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The interactive behaviors between transverse magnetic fields and axial loads of a magnetoelastic
(ME) beam subjected to general boundary conditions are investigated. In particular, the instability
criterion for the magneto-mechanical buckling problem is intricately discussed based on the
structure characteristics and the initial conditions. The equation of motion for the proposed
physical model is introduced according to the Hamilton’s principle, and the stability criterion is
obtained by using the method of multiple scales implemented on both spatial and time domains.
Eventually a so-called Schrodinger equation with cubic nonlinearity (NLS) can be generated by
suitably changing the variables; as a result, the stable criterion for the magnetoelastic beam can
be acquired after dissecting the nonlinear Schrodinger equation and requiring the imaginary part
of the time domain solution to be vanished. Stability criterion curve for the dispersion equation
of the ME beam is firstly depicted in order to reveal the magnificent influence of the structure
characteristic itself, followed by the instability constraint due to the variation of initial conditions
and the observation locations. The results indicate that the prior one actually denotes a parabola,
whereas the latter one is sometimes a diamond-like or ellipse-like region spotting along the prior
one.

1. Introductions

The electromagnetic phenomena which arose from electrical machinery, communicating
equipments, and computer chips have addressed wide attention in the past years due its
significant role on human’s daily life. and diamagnetic structures such as beams, plates, and
shells are extensively employed in the modern electromagnetic equipments, and accordingly
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provide a real understanding for the mechanism of electricity and magnetism coexisting in
the conventional elasticity.

Since the structures are often set in high magnetic fields, they are correspondingly
subjected to strong magnetic forces resulting from the applied magnetic fields, however, the
magnetic force not only causes the structural deformation but also respectively changes with
the deformation itself. Therefore, when the induced magnetization is under consideration, the
analysis of the magnetoelastic structures with multiphases coupling effects becomes more
complicated, and indeed requires further examination either on the dynamical behavior or
stability issues.

In this paper, the interactive behaviors between transverse magnetic fields and axial
loads of a magnetoelastic beam subjected to general boundary conditions are investigated. In
specific, the instability criterion for the magnetomechanical buckling problem is intricately
discussed according to the structure characteristics as well as the initial conditions. The
fundamental concepts and relations about the electro-magnetic theory are adopted in this
paper based on the content written in [1], and some other systematic references for the
theory of magnetoelastic solid mechanics found in [2] are also contained. Inspections on the
behavior of interaction between magnetic field and mechanical deformation for the structures
made of magnetoelastic materials have been conducted by many researchers and engineers.
Some of them are briefly described in the next paragraph.

Moon and Pao [3] proposed a mathematical model for the buckling problem of a
cantilever beam-plate in a transverse magnetic field with distributed magnetic forces and
torques. Wallerstein and Peach [4] studied the magnetoelastic buckling of beams and plates
with magnetically soft material. Miya et al. [5] investigated the magnetoelastic buckling of
a cantilevered beam-plate by applying the experimental and finite element methods. Moon
and Pao [6] presented the vibration and parametric instability of a cantilevered beam-plate
in a transverse magnetic field and also provided the theoretical and experimental results.
In Moon-Pao’s theoretical analysis, the magnetic torque without axial load was considered;
therefore, the axial load studied in this paper does not apply to their discussion. Kojima et al.
[7] investigated the parameter nonlinear forced vibrations of a beam with a tip mass subjected
to alternating electromagnetic forces acting on the tip mass. Shin et al. [8] have studied the
transient vibrations of a simply supported beam with axial loads and transverse magnetic
fields. Liu and Chang [9] performed the vibration analysis of a beam with general boundary
conditions in a magnetic field subjected to axial load and external force by introducing the
orthogonal characteristic polynomial. Wu [10] performed the analysis of dynamic instability
and vibration motions of a pinned beam with transverse magnetic field and thermal loads.
Pratiher and Dwivedy [11] studied the parametric instability of a cantilever beam with
magnetic field and periodic axial load.

