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We generalize the results obtained by Jun andMin (2009) and use fixed point method to obtain the
stability of the functional equation f(x + σ(y)) = F[f(x), f(y)], for a class of functions of a vector
space into a Banach space where σ is an involution. Then we obtain the stability of the differential
equations of the form y′ = F[q(x), P(x)y(x)].

1. Introduction and Preliminary

The stability problem of functional equations originated from a question of Ulam [1] in 1940,
concerning the stability of group homomorphisms.

The stability concept that was introduced by Rassias’ theorem [2] in 1978 provided a
large influence to a number of mathematicians to develop the notion of what is known today
by the term Hyers-Ulam-Rassias stability of the linear mapping. Since then, the stability of
several functional equations has been extensively investigated by several mathematicians,
see [3–5]. They have many applications in Information Theory, Physics, Economic Theory,
and Social and Behavior Sciences.

In 1996, Isac and Rassias [6]were the first to use the fixed point methods to investigate
the Hyers-Ulam-Rassias stability.

LetX be a set. A function d : X×X → [0,∞] is called a generalized metric onX if and
only if d satisfies
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(1) d(x, y) = 0, if and only if x = y,
(2) d(x, y) = d(y, x), for all x, y ∈ X,
(3) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.
Note that the only substantial difference of the generalized metric from the metric is

that the range of generalized metric includes the infinity.
We now introduce one of fundamental results of fixed point theory. For the proof,

refer to [7]. For an extensive theory of fixed point theorems and other nonlinear methods, the
reader is referred to the book of Hyers et al. [8].

Theorem 1.1. Let (X, d) be a generalized complete metric space. Assume that J : X → X is a strictly
contractive operator with the Lipschitz constant 0 < L < 1. If there exists a nonnegative integer k such
that d(Jk+1f, Jkf) < ∞ for some f ∈ X, then the followings are true:

(a) the sequence {Jnf} converges to a fixed point f∗ of J ,

(b) f∗ is the unique fixed point of J in

X∗ =
{
g ∈ X : d

(
Jkf, g

)
< ∞

}
, (1.1)

(c) if g ∈ X∗, then

d
(
g, f∗) ≤ 1

1 − L
d
(
Jg, g

)
. (1.2)

2. Stability of the Generalized Functional Equations

The stability problem for a general equation of the form

f
(
G
(
x, y

))
= H

[
f(x), f

(
y
)]

(2.1)

was investigated by Cholewa [9] in 1984. Indeed, Cholewa proved the superstability of the
above equation under some additional assumptions on the functions and spaces involved.

Recently, Jung and Min [10] applied the fixed point method to the investigate the
stability of functional equation

f
(
x + y

)
= F

[
f(x), f

(
y
)]
. (2.2)

In this section, we generalized the Jun and Min’s results and use fixed point approach
to obtain the stability of the functional equation

f
(
x + σ

(
y
))

= F
[
f(x), f

(
y
)]

(2.3)

for a class of functions of a vector space into a Banach space where σ is an involution.
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Theorem 2.1. Let X and (Y, ‖ · ‖) be a vector space over K and a Banach space over K, respectively.
Let (X × X, ‖ · ‖2) be a Banach space over K. Assume that F : X × X → Y is a bounded linear
transformation, whose norm is denoted by ‖F‖, satisfying

F(F(u, u), F(v, v)) = F(F(u, v), F(u, v)) (2.4)

for all u, v : X → X and there exists a real number κ > 0 with

‖(u(x), u(σ(x))) − (v(x), v(σ(x)))‖2 ≤ κ‖u(x) − v(x)‖ (2.5)

for all u, v : X → X. Moreover, assume that ϕ : X ×X → [0,∞) is a given function satisfying

ϕ
(
x, σ

(
y
)) ≤ ϕ

(
2x, 2y

)
(2.6)

for all x, y ∈ X. If κ‖F‖ < 1 and a function f : X → Y satisfies the inequality

∥∥f(x + σ
(
y
)) − F

[
f(x), f

(
y
)]∥∥ ≤ ϕ

(
x, y

)
(2.7)

for any x, y ∈ X, then there exists a unique solution f∗ : X → Y of (2.3) such that

