(
k1
(
y1 − yf

)
+ k2y2

))
=̂ − εσb

(
1
ε
vy

)
,

(3.11)

where the strictly positive gains ε, k1 and k2 will be determinate latter. Naturally, for this case
vx and vy can be seen as the new outputs of the closed loop system.

To show that system (2.4), in closed loop with the feedback (3.11), is asymptotically
stable for some gains ε, k1, and k2, we rewrite the closed loop system as an exponentially
stable linear system, perturbed by two nonlinear residual functions of the outputs vx and vy.
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Next, we shape a convenient candidate Lyapunov function in agreement with Lemma 3.3. In
fact, the Lyapunov function is a quadratic function of both states x and y. Finally, to assure
that the closed loop system is asymptotically stable, we show that the time derivative of the
proposed Lyapunov function is strictly negative.

After some simple manipulation it is easy to verify that the closed loop system, defined
by (2.4) and (3.11), can be expressed as state space representation, given by

ẋ = Ax + Brx
(
vx, vy

)
,

ẏ = Ay + Brx
(
vx, vy

)
,

(3.12)

where

x =

[
x1 − xf
x2

]
, y =

[
y1 − yf
y2

]
, B =

[
0

1

]
, A =

⎡
⎢⎣ 0 1

−k1

2
−k2

2
− γ

⎤
⎥⎦, (3.13)

rx
(
vx, vy

)
:=

1
2

(
vx − εσa

(
1
ε
vx

)
e−w

2
)
,

ry
(
vx, vy

)
:=

1
2

(
vy − εσb

(
1
ε
vy

)
e−w

2
)
,

(3.14)

with w2 = (σ2
a(vx)/a

2 + σ2
b(vy)/b

2).
Before presenting the closed loop stability analysis, we introduce the useful

Lemma 3.3, which allows us to shape the candidate Lyapunov function.

Lemma 3.3. Let x, y, A and B be defined as (3.13). Selecting P and Q, as

P =

[
γk1 k1

k1 k2

]
, Q =

[
k2

1 k1k2

k1k2 k2
2 + 2

(
γk2 − k1

)
]
, (3.15)

where k1 and k2 satisfy γk2 − k1 > 0. Then, P and Q are strictly positive matrices which satisfy

PA +ATP +Q = 0,

xTPB = vx, yTPB = vy.
(3.16)

Besides

Q −K ≥ 0, (3.17)

where K is given by

K =

[
k2

1 k1k2

k1k2 k2
2

]
. (3.18)
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Proof. See the appendix.

Continuing with the stability analysis, we introduce the following candidate
Lyapunov function:

V =
1
2
xTPx +

1
2
yTPy, (3.19)

where matrix P = PT > 0 is selected according to Lemma 3.3.
Then, the time derivative of V along the trajectories of system (3.12) leads to

V̇ = xT
(
PA +ATP

)
x + yT

(
PA +ATP

)
y + 2xTPBrx

(
vx, vy

)
+ 2yTPBry

(
vx, vy

)
. (3.20)

Now, by simple algebra, we have the following two equalities:

2xTPBrx
(
vx, vy

)
= v2

x − εvxσa
(

1
ε
vx

)
e−w

2
= xTKx − εvxσa

(
1
ε
vx

)
e−w

2
,

2xTPBry
(
vx, vy

)
= v2

y − εvyσb
(

1
ε
vy

)
e−w

2
= yTKy − εvyσb

(
1
ε
vy

)
e−w

2
.

