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The aim of this paper is to present the result about asymptotic approximation of the micropolar
fluid flow through a thin (or long) straight pipe with variable cross section. We assume that the
flow is governed by the prescribed pressure drop between pipe’s ends. Such model has relevance
to some important industrial and engineering applications. The asymptotic behavior of the flow is
investigated via rigorous asymptotic analysis with respect to the small parameter, being the ratio
between pipe’s thickness and its length. In the case of circular pipe, we obtain the explicit formulae
for the approximation showing explicitly the effects of microstructure on the flow. We prove the
corresponding error estimate justifying the obtained asymptotic model.

1. Introduction

The Navier-Stokes model of classical hydrodynamics has a drastic limitation: it does not
take into account the microstructure of the fluid. One of the best-established theories of
fluids with microstructure is the theory of micropolar fluids, introduced by Eringen [1]. The
mathematical model of micropolar fluid enables us to study many physical phenomenae
arising from the local structure and micromotions of the fluid particles. It describes the
behavior of numerous real fluids (such as polymeric suspensions, liquid crystals, muddy
fluids, and animal blood) better than the classical Navier-Stokes model, especially when the
characteristic dimensions of the flow (e.g., diameter of the pipe) become small. Due to its
importance in industrial and engineering applications, there are large number of papers on
micropolar fluid flow, mostly in the engineering literature (see, e.g., [2–7]). The monograph
[8] provides a unified picture of the mathematical theory underlying the applications of this
particular model. We would also like to point out two recent papers of Dupuy et al. [9, 10]
in which the authors rigorously derive asymptotic models for two-dimensional micropolar
flow through a periodically constricted tube and a thin curvilinear channel. It is important
to emphasize that 2D setting (in which the microrotation is a scalar function) has often been
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employed, especially in blood motion modeling. However, in the present paper, our aim is to
study 3D flow describing the real physical situation.

We consider one important application of micropolar fluids: laminar flow in a straight
pipe with variable cross section. We suppose that the flow is stationary and governed by the
prescribed pressure drop between pipe’s ends. It is well-known that the stationary Navier-
Stokes system describing the viscous flow in straight pipe with impermeable walls governed
by the prescribed pressure drop has a solution in the form of the Poiseuille flow, which in
case of pipe with constant circular cross section reads

v(r) =
Δp

4μL

(
R2 − r2

)
,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v: velocity,

μ : viscosity,

Δp: pressure drop,

L, R: pipe′s length and radius.

(1.1)

However, Poiseuille formula gives an exact solution only in case of laminar flow of
Newtonian fluid through a pipe with constant cross section. If the pipe has a variable cross
section or it is curved, one can only derive the approximation of the solution by a singular
perturbation techniques (see, e.g., [11–14]). Here we deal with the micropolar fluid model
(representing the generalization of the Navier-Stokes model) which introduces a new vector
field, the angular velocity field of rotation of particles (microrotation). Correspondingly, one
new vector equation is added to Navier-Stokes system, expressing the conservation of the
angularmomentum.Naturally, one cannot hope to obtain the exact solution of such (coupled)
system of equations so our goal is to derive an asymptotic approximation of the solution
and evaluate the difference between the exact solution of the governing problem (which we
cannot find) and the asymptotic one. Generally, there are several methods that enables us to
find the asymptotic behavior of the flow. By taking the average over the cross section of the
pipe, we can obtain simple one-dimensional approximation, based on the assumption that,
in case of very thin (or very long) pipe, the variations of the solution on the cross section
are of no relevance for the global flow. However, obtained approximation would have low
order of accuracy and gives no information about flow profile in the pipe. Another approach,
which we use here, is based on the rigorous asymptotic analysis with respect to the small
parameter ε, introduced as the ratio between pipe’s thickness and its length. It relies on two-
scale asymptotic expansions in powers of small parameter which, in our case, have the form

Uε(x) = ε2U0

(
x1,

x′

ε

)
+ ε3U1

(
x1,

x′

ε

)
+ · · · (velocity),

Wε(x) = ε2W0

(
x1,

x′

ε

)
+ ε3W1

(
x1,

x′

ε

)
+ · · · (microrotation),

Pε(x) = P0(x1) + εP1

(
x1,

x′

ε

)
+ · · · (pressure).

(1.2)

The variable x1 is directed along the pipe, while x′ = (x2, x3) describes the cross section. The
role of dilated (fast) variable y′ = x′/ε is to capture the fast changes of the solution on the
pipe’s cross section. Plugging the above expansions in the governing system and collecting
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the terms with equal powers of ε, lead us to the recursive sequence of linear problems.
Assuming that the pipe’s cross section is circular (which is the most common case in real-
life situations), we are in position to solve those problems explicitly and to clearly observe
the influence of the microstructure on the effective flow. The main difficulty arises from the
fact that the governing system is coupled so we have to simultaneously solve boundary-value
problems for velocity and for microrotation. Furthermore, in some thin layer in the vicinity
of pipe’s ends we have some influence of the boundary condition for the microrotation
which cannot be captured by the formal (interior) expansion, so we have to construct the
appropriate boundary-layer correctors to fix our approximation.