∥∥f(x) − f∗(x)
∥∥ ≤ 1

1 − κ‖F‖ϕ(x, x). (2.8)

Proof. First, we denote byX the set of all functions h : X → Y and by d the generalized metric
on X defined as

d
(
g, h

)
= inf

{
C ∈ [0,∞) :

∥∥g(x) − h(x)
∥∥ ≤ CM′(x, y), ∀x ∈ E1

}
. (2.9)

By a similar method used at the proof of [4, Theorem 3.1], we can show that (X, d) is a
generalized complete metric space. Now, let us define an operator J : X → X by

(Jh)(x) = F
[
h
(x
2

)
, h
(
σ
(x
2

))]
(2.10)

for every x ∈ X. We assert that J is strictly contractive on X. Given g, h ∈ X, let C ∈ [0,∞] be
an arbitrary constant with d(g, h) ≤ C, that is,

∥∥g(x) − h(x)
∥∥ ≤ Cϕ

(
x, y

)
(2.11)
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for each x ∈ X. By (2.5), (2.6), (2.10), and (2.11), we have

∥∥Jg(x) − Jh(x)
∥∥ ≤

∥∥∥F
[
g
(x
2

)
, g

(
σ
(x
2

))]
− F

[
h
(x
2

)
, h
(
σ
(x
2

))]∥∥∥

≤ ‖F‖
∥∥∥
[
g
(x
2

)
, g

(
σ
(x
2

))]
−
[
h
(x
2

)
, h
(
σ
(x
2

))]∥∥∥

≤ ‖F‖κ
∥∥∥g

(x
2

)
− h

(x
2

)∥∥∥

≤ ‖F‖κCϕ
(x
2
,
x

2

)

≤ ‖F‖κCϕ(x, y)

(2.12)

for every x ∈ X. Then, from (2.9) we have d(Jg, Jh) ≤ κ‖F‖d(g, h) for any g, h ∈ X, where
κ‖F‖ is the Lipschitz constant with 0 < κ‖F‖ < 1. Thus, J is strictly contractive.

Now, we claim that d(Jf, f) ≤ ∞. Replacing x/2 by x and σ(x/2) by y in (2.7), then
it follows from (2.6) and (2.10) that

∥∥∥f
(x
2
+ σ

(
σ
(x
2

)))
− F

[
f
(x
2

)
, f

(
σ
(x
2

))]∥∥∥ ≤ ϕ
(x
2
, σ

(x
2

))

∥∥f(x) − (
Jf

)
(x)

∥∥ ≤ ϕ
(x
2
, σ

(x
2

))

≤ ϕ(x, x)

(2.13)

for every x ∈ X. Then,

d
(
Jf, f

) ≤ 1 ≤ ∞. (2.14)

Now, it follows from Theorem 1.1(a) that there exists a function f∗ : E1 → E2 which is a fixed
point of J , such that

lim
n→∞

d
(
Jnf, f∗) = 0. (2.15)

From Theorem 1.1(c), we get

d
(
Jnf, f∗) ≤ 1

1 − κ‖F‖d
(
Jf, f

) ≤ 1
1 − κ‖F‖′ (2.16)

which implies the validity of (2.8). According to Theorem 1.1(b), f∗ is the unique fixed point
of J with d(f, f∗) < ∞.

We now assert that

∥∥(Jnf)(x + σ
(
y
)) − F

[(
Jnf

)
(x),

(
Jnf

)(
y
)]∥∥ ≤ (κ‖F‖)nϕ(x, x) (2.17)
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for all n ∈ N and x, y ∈ X. Indeed, it follows from (2.4), (2.5), (2.6), (2.7), and (2.10) that

∥∥(Jf)(x + σ
(
y
)) − F

[(
Jf

)
(x),

(
Jf

)(
y
)]∥∥

=

∥∥∥∥∥F
[
f

(
x + σ

(
y
)

2

)
, f

(
σ

(
x + σ

(
y
)

2

))]

−F
[
F
[
f
(x
2

)
, f

(
σ
(x
2

))]
, F

[
f
(y
2

)
, f

(
σ
(y
2

))]]∥∥∥∥∥

≤ ‖F‖
∥∥∥∥∥

[
f

(
x + σ

(
y
)