In view of the fact that the interactions among axial load, magnetic force, and magnetic
couples are complicated, yet, important to the dynamical analysis of structural instability, a
magnetoelastic (ME) beam system involving axial load, transverse magnetic field, and spring
foundation is considered in the present paper. For simplicity, the axial force and transverse
magnetic field are assumed to be static, that is, independent of time variable; however, this
paper is aiming at finding out the stability criterions under which the magnetoelastic beam
can be dynamically stabilized; therefore, it is suggested that neither the magnitude of axial
force nor that of the transverse magnetic field should exceed the parameters restrained by the
criterion even though they are set to be periodical or other else.

The equation of motion for the proposed physical model is introduced based on the
authors’ previous work, and some of the quantities related to magnetic field are evaluated
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by adopting reasonable assumptions and approximations. The stability criterion for an
ME beam subjected to both transverse magnetic field and axial load can be obtained by
using the method of multiple scales implemented on both spatial and time variables. After
collecting the small perturbed parameter ε with the same order, a set of relevant partial
differential equations resulting from the perturbation process can thus be derived. Based on
some assumptions dedicating to simplify the mathematical modeling of the whole system,
the analytic solutions of the respective perturbed equations can be solved one by one
successively. As a result of suitably changing the variables, a so-called Schrodinger equation
with cubic nonlinearity (NLS) will be generated from the evaluation of perturbation equation
for O(ε3). By sophisticated technique dissecting the above nonlinear Schrodinger equation,
the criterion for stable condition to the whole system can be acquired by requiring the
imaginary part of the time domain solution to be vanished.

2. Formulations

2.1. Statement of the Problem

In this paper, the physical model of a magnetoelastic (ME) beam system rested upon a
Winkler-type foundation and subjected to axial applied force and transverse magnetic field
as shown in Figure 1 is investigated. The beam is made of linearly magnetoelastic material

with width d, thickness h, length L and is subjected to an applied axial force
⇀

P = P0
⇀
i in the x-

direction and a transverse magnetic field
⇀

B = B0

⇀
j , linear viscous damper in the y-direction,

and attached by the linear springs with constant K. In order to simplify the analysis, the
proposed beam is assumed as Euler-Bernoulli type.

2.2. Mathematical Modeling

Hamilton’s principle [8] is adopted to derive the equation of motion of the beam as follows:

m
∂2w

∂t2
+ Cd

∂w

∂t
+ YI

∂4w

∂x4
+Kw + P

∂2w

∂x2
=
∂c

∂x
+

∂

∂x

[(∫x

0
pdξ

)
∂w

∂x

]
, (2.1)

wherew(x, t) denotes the transverse displacement of the middle plane,m is the mass per unit
length, Cd is the damping coefficient, Y is the Young’s modulus, I is the moment of inertia
of the cross section, K is the constant of spring, P is the axial load per unit length along x
direction, c represents the induced couple per unit length due to the existence of magnetic
field, and p is the body force per unit length contributed by the magnetic force.

For the dia- and para-magnetoelastic material, the magnetization M of the medium
due to the existence of auxiliary magnetic field H can be defined as M = χmH and H can be
determined by the relation B = μ0H with B being the externally applied magnetic field. Thus
the induced couple or magnetic torque can be read as

c =
∫
(M × B)dV, (2.2)
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Figure 1: Physical model for a magnetoelastic (ME) beam subjected to axial load and magnetic field.

in which χm ≡ (μ0 − μ)/μ0 = 1 − μr is the magnetic susceptibility with μ being the material
permeability and μ0 the permeability of free space. The magnetization M can be rewritten
as M = (χm/μ0)B = (χm/μ0)|B0|

⇀
n and is also called volume density of magnetic moment,

meanwhile, the magnetic field B is sometimes called the magnetic displacement or the
induced magnetic field.