The paper is organized as follows: in Section 2, we describe the geometry of our three
dimensional domain and present the governing system of equations describing the fluid
motion. After discussing its solvability, in Section 3, we write the problem in rescaled domain
(independent of small parameter ε) and construct an asymptotic expansion of the solution
in terms of the pipe’s thickness. The last section is devoted to rigorous justification of the
derived asymptotic model. After deriving some a priori bounds for the original solution, we
prove the error estimates in the appropriate norm. It turns out that our asymptotic solution
approximates the flow with an error of order ε3

√
ε for the velocity and with an error of order

ε4 for the microrotation.

2. Position of the Problem

2.1. The Geometry

In order to describe the thin pipe with a small parameter ε appearing explicitly, we first
introduce

Ω =
{(

x1, y
′) ∈ R3 : 0 < x1 < �, y′ =

(
y2, y3

) ∈ B(x1)
}
, (2.1)

where the family of bounded domains {B(x1)}x1∈[0,�] ⊂ R2 is chosen such that Ω is locally
Lipschitz. Now, we define our thin pipe with variable cross section B(x1) and length � by

Ωε =
{
x =

(
x1, x

′) ∈ R3 : 0 < x1 < �, x′ = (x2, x3) ∈ ε B(x1)
}
. (2.2)

We are particularly interested in the case when the pipe Ωε has circular cross section, that is,
when

B(x1) =
{
y′ ∈ R2 :

∣∣y′∣∣ < R(x1)
}
, (2.3)

with R being a strictly positive bounded function defined on R. Finally, we denote the ends
of the pipe by Σi

ε = εB(i), i = 0, �, while its lateral boundary is given by

Γε =
{
x =

(
x1, x

′) ∈ R3 : 0 < x1 < �, x′ = (x2, x3) ∈ ε∂B(x1)
}
. (2.4)



4 Mathematical Problems in Engineering

2.2. The Governing Equations

The governing system of equations expresses the balance of momentum, mass, and angular
momentum, which in stationary regime reads

−μΔuε + (uε∇)uε +∇pε = a rotwε + f, (2.5)

divuε = 0, in Ωε, (2.6)

−αΔwε + (uε∇)wε − β∇divwε + γwε = a rotuε + g. (2.7)

The unknown functions are uε,wε and pε standing for the velocity, the microrotation and the
pressure of the fluid, respectively. The fields f = f(x1), g = g(x1) represent given external
forces and moments, respectievly and we assume f,g ∈ C1([0, �])3. Viscosity coefficients read
μ = ν+νr , a = 2νr , α = ca+cd, β = c0+cd−ca, γ = 4νr , where ν, νr , c0, ca, cd are the given positive
constants (ν is the usual Newtonian viscosity, νr is microrotation viscosity, c0, ca, cd are the
coefficients of angular viscosities). Observe that if we put νr to be equal zero, then the system
becomes decoupled and (2.5)-(2.6) reduce to classical Navier-Stokes equations. We refer the
reader to [8] for a rigorous derivation of the above system from general conservation laws.

We complete the system (2.5)–(2.7) with the following boundary conditions

uε = 0 on Γε, (2.8)

e1 × uε = 0, pε = qi on Σi
ε, i = 0, �, (2.9)

wε = 0 on ∂Ωε, (2.10)

where (e1, e2, e3) denotes the standard Cartesian basis.

Remark 2.1. By prescribing constant pressures q0, q� on Σi
ε, we assure that the fluid flow is

governed by a pressure drop between pipe’s ends. Condition (2.8) is the classical no-slip
boundary condition for the velocity. Imposing that the tangential component of the velocity
e1 × uε equals to zero is not a serious restriction since the only part that counts is the normal
part, due to the Saint-Venant’s principle for thin domains (see, e.g., [11]). The boundary
conditions for the velocity and pressure as in (2.8), (2.9) are physically clear and justified. On
the other hand, there exists no general agreement about the type of the boundary condition
one should set for microrotation. The most commonly used throughout the literature is the
one as in (2.10), although we can also find other types of boundary conditions (see, e.g.,
[15, 16]). Nevertheless, it must be emphasized that not much has been done in proving the
well-posedeness of the corresponding boundary-value problems, except in the case of the
classical Dirichlet condition (2.10).

In [8, Chapter 2, pages 60–69], the homogeneous Dirichlet boundary-value problem
for an incompressible micropolar fluid is considered, with velocity prescribed on the whole
boundary. Using fixed-point argument, the existence of its weak solution is proved (Theorem
1.1.1). Furthermore, such solution is shown to be unique if the viscosity μ is large enough
(Theorem 1.1.2). In our setting (2.5)–(2.10), the only difference is that we prescribe the
value of pressures at pipe’s ends in order to consider the situation naturally arising in
the applications. Pressure boundary condition (2.9)2 should be considered in view of the
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corresponding variational formulation: find uε ∈ Vε = {v ∈ H1(Ωε)
3 : div v = 0 in Ωε, v = 0

on Γε, e1 × v = 0 on Σi
ε, i = 0, �}, wε ∈ H1

0(Ωε)
3, such that

μ

∫

Ωε

∇uε∇v +
∫

Ωε

(uε∇)uε v = q0

∫

Σ0
ε

v · e1 − q�

∫

Σ�
ε

v · e1 + a

∫

Ωε

rotwε · v +
∫

Ωε

fv, (2.11)