2

)
, f

(
σ

(
x + σ

(
y
)

2

))]

−
[
F
[
f
(x
2

)
, f

(
σ
(x
2

))]
, F

[
f
(y
2

)
, f

(
σ
(y
2

))]]∥∥∥∥∥

≤ ‖F‖κ
∥∥∥∥∥f

(
x + σ

(
y
)

2

)
−
[
F
[
f
(x
2

)
, f

(y
2

)]]∥∥∥∥∥

≤ ‖F‖κϕ
(x
2
,
y

2

)

≤ ‖F‖κϕ(x, x)

(2.18)

for any x, y ∈ X. Then, it follows from (2.4), (2.5), (2.6), (2.10), and (2.17) that

∥∥∥
(
Jn+1f

)(
x + σ

(
y
)) − F

[(
Jn+1f

)
(x),

(
Jn+1f

)(
y
)]∥∥∥

=

∥∥∥∥∥F
[
Jnf

(
x + σ

(
y
)

2

)
, Jnf

(
σ

(
x + σ

(
y
)

2

))]

−F
[
F
[
Jnf

(x
2

)
, Jnf

(
σ
(x
2

))]
, F

[
Jnf

(y
2

)
, Jnf

(
σ
(y
2

))]]∥∥∥∥∥

≤ ‖F‖κ
∥∥∥∥∥J

nf

(
x + σ

(
y
)

2

)
−
[
F
[
Jnf

(x
2

)
, Jnf

(y
2

)]]∥∥∥∥∥

≤ (‖F‖κ)n+1ϕ
(x
2
,
y

2

)

≤ (‖F‖κ)n+1ϕ(x, x)

(2.19)

for all n ∈ N, which proves the validity of (2.17).
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Finally, we prove that f∗(x + σ(y)) = F[f∗(x), f∗(y)] for any x, y ∈ X. Since F is
continuous as a bounded linear transformation, it follows from (2.15) and (2.17) that

∥∥f∗(x + σ
(
y
)) − F

[
f∗(x), f∗(y)]∥∥

= lim
n→∞

∥∥∥∥∥J
nf

(
x + σ

(
y
)

2

)
−
[
F
[
Jnf

(x
2

)
, Jnf

(y
2

)]]∥∥∥∥∥

≤ lim
n→∞

(‖F‖κ)nϕ(x, x) = 0

(2.20)

for all x, y ∈ X, which implies that f∗ is a solution of (2.7).

Corollary 2.2. Let X and (Y, ‖ · ‖) be a vector space overK and a Banach space over K, respectively,
and let (Y × Y, ‖ · ‖2) be a Banach space over K. Assume that F : Y × Y → Y is a bounded linear
transformation, whose norm is denoted by F, satisfying condition (2.4) and that there exists a real
number κ > 0 satisfying condition (2.5). If κ‖F‖ < 1 and a function f : X → Y satisfies the
inequality

∥∥f(x + y
) − F

[
f(x), f

(
y
)]∥∥ ≤ ε

(‖x‖p + ∥∥y∥∥p) (2.21)

for all x, y ∈ X and for some nonnegative real constants θ and p, then there exists a unique solution
f∗ : X → Y of 1.2 such that

∥∥f(x) − f∗(x)
∥∥ ≤ 2θ

1 − κ‖F‖‖x‖
p (2.22)

for all x ∈ X.

Example 2.3. Assume thatX = Y = C, and consider the Banach spaces (C, | · |) and (C×C, | · |2),
where we define |(u(t), v(t))|2 =

√
|u|2 + |v|2 for all u, v : C → C. Let A and B be fixed

complex numbers with |A| + |B| < 1/
√
2, and let F : C × C → C be a linear transformation

defined by

F(u(t), v(t)) = Au(t) + Bv(t). (2.23)

Then it is easy to show that F satisfies condition (2.13).
If u and v are complex numbers satisfying |(u(t), v(t))|2 ≤ 1 for all t, then

|F(u, v)| ≤ |A| |u| + |B| |v| ≤ |A| + |B|. (2.24)

Thus, we get

‖F‖ ≤ sup{|F(u, v)| : u, v ∈ C with |(u, v)|2 ≤ 1} ≤ |A| + |B|, (2.25)

which implies the boundedness of the linear transformation F.
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On the other hand, we obtain