According to the small deformation theory, it can be shown [9] that the velocity term,
ẋ, for the magnetoelastic beam can be simplified into

ẋ ≡ dx
dt
≈ −

∫x

0

∂w

∂ξ

∂2w

∂t∂ξ
dξ. (2.3)

As a result, the component of the body force contributed by the magnetic field B can be
written as

p = component
∫
σ

(
⇀
ṙ ×

⇀

B0

)
×
⇀

B0 dV = σB2
0hd

dx

dt
= −σB2

0hd

∫x

0

∂w

∂ξ

∂2w

∂t∂ξ
dξ. (2.4)

Mean while, the component of the magnetic couple induced by the applied magnetic field
can be expressed as

c = component
∫

⇀

M ×
⇀

B0dV =MB0hd sin θ ≈MB0hdθ =MB0hd
∂w

∂x
, (2.5)

in which σ is the electrical conductivity of the ME beam and h and d represent the thickness
and the depth of the beam, respectively.

2.3. Perturbation and Multiscale Method

For the nonlinear differential system stated in (2.1), the solutions in a form of harmonic wave
propagation are permitted, however, with the restriction that the bending wave is slowly
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changed in spatial and time domain than the carrying wave [12]. Therefore, it is fairly feasible
to practice the solution of (2.1) in the following form at the vicinity of the equilibrium state:

w = εw1 + ε2w2 + ε3w3 + · · · , (2.6)

in which the small perturbed parameter can be taken as ε ≡ λc/λe � 1 with λc and λe
indicating the wave lengths of carrying and bending waves, respectively.

By adopting x and t as usual space and time variables for carrying wave, and
performing the method of multiple scales, a set of “slow” time and space variables: Tn = εnt,
Xn = εnx, are introduced in the present study. Due to the principle of chain rule, the operators
of differentiation ∂/∂x and ∂/∂t in (2.1) should be accordingly modified in order to account
for the dependence of “slow” variables Tn and Xn on regular x and t variables; therefore,
these derivatives are transformed into the following operators:

∂

∂x
≡ ∂

∂X0
+
∑
n=1

εn
∂

∂Xn
,

∂

∂t
≡ ∂

∂T0
+
∑
n=1

εn
∂

∂Tn
.

(2.7)

It should be noted that the variables X0 ≡ ε0x = x, Xn, T0 ≡ ε0t = t, and Tn stated above are all
independent variables with respect to each other, and, for the sake of briefness, the variables
T0 and X0 will be replaced by x and t correspondingly in the following derivations and for
the rest of the paper.

Substituting (2.6) and (2.7) into (2.1) and equating the terms with the same order of ε,
one can obtain

O(ε): L0w1 = 0, L0 ≡ m
∂2

∂t2
+ Cd

∂

∂t
+ YI

∂4

∂x4
+K + (P −MB0hd)
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∂x2
, (2.8)
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, (2.9)
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(2.10)
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It is noticed that (2.8) is actually a homogenous version of the governing equation, say (2.1),
and one can easily express the solution of (2.8) in the form of harmonic waves with the
amplitude depending on slow variables, that is,

w1 = A(X1, T1, X2, T2, . . .) exp(iθ) + c.c.,

θ = kx −ωt,
(2.11)

wherein c.c. stands for the complex conjugate and θ can be thought as the phase angle of the
propagating wave. To assure that the net axial load appeared in (2.8), say (P −MB0hd), is of
the compressive type, it is required that this term should be positive in the present study.

According to (2.8), the dispersion equation will have the following form:

mω2 + iCdω +
[
YIk4 − (P −MB0hd)k2 +K

]
= 0, (2.12)

and after imposing implicit differentiation with respect to k on the dispersion equation and
suppose ω = ω(k), the relation between ω and k can be expressed implicitly as

dω

dk
=

4YIk3 − 2k(P −MB0hd)
2mω + iCd

. (2.13)

Substituting (2.11) into (2.9) gives

L0w2 = eiθ
{
∂A

∂T1
[2mωi − Cd] + i

∂A

∂X1

[
4YIk3 − 2(P −MB0hd)k

]}
+ c.c. (2.14)

The first term in (2.14) is secular term or sometimes called the small divisor term, and for the
applicability of theory for excitation, we should demand the elimination of this term, that is,

∂A

∂T1
[2mωi − Cd] + i ∂A

∂X1

[
4YI k3 − 2(P −MB0hd)k

]
≡ 0. (2.15)