for any v ∈ Vε. As we can see, the nonlinear term in (2.11) does not vanish, causing
the absence of the energy equality. Such technical difficulty can be elegantly overcome by
prescribing dynamic (Bernoulli) pressure p + (1/2)|u|2 (which has no physical justification
in the case of viscous fluid), or by restricting to the case of small boundary data. Indeed,
from (2.11), it follows that we do not actually impose the value of the pressure at pipe’s ends
x1 = 0, �, but only the pressure drop q0 − q� . Following the approach first proposed in [17]
(see also [18] for details) and supposing that the pressure drop is reasonably small, one can
easily adapt the proof of Theorems 1.1.1 and 1.1.2 from [8] to our situation and prove that the
velocity uε is unique in some ball BR0 = {v ∈ Vε; ‖∇v‖L2(Ωε) ≤ R0}, with radius R0 remaining
bounded as ε → 0. This fact is crucial for proving the a priori estimate for the velocity since
it enable us to control the inertial term in (2.5) (see Section 4, Proposition 4.2).

3. Asymptotic Analysis

3.1. Rescaling of the Domain

Our main goal is to find the asymptotic behavior of the flow, as the thickness ε → 0. To
accomplish that, we first need to rescale the domain, that is, to write the governing problem
on Ω instead of Ωε. Introducing the new functions

Uε

(
x1, y

′) = uε

(
x1, εy

′), Pε

(
x1, y

′) = pε
(
x1, εy

′), Wε

(
x1, y

′) = wε

(
x1, εy

′), (3.1)

we can write the equations (2.5)–(2.7) in the following form:

− μ

(
∂2Uε

∂x2
1

+
1
ε2
Δy′Uε

)
+U1

ε

∂Uε

∂x1
+
1
ε

(
Uε∇y′

)
Uε +

∂Pε

∂x1
e1 +

1
ε
∇y′Pε

=
a

ε

(
∂W3

ε

∂y2
− ∂W2

ε

∂y3

)
e1 +

a

ε
roty′W1

ε − a
∂W3

ε

∂x1
e2 + a

∂W2
ε

∂x1
e3 + f(x1),

(3.2)

∂U1
ε

∂x1
+
1
ε
divy′Uε = 0, in Ω, (3.3)

− α

(
∂2Wε

∂x2
1

+
1
ε2
Δy′Wε

)
+U1

ε

∂Wε

∂x1
+
1
ε

(
Uε∇y′

)
Wε

− β

(
∂2W1

ε

∂x2
1

e1 +
1
ε

∂

∂x1

(
divy′Wε

)
e1 +

1
ε
∇y′

(
∂W1

ε

∂x1

)
+

1
ε2
∇y′
(
divy′Wε

))
+ γWε

=
a

ε

(
∂U3

ε

∂y2
− ∂U2

ε

∂y3

)
e1 +

a

ε
roty′U1

ε − a
∂U3

ε

∂x1
e2 + a

∂U2
ε

∂x1
e3 + g(x1).

(3.4)
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Here and in the sequel, we use the following notations for the formal partial differential
operators:

divy′V =
∂V 2

∂y2
+
∂V 3

∂y3
, Δy′V =

∂2V
∂y2

2

+
∂2V
∂y2

3

, V i = V · ei,

∇y′v =
∂v

∂y2
e2 +

∂v

∂y3
e3, roty′v =

∂v

∂y3
e2 − ∂v

∂y2
e3.

(3.5)

3.2. Asymptotic Expansions

In this section, we construct the formal asymptotic expansion of the solution in powers of
small parameter ε. As mentioned in Introduction, we expand as follows:

Uε

(
x1, y

′) = ε2U0
(
x1, y

′) + ε3U1
(
x1, y

′) + · · · ,

Wε

(
x1, y

′) = ε2W0
(
x1, y

′) + ε3W1
(
x1, y

′) + · · · ,
Pε

(
x1, y

′) = P0(x1) + εP1
(
x1, y

′) + · · · .

(3.6)

3.2.1. First-Order Approximation

Substituting the expansions (3.6) into the rescaled equations (3.2)–(3.4), after collecting the
terms with equal powers of ε, we obtain the following problems for first-order approximation
(U0, P0,W0):

1 : −μΔy′ U0 +
dP0

dx1
e1 +∇y′P1 = f(x1) in Ω,

ε : divy′ U0 = 0 in Ω,

U0 = 0 on Γ,

(3.7)

1 : −αΔy′W0 − β∇y′
(
divy′W0

)
= g(x1) in Ω,

W0 = 0 on Γ.
(3.8)

Here, we denote Γ = {(x1, y
′) ∈ R3 : 0 < x1 < �, y′ ∈ ε∂B(x1)}. Notice that the problems

for the velocity and the microrotation are, at this stage, decoupled. The system (3.7) can be
solved by taking

U0
(
x1, y

′) = 1
μ
χ
(
x1, y

′)
(
f1(x1) − dP0

dx1
(x1)

)
e1, P1

(
x1, y

′) = f2(x1)y2 + f3(x1)y3,

(3.9)

where fi = f ·ei and χ(x1, y
′) denotes the solution of the auxiliary problem posed on the cross

section B(x1):

−Δy′χ(x1, ·) = 1 in B(x1), χ(x1, ·) = 0 on ∂B(x1). (3.10)
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If the pipe has circular cross section (2.3), we can compute χ explicitly from (3.10):