(3.21)

Hence, substituting the above equalities into the time derivative of V (3.20), we have

V̇ = −xT (Q −K)x − yT (Q −K)y − εvxσa
(

1
ε
vx

)
e−w

2 − εvyσb
(

1
ε
vy

)
e−w

2
. (3.22)

According to Lemma 3.3 (see definition of Q and (3.17)), we have that the last equality can
be read as

V̇ = −x2
2
(
γk2 − k1

)
− y2

2
(
γk2 − k1

)
− εvxσa

(
1
ε
vx

)
e−w

2 − εvyσb
(

1
ε
vy

)
e−w

2
. (3.23)

The last equality implies that V̇ is strictly negative definite (note that, from definition of w
and a being small and positive, we have 0 < exp[−2a] ≤ exp[−w2] < 1). since sσa((1/ε)s) ≥ 0
for all s ∈ R. Hence, the closed loop system is asymptotically stable. On the other hand, the
simple linearization of the close-loop system (3.12) produces

ẋ = Ax, ẏ = Ay, (3.24)

where, evidently, A is a Hurtwitz matrix. That is to say, the closed loop system is also locally
exponentially stable and robust with respect to the small external perturbation.

Summarizing the previous discussion, we introduce the following proposition.

Proposition 3.4. The nonlinear system (2.4) in closed loop with the feedback (3.11) is globally
asymptotically stable, if the gains k1 and k2 are selected provided that γk2 − k1 > 0. Besides, the
closed loop system is locally exponentially stable.
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Remark 3.5. The positiveness of γk2 − k1 can be easily assured by selecting the gain k1 small
enough in comparison with the gain k2,without knowing the exact values of γ .

Remark 3.6. We believe that the restriction in Remark 3.5 is not strong enough, because it is
always possible to select another set of positive gains k1 and k2, keeping the closed loop
asymptotically stable. This could be shown (at least locally) by using simple linearization.
However, the proof of this conjecture is beyond the scope of this paper, due to the fact that
we would need to shape another Lyapunov function or use the small gain theorem.

Numerical Simulation

The performance of the second control strategy was tested by a second numerical experiment.
The initial conditions and the physical parameter values were the same as in the first
experiment. The gains of the controllers were fixed as k1 = 1/a and k2 = 2/(aβ), with
β = 3 × 10−8, while the saturation function was selected as σa(s) = tanh(s). The control task
was bringing the system to the origin. Figure 3 shows the performance of the closed loop
system in comparison to the corresponding open loop system. Once again the closed loop
strategy achieves faster settling time than the corresponding open loop strategy. Notice that
both system position coordinates with their respective controllers asymptotically converge to
the rest position after 0.11 seconds elapse. Also, as in Figure 2, x0 and y0 are related with the
geometric center of the laser focus. (For simplicity, CL2 denotes the closed loop response
of the second control strategy, i.e., system (2.4) in closed loop by (3.11); OP denotes the
corresponding open loop response.) From the numerical simulations we can see that the first
control strategy has a better settle time than the second one. It was expected since in the first
strategy the damping coefficient is perfectly know.

3.3. Stabilization in the Presence of Thermal Noise

In this section we consider the inherent effect of the thermal noise in our control model. To
this purpose, we designed a numerical simulation, where the external random thermal noise
is included in the model. That is, the independent external random perturbations Fx(t) and
Fy(t) (referred to as the Langevin random thermal forces) are modeled as

Fx(t) =
√

4kbTβη1(t), Fy(t) =
√

4kbTβη2(t), (3.25)

where kb is the Boltzmann’s constant, β is the drag coefficient (estimated by the Stokes
formula), T is the absolute temperature, η1(t) and η2(t) are independent white noise signals,
that is, for all t, t′,

〈
ηi(t)

〉
= 0,

〈
ηi(t)ηj(t′)

〉
= δijδ(t − t′), (3.26)

with the dimension of ηi(t) given by
√
s, for more details about this topic, we recommend

[14, 15] and Chapters 3 and 10 of Risken’s book [19]. The numerical simulations in presence of
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Figure 3: OT system in closed loop response to the second control strategy in a stabilization task. As we
can see the system effectively reaches the final rest position, (xf = 0, yf = 0).

the thermal noise were carried out by using the same physical parameters, as were presented
in (3.10). For simplicity, we take kbT approximately as 3.8 × 10−21 Nm. Hence, we have that√

4kbTβ = 2.5 × 10−10 N/
√
s.