‖(u(x), u(σ(x))) − (v(x), v(σ(x)))‖2 ≤
√
2‖u(x) − v(x)‖ (2.26)

for any u, v ∈ C, then we have

‖F‖κ ≤
√
2(|A| + |B|) ≤ 1. (2.27)

If the function f : C → C satisfies the inequality

∥∥f∗(x + σ
(
y
)) − F

[
f∗(x), f∗(y)]∥∥ (2.28)

for all x, y ∈ C and for some ε > 0, then Corollary 2.2 (with θ = ε/2 and p = 0) implies that
there exists a unique function f∗ : C → C such that

∥∥f∗(x + σ
(
y
))

= F
[
f∗(x), f∗(y)]∥∥ (2.29)

for all x, y ∈ C and

∣∣f∗(x) − f(x)
∣∣ ≤ ε

1 − √
2(|A| + |B|)

(2.30)

for any x ∈ C.

3. Stability of the Generalized Differential Equations

Let Y be a normed space, and let I be an open interval. Assume that for any function y : I →
Y satisfying the differential inequality

∥∥∥an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) + h(x)
∥∥∥ ≤ ε (3.1)

for all x ∈ I and for some ε ≥ 0, there exists a solution y0 : I → Y of the differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) + h(x) = 0 (3.2)

such that ‖y(x) − y0(x)‖ ≤ K(ε) for any x ∈ I, where K(ε) is an expression of ε only. Then,
we say that the above differential equation has the Hyers-Ulam stability.

If the above statement is also truewhenwe replace ε andK(ε) by ϕ(x) andΦ(x), where
ϕ,Φ : I → [0,∞) are functions not depending on y and y0 explicitly, then we say that the
corresponding differential equation has the Hyers-Ulam-Rassias stability (or the generalized
Hyers-Ulam stability).

We may apply these terminologies for other differential equations. For more detailed
definitions of the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability, refer to [11, 12].
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In 1998, Alsina and Ger investigated the Hyers-Ulam stability of differential equations.
They proved in [13] that if a differentiable function y : I → R satisfies the differential
inequality |y′(t) − y(t)| ≤ ε, where I is an open subinterval of R, then there exists a
differentiable function y0 : I → R satisfying y′

0(t) = y0(t) and |y0(t) − y(t)| ≤ 3ε for any
t ∈ I.

Alsina and Ger’s results have been generalized by Takahasi et al. [14]. They proved
that the Hyers-Ulam stability holds for the Banach space-valued differential equation y′(x) =
λy(x) (see also [15]).

Recently, Takahasi et al. also proved the Hyers-Ulam stability of linear differential
equations of first order, y′(x) + g(x)y(x) = 0, where g(x) is a continuous function, and they
also proved the Hyers-Ulam stability of linear differential equations of other types (see [16–
18]).

In this section, for a bounded and continuous function F(x, y), we will adopt the
idea of Cădariu and Radu [19, 20] and prove the Hyers-Ulam-Rassias stability as well as
the Hyers-Ulam stability of the differential equations of the form

y′(x) = F
(
q(x), p(x)y(x)

)
. (3.3)

Theorem 3.1. For given real numbers a and b with a < b, let I = [a, b] be a closed interval and
choose c ∈ I. Let K and L be positive constants with 0 < KL < 1. Assume that F : I × R → R is a
continuous function which satisfies a Lipschitz condition

∣∣F(x, y) − F(x, z)
∣∣ ≤ L

∣∣y − z
∣∣ (3.4)

for any x ∈ I and y, z ∈ R. If a continuously differentiable function y : I → R satisfies

∣∣y′(x) − F
(
q(x), p(x)y(x)

)∣∣ ≤ ϕ(x) (3.5)

for all x ∈ I, where p(x), q(x) are continuous functions in which |p(x)| ≤ c and ϕ : I → (0,∞) is a
continuous function with

∣∣∣∣
∫x

c

ϕ(t)dt
∣∣∣∣ ≤ Kϕ(x) (3.6)

for each x ∈ I, then there exists a unique continuous function y0 : I → R such that

y0(x) = y(c) +
∫x

c

F
(
q(x), p(x)y(x)