χ
(
x1, y

′) = 1
4

(
R(x1)2 −

∣∣y′∣∣2). (3.11)

We still have to determine P0(x1). The next term in (3.7)2 implies

ε2 :
∂U1

0

∂x1
+ divy′U1 = 0 in Ω. (3.12)

Integration over B(x1)with respect to y′ yields

∂

∂x1

(∫

B(x1)
U1

0 dy′
)

= 0 =⇒
∫

B(x1)
U1

0dy
′ = C1 = const. (3.13)

Introducing

θ(x1) =
∫

B(x1)
χ
(
x1, y

′)dy′, (3.14)

from (3.9)1, we deduce

θ(x1)
(
f1(x1) − dP0

dx1
(x1)

)
= C1. (3.15)

It follows

P0(x1) = −C1

∫x1

0

dξ

θ(ξ)
+
∫x1

0
f1(ξ)dξ + C2, (3.16)

with C2 being an arbitrary constant. Taking into account the pressure boundary condition
(2.9)2, we get

C1 =

(∫�

0

dξ

θ(ξ)

)−1(
q0 − q� +

∫�

0
f1(ξ)dξ

)
, C2 = q0. (3.17)

Therefore, in the case of circular pipe, we have

P0(x1) = q0 +
∫x1

0
f1(ξ)dξ −

(
q0 − q� +

∫�

0
f1(ξ)dξ

)(∫�

0

dξ

R(ξ)4

)−1 ∫x1

0

dξ

R(ξ)4
, (3.18)

U0
(
x1, y

′) = R(x1)2 −
∣∣y′∣∣2

4μR(x1)4

(∫�

0

dξ

R(ξ)4

)−1(
q0 − q� +

∫�

0
f1(ξ)dξ

)
e1. (3.19)
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Similarly, it can be verified that the problem (3.8) for microrotation will be satisfied for

W1
0
(
x1, y

′) = 1
α

χ
(
x1, y

′)g1(x1) =
1
4α

(
R(x1)2 −

∣∣y′∣∣2)g1(x1),

W2
0
(
x1, y

′) = 2
2α + β

χ
(
x1, y

′)g2(x1) =
1

2
(
2α + β

)
(
R(x1)2 −

∣∣y′∣∣2)g2(x1),

W3
0

(
x1, y

′) = 2
2α + β

χ
(
x1, y

′)g3(x1) =
1

2
(
2α + β

)
(
R(x1)2 −

∣∣y′∣∣2)g3(x1), gi = g · ei.

(3.20)

3.2.2. Correctors

Now, we compute the correctors. The O(ε) term from momentum equation (3.2) gives

ε : −μΔy′U1 +∇y′P2 = a

(
∂W3

0

∂y2
− ∂W2

0

∂y3

)
e1 + a roty′W1

0 −
∂P1

∂x1
e1. (3.21)

The system is not decoupled anymore, so the effects of themicrostructure on the fluid velocity
occur. Inserting the expressions for P1 andW0 derived for circular pipe, we get the following
problem for the first component:

μΔy′U1
1 =

(
df2

dx1
+

ag3

2
(
2α + β

)
)
y2 +

(
df3

dx1
+

ag2

2
(
2α + β

)
)
y3 in Ω,

U1
1 = 0 on Γ.

(3.22)

Let us introduce χi(x1, y
′), i = 2, 3 as the solutions of the following two problems posed on

B(x1):

Δy′χi

(
x1, y

′) = yi in B(x1), χi(x1, ·) = 0 on ∂B(x1). (3.23)

Taking into account (2.3) and using the polar coordinates yield

χ2
(
x1, y

′) = 1
8

(∣∣y′∣∣2 − R(x1)2
)
y2, χ3

(
x1, y

′) = 1
8

(∣∣y′∣∣2 − R(x1)2
)
y3. (3.24)

We seek the solution of system (3.22) in the form

U1
1 =

1
μ

[
χ2

(
df2

dx1
+

ag3

2
(
2α + β

)
)

+ χ3

(
df3

dx1
+

ag2

2
(
2α + β

)
)]

, (3.25)
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implying

U1
1

(
x1, y

′) = 1
8μ

(∣∣y′∣∣2 − R(x1)2
) [

y2

(
df2

dx1
(x1) +

ag3(x1)
2
(
2α + β

)
)

+ y3

(
df3

dx1
(x1) +

ag2(x1)
2
(
2α + β

)
)]

.

(3.26)

For the other two velocity components from (3.21) and (3.3), we obtain

ε : −μΔy′ U′
1 +∇y′P2 = a roty′ W1

0 = − a

2α
g1(x1)

(
y3e2 − y2e3

)
in Ω,

ε2 : divy′U′
1 = −∂U

1
0

∂x1
/= 0 in Ω,

U′
1 = 0 on Γ,

(3.27)

where U′
1 = (U2

1, U
3
1). Because U

′
1 is not divergence-free, it is not likely that the above system

can be explicitly solved. However, it is important to emphasize that, since
∫
B(x1)

(∂U1
0/∂x1) =

0, such problem admits a unique solution (U′
1, P2) ∈ H1(Ω)×L2(Ω) (see Theorem IV.6.1. from

[19]).
It remains to construct the corrector for the microrotation. From (3.4), we deduce