Since no other term left in (2.14) after imposing (2.15), there is no particular solution as
a result, the general solution of (2.14) thus can be determined to be identical with the
homogeneous solution, that is,

w2 = A(X1, T1, X2, T2)eiθ = w1. (2.16)
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By taking the same token, substituting (2.11) and (2.16) into (2.10) and demanding the vanish
of secular terms will result in the following expression:

(2miω − Cd) ∂A
∂T2

+ (−m)
∂2A

∂T2
1

+
∂A

∂X2

[
−4YI(ik)3 − 2(P −MB0hd)(ik)

]

+
∂2A

∂X2
1

[
−6YI(ik)2 − (P −MB0hd)

]

−A|A|2
{(

σB2
0hd

)[
(ik)3(−iω)e

2iθ − e−2iωt

2ik
+ (ik)4(−iω) 1

2ik

(
e2iθ − e−2iωt

2ik
− x

e2iωt

)]}

= 0.
(2.17)

Meanwhile, by taking differentiation on (2.15) with respect to k, we have

∂A

∂T1

(
mi

dω

dk

)
+ i

∂A

∂X1

[
6YIk2 − (P −MB0hd)

]
= 0; (2.18)

furthermore, differentiating (2.18) with respect to T1 gives

∂2A

∂T2
1

[
−mdω

dk

]
− ∂2A

∂T1X1

[
6YIk2 − (P −MB0hd)

]
= 0; (2.19)

similarly, differentiating (2.18) with respect to X1 gives

∂2A

∂X1∂T1

[
mi

dω

dk

]
+ i

∂2A

∂X2
1

[
6YIk2 − (P −MB0hd)

]
= 0. (2.20)

Adding the above two equations gets

∂2A

∂T2
1

(−m) +
∂2A

∂X2
1

[
6YIk2 − (P −MB0hd)

]
=

∂2A

∂T1∂X1

[
6YIk2 − (P −MB0hd)

dω/dk
−mdω

dk

]
;

(2.21)

also we have the following results after taking derivative with respect to X1 on (2.15):

∂2A

∂T1∂X1
= −∂

2A

∂X2
1

4YIk3 − 2(P −MB0hd)k
2mω + iCd

= −∂
2A

∂X2
1

dω

dk
; (2.22)
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thus (2.21) becomes

∂2A

∂T2
1

(−m) +
∂2A

∂X2
1

[
6YIk2 − (P −MB0hd)

]
= −∂

2A

∂X2
1

[
6YIk2 − (P −MB0hd) −m

(
dω

dk

)2
]
.

(2.23)

Therefore, (2.17) can be reduced into

(2miω − Cd) ∂A
∂T2

+
∂A

∂X2

[
−4YI(ik)3 − 2(P −MB0hd(ik))

]

− ∂
2A

∂X2
1

[
6YIk2 − (P −MB0hd) −m

(
dω

dk

)2
]
+A|A|2

[
f(x, t)

]
= 0,

(2.24)

where

f(x, t) ≡ −
(
σB2

0hd
)[

(ik)3(−iω)e
2iθ − e−2iωt

2ik
+ (ik)4(−iω) 1

2ik

(
e2iθ − e−2iωt

2ik
− x

e2iωt

)]
.

(2.25)

In order to eliminate some variables, we now introduce a new variable T as

T ≡ T2 +
dk

dω
X2, (2.26)

which implies

∂

∂T
≡ ∂

∂T2

∂T2

∂T
+

∂

∂X2

∂X2

∂T
=

∂

∂T2
+
dω

dk

∂

∂X2
. (2.27)

With the differential operator defined in (2.27), we can rewrite the first two terms in (2.24),
say

(2miω − Cd) ∂A
∂T2

+
∂A

∂X2

[
4YIik3 − 2ik(P −MB0hd)

]
, (2.28)

into the following expression in term of X:

(2miω − Cd)
[
∂A

∂T2
+
dω

dk

∂A

∂X2

]
= (2miω − Cd)∂A

∂T
. (2.29)
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Therefore, the following Schrodinger-type equation can then by obtained as a result

i
∂A

∂T
=

6YIk2 − (P −MB0hd) −m(dω/dk)2

2mω + iCd
∂2A

∂X2
1

+

[
f(x, t)