)
dt (3.7)

(consequently, y0 is a solution to (2.15)) and

∣∣y(x) − y0(x)
∣∣ ≤ K

1 −KL
ϕ(x) (3.8)

for all x ∈ I.
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Proof. Let us define a set X of all continuous functions f : I → R by

X =
{
f : I → R | f is continuous

}
(3.9)

and introduce a generalized metric on X as follows:

d
(
f, g

)
= inf

{
C ∈ [0,∞) :

∣∣f(x) − g(x)
∣∣ ≤ Cϕ(x), ∀x ∈ I

}
. (3.10)

By a similar method used at the proof of [4, Theorem 3.1], we assert that (X, d) is complete.
Let {hn} be a Cauchy sequence in (X, d).

Then, for any ε > 0, there exists an integer Nε > 0 such that d(hm, hn) ≤ ε for all
m,n ∈ Nε. It further follows from (3.10) that

∀ε > 0 ∃Nε ∈ N ∀m,n ∈ Nε ∀x ∈ I : |hm(x) − hn(x)| ≤ εϕ(x). (3.11)

Equation (3.11) implies that {hn(x)} is a Cauchy sequence in R. Since R is complete, {hn(x)}
converges for each x ∈ I. Thus, we can define a function h : I → R by

h(x) = lim
n→∞

hn(x). (3.12)

Let m increase to infinity, then by (3.11)we have

∀ε > 0 ∃Nε ∈ N ∀n ∈ Nε ∀x ∈ I : |h(x) − hn(x)| ≤ εϕ(x). (3.13)

Since ϕ is bounded on I, {hn} converges uniformly to h. Hence, h is continuous and
h ∈ X.

Further, considering (3.10) and (3.13), then

∀ε > 0 ∃Nε ∈ N ∀n ∈ Nε : d(h, hn) ≤ ε. (3.14)

Then, the Cauchy sequence {hn} converges to h in (X, d). Hence, (X, d) is complete.
Now, define the operator J : X → X by

(
Jf

)
(x) = y(c) +

∫x

c

F
(
q(x), p(x)f(x)

)
dt x ∈ I (3.15)

for all f ∈ X. (Indeed, according to the Fundamental Theorem of Calculus, Jf is continuously
differentiable on I, since F and f are continuous functions. Hence, we may conclude that
Jf ∈ X.) We prove that J is strictly contractive on X. For any f, g ∈ X, let Cfg ∈ [0,∞] be an
arbitrary constant with d(f, g) ≤ Cfg , then, by (2.15), we have

∣∣f(x) − g(x)
∣∣ ≤ Cfgϕ(x) (3.16)
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for any x ∈ I. It then follows from (3.4), (3.6), (3.10), (3.15), and (3.16) that

∣∣(Jf)(x) − (
Jg

)
(x)

∣∣ ≤
∣∣∣∣
∫x

c

{
F
(
q(x), p(x)f(x)

) − F
(
q(x), p(x)g(x)

)}
dt

∣∣∣∣

≤
∣∣∣∣
∫x

c

∣∣F(q(x), p(x)f(x)) − F
(
q(x), p(x)g(x)

)∣∣dt
∣∣∣∣

≤ L

∣∣∣∣
∫x

c

∣∣f(t) − g(t)
∣∣dt

∣∣∣∣

≤ LCfg

∣∣∣∣
∫x

c

ϕ(t)dt
∣∣∣∣

≤ KLCfgϕ(x)

(3.17)

for all x ∈ I. Then, d(Jf, Jg) ≤ KLCfg . Hence, we can conclude that d(Jf, Jg) ≤ KLd(f, g)
for any f, g ∈ X (note that 0 < KL < 1). It follows from (3.9) and (3.15) that for an arbitrary
g0 ∈ X, there exists a constant 0 < C < 1 with

∣∣(Jg0
)
(x) − g0(x)

∣∣ =
∣∣∣∣y(c) +

∫x

c

F
(
p(t), g0(t)

)
dt − g0(x)

∣∣∣∣ ≤ Cϕ(x) (3.18)

for all x ∈ I, since F(x, g0(x)) and g0(x) are bounded on I and minx∈Iϕ(x) > 0. Thus, (3.10)
implies that

d
(
Jg0, g0

)
< ∞. (3.19)