ε : −αΔy′W1 − β∇y′
(
divy′W1

)
= β

(
∂

∂x1

(
divy′W0

)
e1 +∇y′

(
∂W1

0

∂x1

))
+ a roty′U1

0. (3.28)

If we write the above system by the components and take into account (3.19) and (3.20), we
get

Δy′W1
1 =

β

α
(
2α + β

)
(
y2

dg2

dx1
+ y3

dg3

dx1

)
,

αΔy′W2
1 + β

∂

∂y2

(
divy′W1

)
=

β

2α
dg1

dx1
y2 +

a

2μR4

(∫�

0

dξ

R(ξ)4

)−1(
q0 − q� +

∫�

0
f1(ξ)dξ

)
y3,

αΔy′W3
1 + β

∂

∂y3

(
divy′W1

)
= − a

2μR4

(∫�

0

dξ

R(ξ)4

)−1(
q0 − q� +

∫�

0
f1(ξ)dξ

)
y2 +

β

2α
dg1

dx1
y3,

W1
1 = 0 on Γ.

(3.29)

Similarly as forU1
1, we obtain

W1
1

(
x1, y

′) = β

8α
(
2α + β

)
(∣∣y′∣∣2 − R(x1)2

)(
y2

dg2

dx1
+ y3

dg3

dx1

)
. (3.30)
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The problem satisfied by the other two components W2
1 , W

3
1 must be solved carefully as a

system implying

W2
1

(
x1, y

′) =
(∣∣y′∣∣2 − R(x1)2

)
⎡
⎢⎣y2

β

16α
(
α + β

) dg
1

dx1
(x1) + y3

a
(
q0 − q� +

∫�
0 f

1(ξ)dξ
)

16μαR(x1)4
∫�
0

(
dξ/R(ξ)4

)

⎤
⎥⎦,

(3.31)

W3
1

(
x1, y

′) =
(
R(x1)2 −

∣∣y′∣∣2)
⎡
⎢⎣y2

a
(
q0 − q� +

∫�
0 f

1(ξ)dξ
)

16μαR(x1)4
∫�
0

(
dξ/R(ξ)4

) + y3
β

16α
(
α + β

) dg
1

dx1
(x1)

⎤
⎥⎦.

(3.32)

3.2.3. Boundary Layers for Microrotation

It is important to notice that our approximation w1
ε(x) = ε2W0(x1, x

′/ε) + ε3W1(x1, x
′/ε)was

computed to satisfy the governing equations and the boundary condition on Γε, while the
boundary conditions on pipe’s ends were not taken into account. Consequently, the traces of
w1

ε on Σi
ε (i = 0, �) may be different from 0. Thus, before proving convergence, we need to

correct our interior expansion in the boundary layer near x1 = 0 and x1 = �.
Near x1 = 0, we introduce the boundary layer correctors Bi (i = 0, 1) depending on

the dilated variable (y1, y
′
) = x/ε, as the solutions of the following Dirichlet boundary-value

problems posed in the semi-infinite strip G = {(y1, y
′) ∈ R3 : y1 > 0, y′ = (y2, y3) ∈ B(y1)}:

−αΔBi − β∇divBi = 0 in G,
Bi = 0 on ω,

Bi

(
0, y′) = −Wi

(
0, y′),

(3.33)

for i = 0, 1 and ω = {(y1, y
′) ∈ R3 : y1 > 0, y′ = (y2, y3) ∈ ∂B(y1)}. Using the standard

techniques (see [19, Chapter XI.4, pages 252–262] or [20, Appendix]), it can be proved that
the system (3.33) admits a unique solution B0 ∈ H1(G)3 which is exponentially decaying to
zero as y1 → +∞ (see, e.g., [19]). Analogously, the boundary layer correctors Hi (i = 0, 1)
corresponding to the opposite side x1 = � are constructed as the unique solutions of the
following problems:

−αΔHi − β∇divHi = 0 in N,

Hi = 0 on σ,

Hi

(
0, y

′ )
= −Wi

(
�, y′),

(3.34)

for i = 0, 1, N = {(y1, y
′) ∈ R3 : y1 < 0, y′ = (y2, y3) ∈ B(y1)}, σ = {(y1, y

′) ∈ R3 : y1 < 0,
y′ = (y2, y3) ∈ ∂B(y1)} and its exponential decay to zero at infinity follows as well.
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3.2.4. Asymptotic Approximation

To conclude this section, let us write the obtained asymptotic approximation. For the
microrotation, it has the following form:

w1
ε(x) = ε2

[
W0

(
x1,

x′

ε

)
+ B0

(
x1

ε
,
x′

ε

)
+H0

(
x1 − �

ε
,
x′

ε

)]

+ ε3
[
W1

(
x1,

x′

ε

)
+ B1

(
x1

ε
,
x′

ε

)
+H1

(
x1 − �

ε
,
x′

ε

)]
,

(3.35)

where W0 =
∑

i W
i
0ei and W1 =

∑
i W

i
1ei are given by the explicit formulae (3.20) and (3.30)–

(3.32), respectively. On the other hand, the approximation for the velocity/pressure reads:

u1
ε(x) = ε2U0

(
x1,

x′

ε

)
+ ε3U1

(
x1,

x′

ε

)
, (3.36)

qε(x) = P0(x1) + εP1

(
x1,

x′

ε

)
. (3.37)

The first term in the expansion u0
ε(x) = ε2U1

0(x1, x
′/ε) e1, given by (3.19) is, in fact, the

Poiseuille solution and we do not observe the effects of microstructure here. The Poiseuille
flow is, therefore, corrected by a lower-order termwhich contains those effects (see (3.26) and
(3.27)).