]
2mω + iCd

A|A|2, (2.30)

which can be simplified as

i
∂A

∂T
= β

∂2A

∂X2
1

+ γA|A|2, (2.31)

where β and γ are complex, and can be expressed as follows:

β ≡ 6YIk2 − (P −MB0hd) −m(dω/dk)2

2mω + iCd
, (2.32)

γ ≡
−
(
σB2

0hd
)

2mω + iCd

[
(ik)3(−iω)e

2iθ − e−2iωt

2ik
+ (ik)4(−iω) 1

2ik

(
e2iθ − e−2iωt

2ik
− x

e2iωt

)]
. (2.33)

By now we have the Schrodinger equation with complex coefficient as mentioned above; if
the viscosity is neglected (Cd = 0), then the Schrodinger-type equation with real coefficients
can then be obtained.

2.4. Stable Criterion for Schrodinger Equation

Equation (2.31) describes a behavior of modulated waves and is commonly referred to as
the nonlinear Schrodinger (NLS) equation with cubic nonlinearity. Even though it has been
proved that there is a solution for the NLS equation with real coefficient [13], however, the
complex coefficients for NLS equation as stated in (2.31) make the analysis become more
difficult, yet no related report can be found up to date.

In the following, an attempt to find the stable criterion for the NLS equation as stated
in (2.31) is conducted; as a first step, we can express the solution for A(X1, T) in the following
form:

A
(
X1, T

)
= A0 exp(iΘ) = A0 exp

[
i
(
κX1 −ΩT

)]
. (2.34)

Substituting it into (2.31) leads to

Ω = −βκ2 + γA2
0; (2.35)
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thus we can have

A
(
X1, T

)
= A0 exp

{
i
[
κX1 +

(
βκ2 − γA2

0

)
T
]}

= A0 exp(iκX1) · exp
[
i
(
βκ2 − γA2

0

)
T
]
.

(2.36)

For the above solution to be stable in the time domain, it is required that the imaginary part
of the frequency should be greater than zero; therefore, the stability criterion would be given
by the following inequality:

Im
(
βκ2 − γA2

0

)
> 0, (2.37)

where A0 can be indicated by the amplitude given in the initial conditions.
However, as we can detect from (2.32) and (2.33) that the value for β is purely real if

damping coefficient Cd is neglected, and the value for γ is definitely complex with strong
dependence on the slow variables, namely, x and t. This phenomenon suggests that the
criterion for stability should be determined not only by the beam characteristics but also
by the initial conditions it was provoked by, namely, the catching time t and the observation
location x as well as the initial amplitudeA0. In the present study, the initial conditions (t = 0)
at a specific location (x = x0) will be accordingly imposed in order to see the spectacular
influence caused by the value of γ , and by substituting related values into the inequality in
(2.37), the diagrams for the stability region subjected to various beam characteristics can be
depicted.

It should be noted that (2.37) shows how initial conditions can affect the stability of the
wave propagation; nevertheless, the stable criterion for the whole system, say the differential
equation, is actually dominated by the dispersion equation stated in (2.12). Therefore, as
far as the stability problem is concerned, we should first examine the stability region for
the dispersion equation with respect to different boundary conditions, and then carefully
point out the instability criterions caused by the initial conditions as well as the observation
location, which are expected to be some subdomains among the prior one or just on the
border.

3. Numerical Examples

For the purpose of demonstration, a low-carbon steel is considered in this study, of which
the material constants [9] are respectively Y = 194 GPa, m = 0.03965 kg/m, L = 0.5 m, h =
0.005 m, d = 0.001 m, μr = 1.00001, μ0 = 4π × 10−7 Hm−1, σ = 107 Sm−1, and K = 1.0 N/m.
To account for the effects of both initial conditions and boundary conditions on the stability
criterion of the ME beam, several cases involving various combinations of these conditions
have been examined. For the convenience of comparison, the catching time for all cases is set
to be t = 0 whereas the magnitude of initial displacement is set to the same with the beam
thickness, that is, A0 = h is chosen for all stability discussions in following examples.