Therefore, according to Theorem 1.1(a), there exists a continuous function y0 : I → R such
that Jng0 → y0 in (X, d) and Jy0 = y0, that is, y0 satisfies (3.7) for every x ∈ I. For any g ∈ X,
since g and g0 are bounded on I and minx∈Iϕ(x) > 0, there exists a constant 0 < Cg < 1 such
that

∣∣g(x) − g0(x)
∣∣ ≤ Cgϕ(x) (3.20)

for any x ∈ I. Hence, we have d(g0, g) < ∞ for all g ∈ X, that is, {g ∈ X | d(g0, g) < ∞} = X.
Hence, in view of Theorem 1.1(b), we conclude that y0 is the unique continuous function
with the property (3.7).

On the other hand, it follows from (3.5) that

−ϕ(x) ≤ y′(x) − F
(
q(x), p(x)y(x)

) ≤ ϕ(x) (3.21)

for all x ∈ I. If we integrate each term in the above inequality from c to x, then we obtain

∣∣∣∣y(x) − y(c) −
∫x

c

F
(
q(x), p(x)y(x)

)
dt

∣∣∣∣ ≤
∣∣∣∣
∫x

c

ϕ(t)dt
∣∣∣∣ (3.22)
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for any x ∈ I. Thus, by (3.6) and (3.15), we get

∣∣y(x) − Jy(x)
∣∣ ≤ Kϕ(x) (3.23)

for each x ∈ I, which implies that

d
(
Jy, y

) ≤ K. (3.24)

Finally, Theorem 1.1(c) and (3.24) implys that

d
(
Jy, y0

) ≤ 1
1 −KL

d
(
Jy, y

) ≤ K

1 −KL
, (3.25)

which means that inequality (3.24) holds true for all x ∈ I.

Now, we prove the last theorem for unbounded intervals. Also we show that
Theorem 3.1 is also true if I is replaced by an unbounded interval such as (−∞, b], R, or
[a,∞).

Theorem 3.2. For given real numbers a and b, let I denote either (−∞, b], R, or [a,∞). Set either
c = a for I = [a,∞) or c = b for I = (−∞, b] or c is a fixed real number if I = R. Let K and L be
positive constants with 0 < KL < 1. Assume that F : I × R → R is a continuous function which
satisfies Lipschitz condition (3.4) for any x ∈ I and y, z ∈ R. If a continuously differentiable function
y : I → R satisfies

∣∣y′(x) − F
(
q(x), p(x)y(x)

)∣∣ ≤ ϕ(x) (3.26)

for all x ∈ I, where p(x) is a continuous function and ϕ : I → (0,∞) is a continuous function
satisfying condition (3.6) for each x ∈ I, then there exists a unique continuous function y0 : I → R

such that

∣∣y(x) − y0(x)
∣∣ ≤ K

1 −KL
ϕ(x) (3.27)

for all x ∈ I.

Proof. We prove for I = R. The other cases can be proved similarly. For any n ∈ N, we define
In = [c − n, c + n]. (We set In = [b − n, b] for I = (−∞, b] and In = [a, a + n] for I = [a,∞)). By
Theorem 3.1, there exists a unique continuous function yn : In → R such that

yn(x) = y(c) +
∫x

c

F
(
q(x), p(x)yn(t)

)
dt (3.28)

∣∣yn(x) − y(x)
∣∣ ≤ K

1 −KL
ϕ(x) (3.29)
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for all x ∈ In. The uniqueness of yn implies that, if x ∈ In, then

yn(x) = yn+1(x) = yn+2(x) = · · · . (3.30)

For any x ∈ R, define n(x) ∈ N as

n(x) = min{n ∈ N | x ∈ In}. (3.31)

Moreover, define a function y0 : R → R by

y0(x) = yn(x)(x), (3.32)

and we assert that y0 is continuous. For an arbitrary x1 ∈ R, we choose the integer n1 = n(x1).
Then, x1 belongs to the interior of In1+1 and there exists an ε > 0 such that y0(x) = yn1+1(x) for
all x with x1 − ε < x < x1 + ε. Since yn1+1 is continuous at x1, so is y0. That is, y0 is continuous
at x1 for any x1 ∈ R.