Once again, the first and second control approaches (see (2.4) with (3.9) and (2.4)
with (3.11)) were simulated in the presence of the thermal noise to highlight the advantages
of using feedback state. The control task consists of keeping all the states closed enough to
the origin, under the assumption that the system was initialized at the rest equilibrium point.
To reduce the time execution of the stochastic processes, we used a simple version of Euler-
numerical method, with a sampling time of 1 × 10−7 [s]. In Figure 4 we show both, the open
loop and the closed loop responses to the first control approach. To this end, we use the same
control gains, as in Section 3.1. From this figure we see that in closed loop the thermal force
effect is less dominant than in the open loop. This is one of the main advantages of using
feedback state in comparison with the open loop response. In Figure 5 we show, once again,
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Figure 4: Closed-loop response of the OT system to the first control approach with the corresponding open
loop response (dotted-line), when the OT system is subject to the external thermal forces.
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Figure 5: Closed-loop response of the OT system to the second controller in comparison with the
corresponding open loop response (dotted-line), when the external thermal forces are presented in the
model.

the open loop and the closed loop responses to the second control approach. We use the same
control gains, as were proposed in Section 3.2. As expected, the first strategy outperforms the
second one.

Finally, Figure 6 shows the closed loop response of both OT changing position control
strategies in the presence of the thermal noise. The control goal was bringing the particle from
the origin to the final position (xf = 1.2 × 10−4 m, yf = −1.4 × 10−4 m). Once again, we can
note that the first control strategy outperforms the second one.
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Figure 6: Comparison of the closed loop response of both OT changing position control strategies in the
presence of thermal noise.

4. Conclusions

In this work we have presented two simple control strategies to move a spherical micro
particle trapped in an OT system from one initial condition to a final rest position. The first
control strategy is based on the fact that the damping coefficient presented in the medium is
known, while in the second strategy this condition is omitted. Both manipulation strategies
have been derived by using the traditional Lyapunov method in conjunction with the use of
a saturation function. Numerical simulations have been carried out to show the performance
and effectiveness of the proposed steering strategy. From the obtained numerical simulations,
we claim that both control strategies respond quite well even when the random thermal noise
is presented in the model. As a matter of fact, it is possible to show that both strategies achieve
asymptotic average convergence at the origin by using more sophisticated arguments from
the Stochastic Control Theory. In practice, this is a rather important property, because it allows
to carry out experiments where a located particle needs to be moved to a very specific location
in spite of external random thermal noise.
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Appendix

Proof of Lemma 3.3. We show that P and Q are strictly definite positive. Computing the
determinants of P and Q, we have

det(P) = k1
(
−k1 + γk2

)
, det(Q) = 2k2

1

(
−k1 + γk2

)
. (A.1)

From the assumption γk2 − k1 > 0, we have that both determinants are positive and k1 and γ
are positive, therefore P and Q are positive.

Now, the first matrix equation in (3.15) can be easily tested by substituting the
respective values of the given matrices P ,Q, andA (defined previously in the aforementioned
Lemma 3.3). In the same way, we can check that the equalities in (3.15) hold.

Finally, from the definitions of Q and K, given, respectively, in (3.15) and (3.18), it
follows that wT (Q −K)w = 2(γk2 − k1)w2

2 ≥ 0, for all wT = [w1, w2].

Acknowledgments

This research was supported by the Centro de Investigación en Computación of the Instituto
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[9] A. D. Lúcio, R. A. S. Santos, and O. N. Mesquita, “Measurements and modeling of water transport
and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy,” Physical
Review E, vol. 68, no. 4, Article ID 041906, 6 pages, 2003.

[10] A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Optics and Photonics
News, vol. 10, no. 5, pp. 41–46, 1999.



16 Mathematical Problems in Engineering

[11] K. Volke Sepulveda, I. Ricardez Vargas, and R. Ramos Garcia, “Pinzas ópticas: las delicadas manos de
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