Four kinds of commonly seen boundary conditions are implemented; they are,
respectively, simply supported on both end (S-S), fixed at left and simply supported at right
(C-S), cantilever beam (C-F), and fixed on both ends (C-C). The wave numbers with respect
to the corresponding boundary conditions are stated is Table 1 as a reference despite the fact
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Table 1: The first three wave numbers corresponding to various boundary conditions.

Boundary condition Mode number
N = 1 N = 2 N = 3

S-S
π

L

2π
L

3π
L

C-S
3.926602

L

7.068583
L

10.210176
L

C-F (Cantilever)
1.875104

L

4.694091
L

7.854757
L

C-C
4.730041

L

7.853205
L

10.995607
L

∗S stands for Simply supported, C is for clamped, F is for free end
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2nd mode
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Figure 2: Stability Region for an ME beam with simply supported boundary conditions subjected to axial
load and magnetic; with no spring support.

that they can still be found in any textbook related to the structure vibration problems. Due to
the different beam characteristics with respect to different boundary conditions, the location
for stable observation is properly pinpointed according to the imposed boundary conditions
for each specific case. The observation location x0 for the stability criterion of a cantilever
beam is pinpointed at the right end (x0 = L) of the ME beam; however, for the other cases,
the location is fixed to be at the center point of the beam length, that is, x0 = L/2.

Figure 2 presents the stability region for a magnetoelastic beam with S-S boundary
conditions subjected to axial external force and transverse magnetic field; the effect of spring
foundation is here neglected. Three modes of wave number are calculated; magnetic field is
ranging from −500 Tesla to 500 Tesla whereas the axial external force is from −10 N to 30 N.
The signs for magnetic fields and axial forces simply indicate the direction these forces are
applying to, that is, positive axial force means compression while negative implies tension,
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Figure 3: Stability Region for an ME beam with clamped-hinged boundary conditions subjected to axial
load and magnetic field with no spring support.

positive magnetic field represents upward, and negative denotes downward. As it can be
detected from Figure 2, the stability criterion curve for the dispersion equation, say (2.12),
is indeed a parabola, and the instability constraint due to the initial condition, say (2.33), is
presented in the shaded region, in which the parameters reside will incur imaginary parts of
(2.37) to be negative. It should be noted that due to the numerical discreteness, the latter one
looks like a shape of diamond; however, it is not necessarily a diamond and might be a circle
or ellipse.

Figures 3–5 demonstrate the stability regions for a magnetoelastic beam with other
boundary conditions subjected to the same setting as in Figure 2. Parabola for criterion curve
can be observed again and the shaded regions are sometimes replaced by the lined regions,
which indicate that the parameters for instability might not be compact on a bounded zone.
By the fact that the strong instability due to the initial conditions and observation points
makes the analysis become more complicated, a slight change in the number of shaded
regions can be noticed, and a new added ellipse centered in the vicinity of zero magnetic field
is detected. This incident reminds us that even though no external magnetic field is applied,
that is, pure buckling problem for the ME beam is under consideration, yet we must be careful
on examining the initial conditions in addition to the buckling criteria, so that accidentally
invoking the instability of the system can be avoided. However, due to the distinct natures
with respect to different boundary conditions, the aforementioned instability ellipses can be
found to be centered along different modes of dispersion curves.

As it can be seen from Figure 3, the instability ellipse is center at the dispersion curve of
the first mode for an ME beam with clamped-hinged boundary conditions. Also it is noticed
that the instability diamonds become more frequently appeared along the curves than the
simply supported case. Nevertheless, unlike the clamped-hinged case, the instability ellipses
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Figure 4: Stability Region for an ME beam with cantilever boundary conditions subjected to axial load and
magnetic field with no spring support.
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Figure 5: Stability Region for an ME beam with fixed-fixed boundary conditions subjected to axial load
and magnetic field with no spring support.
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Figure 6: Stability Region for an ME beam with simply supported boundary conditions subjected to axial
load and magnetic field with various spring constants.

for the cantilever ME beam, see Figure 4, can be found to seat on the dispersion curve of the
third mode. In particular, the number of instability diamond is dramatically soaring so that
almost every mode possesses at least 8 of the particular zones. Similar situation can also be
observed in the case of fixed-fixed ME beam as shown in Figure 5, except that a remarkable
instability ellipse resides on the dispersion curve of the second mode. It seems that on the
curve of the second mode the instability restraints due to the initial conditions are compactly
revealed, that is, we should put more attention when dealing with the instability problem for
the second mode than the others.