We will now show that y0 satisfies (3.8) for all x ∈ R. For an arbitrary x ∈ R, we choose
the integer n(x). Then, it holds that x ∈ In(x) and it follows from (3.28) and (3.32) that

y0(x) = yn(x)(x) = y(c) +
∫x

c

F
(
q(x), p(x)yn(x)(t)

)
dt = y(c) +

∫x

c

F
(
q(x), p(x)y0(t)

)
dt

(3.33)

since n(t) ≤ n(x) for any t ∈ In(x). Then, from (3.30) and (3.32) we have

yn(x)(t) = yn(t)(t) = y0(t). (3.34)

Since x ∈ In(x) for every x ∈ R, by (3.29) and (3.32), we have

∣∣y0(x) − y(x)
∣∣ = ∣∣yn(x)(x) − y(x)

∣∣ ≤ K

1 −KL
ϕ(x) (3.35)

for any x ∈ R.
Finally, we show that y0 is unique. Let z0 : R → R be another continuous function

which satisfies (3.8), with z0 in place of y0, for all x ∈ R. Suppose x is an arbitrary real
number. Since the restrictions y0|In(x)(= yn(x)) and z0|In(x) both satisfy (3.7) and (3.8) for all
x ∈ In(x), the uniqueness of yn(x) = y0|In(x) implies that

y0(x) = y0|In(x)(x) = z0|In(x)(x) = z0(x) (3.36)

as required.

Corollary 3.3. Given c ∈ R and r > 0, let I denote a closed ball of radius r and centered at c, that
is, I = {x ∈ R | c − r ≤ x ≤ c + r}, and let F : I × R → R be a continuous function which satisfies
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a Lipschitz condition (3.4) for all x ∈ I and y, z ∈ R, where L is a constant with 0 < Lr < 1. If a
continuously differentiable function y : I → R satisfies the differential inequality

∣∣y′(x) − F
(
x, y(x)

)∣∣ ≤ ε (3.37)

for all x ∈ I and for some ε ≥ 0, then there exists a unique continuous function y0 : I → R satisfying
(3.7) and

∣∣y(x) − y0(x)
∣∣ ≤ r

1 − rL
ε (3.38)

for any x ∈ I.

Example 3.4. We choose positive constants K and L with KL < 1. For a positive number
ε < 2K, let I = [0, 2K − ε] be a closed interval. Given a polynomial p(x), we assume that a
continuously differentiable function y : I → R satisfies

∣∣y′(x) − Ly(x) − p(x)
∣∣ ≤ x + ε (3.39)

for all x ∈ I. If we set F(x, y) = Ly + p(x) and ϕ(x) = x + ε, then the above inequality has the
identical form. Moreover, we obtain

∣∣∣∣
∫x

c

ϕ(t)dt
∣∣∣∣ =

x2

2
+ εx ≤ Kϕ(x) (3.40)

for each x ∈ I, sinceKϕ(x) − x2/2 − εx ≥ 0 for all x ∈ I. By Theorem 3.1, there exists a unique
continuous function y0 : I → R such that

y0(x) = y(0) +
∫x

0

{
Ly(t) − p(t)

}
dt

∣∣y0(x) − y(x)
∣∣ ≤ K

1 −KL
(x + ε)

(3.41)

for any x ∈ I.

Example 3.5. Let a be a constant greater than 1 and choose a constant L with 0 < L < lna.
Given an interval I = [0, 1) and a polynomial p(x), suppose y : I → R is a continuously
differentiable function satisfying

∣∣y′(x) − Ly(x) − p(x)
∣∣ ≤ ax (3.42)

for all x ∈ I. If we set ϕ(x) = ax, then we have

∣∣∣∣
∫x

c

ϕ(t)dt
∣∣∣∣ ≤

1
lna

ϕ(x) (3.43)
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for any x ∈ I. By Theorem 3.2, there exists a unique continuous function y0 : I → R with

y0(x) = y(0) +
∫x

0

{
Ly(t) − p(t)

}
dt

∣∣y0(x) − y(x)
∣∣ ≤ 1

lna − L
ax

(3.44)

for any x ∈ I.
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