4. Error Estimates

In this section, we rigorously justify the obtained asymptotic approximation. The first step is
to derive the a priori estimates for the original solution. We start by a technical result.

Lemma 4.1. There exists a constant C > 0, independent of ε, such that

∥∥ϕ∥∥L2(Ωε)
≤ Cε

∥∥∇ϕ
∥∥
L2(Ωε)

, (4.1)
∥∥ϕ∥∥L4(Ωε)

≤ Cε1/4
∥∥∇ϕ

∥∥
L2(Ωε)

, (4.2)

for any ϕ ∈ H1(Ωε), such that ϕ = 0 on Γε.

The above estimates can be verified by a simple change of variables (see, e.g., [11,
Lemmas 7, 8]).

Proposition 4.2. Let (uε, pε,wε) be the solution of the problem (2.5)–(2.10), then there exists C > 0,
independent of ε, such that

‖∇uε‖L2(Ωε) ≤ Cε3, ‖∇wε‖L2(Ωε) ≤ Cε2. (4.3)
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Proof. Multiplying the equation (2.7) bywε and integrating over Ωε gives

α

∫

Ωε

|∇wε|2 +
∫

Ωε

(uε∇)wεwε + β

∫

Ωε

(divwε)
2 + γ

∫

Ωε

|wε|2 = a

∫

Ωε

rotuεwε +
∫

Ωε

gwε.

(4.4)

First, we deduce

∫

Ωα
ε

(uε∇)wεwε =
1
2

∫

Ωα
ε

uε · ∇|wε|2 = 1
2

∫

Ωα
ε

div
(
|wε|2uε

)
− 1
2

∫

Ωα
ε

|wε|2 divuε = 0. (4.5)

Using Poincaré’s inequality (4.1), we get

∣∣∣∣∣
∫

Ωε

rotuε ·wε

∣∣∣∣∣ ≤ ‖rotuε‖L2(Ωε)‖wε‖L2(Ωε) ≤ Cε‖∇uε‖L2(Ωε)‖∇wε‖L2(Ωε), (4.6)

∣∣∣∣∣
∫

Ωε

gwε

∣∣∣∣∣ ≤ C |Ωε|1/2‖wε‖L2(Ωε) ≤ Cε2‖∇wε‖L2(Ωε). (4.7)

Applying (4.5)–(4.7) into (4.4) implies

‖∇wε‖L2(Ωε) ≤ Cε‖∇uε‖L2(Ωε) + Cε2. (4.8)

Now, we multiply (2.5) by uε and, after integrating over Ωε, we obtain

μ

∫

Ωε

|∇uε|2 +
∫

Ωε

(uε∇)uεuε = q0

∫

Σ0
ε

uε · e1 − q�

∫

Σ�
ε

uε · e1 + a

∫

Ωε

rotwεuε +
∫

Ωε

fuε. (4.9)

Employing the inequality (4.2), we have

∣∣∣∣∣
∫

Ωε

(uε∇)uεuε

∣∣∣∣∣ ≤ ‖∇uε‖L2(Ωε)‖uε‖2L4(Ωε)
≤ C

√
ε‖∇uε‖3L2(Ωε)

. (4.10)

Taking into account (4.1), we obtain

∣∣∣∣∣q0
∫

Σ0
ε

uε · e1 − q�

∫

Σ�
ε

uε · e1
∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωε

div
((

q0 +
q� − q0

�
x1

)
uε

)∣∣∣∣∣ ≤ Cε2‖∇uε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

rotwεuε

∣∣∣∣∣ =
∣∣∣∣∣
∫

Ωε

wε rotuε

∣∣∣∣∣ ≤ Cε‖∇uε‖L2(Ωε)‖∇wε‖L2(Ωε).

(4.11)
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From the last assertion, in view of (4.8), we conclude that

∣∣∣∣∣
∫

Ωε

rotwεuε

∣∣∣∣∣ ≤ Cε2‖∇uε‖2L2(Ωε) + Cε3‖∇uε‖L2(Ωε). (4.12)

Finally, as in (4.7)we get

∣∣∣∣∣
∫

Ωε

fuε

∣∣∣∣∣ ≤ Cε2‖∇uε‖L2(Ωε). (4.13)

Inserting the obtained estimates (4.10)–(4.13) in (4.9) yields

‖∇uε‖2L2(Ωε) ≤ C
√
ε ‖∇uε‖3L2(Ωε)

+ Cε3‖∇uε‖L2(Ωε). (4.14)

Due to pressure boundary condition, the velocity uε is unique in the ball BR0 with radius
R0 (see the discussion at the end of Section 2.2.). For that reason it is sufficient to choose ε
such that CR0

√
ε < 1/2 in order to deduce (4.3)1 from (4.14). The estimate (4.3)2 follows

immediately from (4.8).

The main result of this section can be stated as follows.