Figure 6 demonstrates the dispersion curves of a simply supported ME beam subjected
to external axial load and magnetic field with respect to various spring constant as
foundation. As we expected, the larger value of spring constant results in the wider stability
region to the ME beam system, that is, spring foundation plays a role in stabilizing the system,
that is, if some certain axial load and magnetic field are necessarily imposed on the EM beam
system, one way to promote the stability region, or to avoid instability, is to put the system
on the Wrinkler-type foundation, thus system stability can still be retained.

At last, in order to verify the correctness of the results obtained by using the proposed
method, the time responses of the system are presented for the stable and unstable regions
individually. If we take simply supported ME beam as an example, adopting sinusoidal
functions to be the mode shapes of the system, a set of temporal equations can be achieved
after imposing Galerkin’s procedure on (2.1); therefore, by performing Runge-Kutta method,
the time responses of the system at middle point of the beam can be carried out for any
desired modes.

Figure 7 depicts the ratio of displacement to beam thickness when the magnetic field
and axial load are taken from the stable region as shown in Figure 2, while Figure 8 shows the
results taken from the unstable region as a comparison. As it can be detected from Figure 7,
when B = 10 Tesla and P = 3.0 N, the time responses of the system for the first, second, and
third modes are plotted and the total deflection is calculated, all of which can be found to be
of stable state. On the other hand, as B = 10 Tesla and P = 4.0 N are chosen in Figure 8, the
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Figure 7: Transit response for an ME beam with simply supported boundary conditions subjected to axial
load and magnetic field within stable region.

time response for the first mode is divergent, and those for the second and third modes are
convergent; thus the total deflection is unstable as a result.

4. Conclusions

In this paper, the interactive behaviors between transverse magnetic fields and axial loads
of a magnetoelastic (ME) beam subjected to general boundary conditions are investigated. In
particular, the instability criterion for the magneto-mechanical buckling problem is intricately
discussed according to the structure characteristics as well as the initial conditions. The
equation of motion for the proposed physical model is introduced based on the Hamilton’s
principle, and the stability criterion is obtained by using the method of multiple scales
implemented on both spatial and time domains. By performing the perturbation procedure,
a set of relevant partial differential equations can thus be derived with respect to different
collecting order; meanwhile the analytic solutions for the respective perturbed equations can
be resolved order by order successively based on some simplifications. Eventually a so-called
Schrodinger equation with cubic nonlinearity (NLS) can be generated by suitably changing
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Figure 8: Divergent response for an ME beam with simply supported boundary conditions subjected to
axial load and magnetic field outside the stable region.

the variables; as a result, the stable criteria for the magnetoelastic beam can be acquired
after dissecting the nonlinear Schrodinger equation and requiring the imaginary part of
the time domain solution to be vanished. Four kinds of boundary conditions are imposed
to a low-carbon steel beam structure as examples in order to implement the proposed
methodology, and the effects of both initial conditions and boundary conditions on the
stability criterion of the ME beam are examined in detail. Stability criterion curve for the
dispersion equation of the ME beam is firstly depicted in order to reveal the magnificent
influence of the structure characteristic itself, followed by the instability constraint due to
the variation of initial conditions and the observation locations. The prior one is actually
denoting a parabola, whereas the latter one is sometimes a diamond-like or ellipse-like region
spotting along the prior one. By the fact that the strong instability due to the initial conditions
and observation points makes the analysis become more complicated, a slight change in the
number of instability diamond can be noticed with respect to different boundary conditions,
and an extra added instability ellipse centered in the vicinity of zero magnetic field is also
detected for the cases other than simply supported beam. As we expected, the larger value
of spring constant results in the wider stability region to the ME beam system, that is, spring
foundation plays a role in stabilizing the system.
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