Theorem 4.3. Let w1
ε , u

1
ε , and qε be defined by (3.35), (3.36), and (3.37), respectively. Then the

following estimates hold:

|Ωε|−1/2
∥∥∥wε −w1

ε

∥∥∥
L2(Ωε)

= O
(
ε4
)
, (4.15)

|Ωε|−1/2
∥∥∥uε − u1

ε

∥∥∥
L2(Ωε)

= O
(
ε7/2

)
, (4.16)

|Ωε|−1/2
∥∥pε − qε

∥∥
L2(Ωε)

= O
(
ε3/2

)
. (4.17)

Remark 4.4. Since our domain Ωε is shrinking, the convergence in the norm ‖ · ‖L2(Ωε) would
be worthless. Indeed, any L∞-bounded function would converge to zero in such norm.
Therefore, we express the error estimates in the rescaled norm |Ωε|−1/2 ‖ · ‖L2(Ωε), where
|Ωε| = O(ε2) stands for the Lebesgue measure of Ωε.

Proof. The function w1
ε satisfies the following equation:

−αΔw1
ε +
(
u1
ε∇
)
w1

ε − β∇divw1
ε + γw1

ε = a rotu0
ε + g + hε in Ωε, (4.18)

where ‖hε‖L∞(Ωε) = O(ε2), that is, ‖hε‖L2(Ωε) = O(ε3). Now, we introduce

sε = wε −w1
ε (4.19)
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as the difference between the original solution and our asymptotic approximation. Sub-
tracting the equations (2.7) and (4.18) gives

−αΔsε + (uε∇)sε +
((

uε − u1
ε

)
∇
)
w1

ε − β∇div sε + γsε = a rot
(
uε − u0

ε

)
− hε in Ωε. (4.20)

Multiplying the above equation by sε and integrating over Ωε lead to

α

∫

Ωε

|∇sε|2 +
∫

Ωε

(uε∇)sεsε + β

∫

Ωε

(div sε)
2 + γ

∫

Ωε

|sε|2

= a

∫

Ωε

rot
(
uε − u0

ε

)
sε −

∫

Ωε

((
uε − u1

ε

)
∇
)
w1

εsε −
∫

Ωε

hεsε.

(4.21)

As in (4.5), we have
∫
Ωε
(uε∇)sεsε = 0. Now, we carefully estimate each term on the right-hand

side of (4.21)

∣∣∣∣∣
∫

Ωε

rot
(
uε − u0

ε

)
sε

∣∣∣∣∣ ≤ Cε
∥∥∥∇(uε − u0

ε)
∥∥∥
L2(Ωε)

‖∇sε‖L2(Ωε)

≤ Cε

{∥∥∥∇
(
uε − u1

ε

)∥∥∥
L2(Ωε)

+
∥∥∥∇
(
u1
ε − u0

ε

)∥∥∥
L2(Ωε)

}
‖∇sε‖L2(Ωε)

≤ Cε
∥∥∥∇(uε − u1

ε)
∥∥∥
L2(Ωε)

‖∇sε‖L2(Ωε) + Cε4‖∇sε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

((
uε − u1

ε

)
∇
)
w1

εsε

∣∣∣∣∣ ≤
∥∥∥uε − u1

ε

∥∥∥
L4(Ωε)

∥∥∥∇w1
ε

∥∥∥
L2(Ωε)

‖sε‖L4(Ωε)

≤ Cε5/2
∥∥∥∇(uε − u1

ε)
∥∥∥
L2(Ωε)

‖∇sε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

hεsε

∣∣∣∣∣ ≤ ‖hε‖L2(Ωε)‖sε‖L2(Ωε) ≤ Cε4‖∇sε‖L2(Ωε).

(4.22)

Taking into account the obtained estimates (4.22), from (4.21), we obtain

‖∇sε‖L2(Ωε) ≤ Cε
∥∥∥∇(uε − u1

ε)
∥∥∥
L2(Ωε)

+ Cε4. (4.23)

The problem satisfied by (u1
ε, qε) is the following:

−μΔu1
ε +
(
u1
ε∇
)
u1
ε +∇qε = a rotw0

ε + f + Eε in Ωε,

divu1
ε = πε in Ωε,

(4.24)

where w0
ε(x) = ε2W0(x1, x

′/ε) and ‖Eε‖L2(Ωε) = O(ε3), ‖πε‖L2(Ωε) = O(ε4). Before proceeding,
it is important to notice that the norm of πε is not small enough to obtain satisfactory error
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estimate. Therefore, we need to construct the divergence correction. Since πε = ε3(∂U1
1/∂x1),

we define Ψ(x1, y
′) as the solution of the problem

divy′Ψ =
∂Ψ2

∂y2
+
∂Ψ3

∂y3
=

∂U1
1

∂x1

(
x1, y

′) in Ω,

Ψ = 0 on Γ,

(4.25)

(here x1 is treated only as a parameter). Taking into account (3.26), by a simple integration
one can easily verify that

∫
B(∂U

1
1/∂x1)(x1, y

′)dy′ = 0, 0 < x1 < l implying that such Ψ exists.
Now we define our divergence correction as

Ψε(x) = ε4
3∑
i=2

Ψi

(
x1,

x′

ε

)
ei (4.26)

and put

v1ε = u1
ε −Ψε. (4.27)

Such v0ε is divergence-free. Moreover, Ψε is chosen such that it keeps the estimate for Eε, that
is, ‖Ẽε‖L2(Ωε) = O(ε3). Denoting

Rε = uε − v1ε, rε = pε − qε, (4.28)

we have

−μΔRε + (uε∇)Rε + (Rε∇)v1ε +∇rε = a rot
(
wε −w0

ε

)
− Ẽε in Ωε,

divRε = 0 in Ωε,

Rε = 0 on Γε.

(4.29)

Now we introduce dε as the solution of the problem

divdε = rε in Ωε,

dε = 0 on ∂Ωε.
(4.30)

If we suppose
∫
Ωε

rε = 0, such problem has at least one solution which satisfies

‖∇dε‖L2(Ωε) ≤
C

ε
‖rε‖L2(Ωε). (4.31)



16 Mathematical Problems in Engineering

(see, e.g., Lemma 9 from [11])Multiplying (4.29)1 by dε and integrating over Ωε, we obtain

‖rε‖2L2(Ωε) = μ

∫

Ωε

∇Rε∇dε +
∫

Ωε

(
(uε∇)Rε + (Rε∇)v1ε

)
dε

− a

∫

Ωε

rot
(
wε −w0

ε

)
dε +

∫

Ωε

Ẽεdε.

(4.32)

We estimate the terms on the right-hand side in (4.32) using a priori estimates and Lemma 4.1,

∣∣∣∣∣
∫

Ωε

∇Rε∇dε

∣∣∣∣∣ ≤ ‖∇Rε‖L2(Ωε)‖∇dε‖L2(Ωε) ≤
C

ε
‖∇Rε‖L2(Ωε)‖rε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

(uε∇)Rεdε

∣∣∣∣∣ ≤ ‖uε‖L4(Ωε)‖∇Rε‖L2(Ωε)‖dε‖L4(Ωε) ≤ Cε5/2 ‖∇Rε‖L2(Ωε)‖rε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

(Rε∇)v1εdε

∣∣∣∣∣ ≤ ‖Rε‖L4(Ωε)

∥∥∥∇v1ε
∥∥∥
L2(Ωε)

‖dε‖L4(Ωε) ≤ Cε3/2‖∇Rε‖L2(Ωε)‖rε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

Ẽε dε

∣∣∣∣∣ ≤
∥∥∥Ẽε

∥∥∥
L2(Ωε)

‖dε‖L2(Ωε) ≤ Cε3 ‖rε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

rot
(
wε −w0

ε

)
dε

∣∣∣∣∣ ≤ Cε
∥∥∇(wε −w0

ε)
∥∥
L2(Ωε)

‖∇dε‖L2(Ωε)

≤ Cε
{∥∥∇(wε −w1

ε

)∥∥
L2(Ωε)

+
∥∥∇(w1

ε −w0
ε

)∥∥
L2(Ωε)

}
‖∇dε‖L2(Ωε)

≤ C‖∇sε‖L2(Ωε)‖rε‖L2(Ωε) + Cε5/2‖rε‖L2(Ωε)

≤ Cε‖∇Rε‖L2(Ωε)‖rε‖L2(Ωε) + Cε5/2‖rε‖L2(Ωε).

(4.33)

Applying (4.33) into (4.32), we get

‖rε‖L2(Ωε) ≤
C

ε
‖∇Rε‖L2(Ωε) + Cε5/2. (4.34)

Now, we multiply the equation (4.29)1 by Rε and integrate over Ωε to obtain

μ‖∇Rε‖2L2(Ωε) +
∫

Ωε

(
(uε∇)Rε + (Rε∇)v1ε

)
Rε = a

∫

Ωε

rot
(
wε −w0

ε

)
Rε −

∫

Ωε

ẼεRε. (4.35)
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Analogously, we have

∣∣∣∣∣
∫

Ωε

(uε∇)RεRε

∣∣∣∣∣ ≤ ‖uε‖L4(Ωε)‖∇Rε‖L2(Ωε)‖Rε‖L4(Ωε) ≤ Cε7/2‖∇Rε‖2L2(Ωε),

∣∣∣∣∣
∫

Ωε

(Rε∇)v1εRε

∣∣∣∣∣ ≤ ‖Rε‖L4(Ωε)

∥∥∥∇v1ε
∥∥∥
L2(Ωε)

‖Rε‖L4(Ωε) ≤ Cε5/2 ‖∇Rε‖2L2(Ωε),

∣∣∣∣∣
∫

Ωε

ẼεRε

∣∣∣∣∣ ≤
∥∥∥Ẽε

∥∥∥
L2(Ωε)

‖Rε‖L2(Ωε) ≤ Cε4 ‖∇Rε‖L2(Ωε),

∣∣∣∣∣
∫

Ωε

rot
(
wε −w0

ε

)
Rε

∣∣∣∣∣ ≤ Cε2‖∇Rε‖2L2(Ωε) + Cε7/2‖∇Rε‖L2(Ωε),

(4.36)

implying

‖∇Rε‖L2(Ωε) ≤ Cε7/2. (4.37)

The estimates for the velocity (4.16) and pressure (4.17) now follow directly from Poincaré’s
inequality (4.1) and (4.34). The estimate (4.15) for the microrotation then follows from (4.23)
and the theorem is completely proved.
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