
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 145638, 30 pages
doi:10.1155/2011/145638

Research Article
Stability of the Shallow Axisymmetric
Parabolic-Conic Bimetallic Shell by
Nonlinear Theory

M. Jakomin1 and F. Kosel2

1 Faculty of Maritime Studies and Transport, University of Ljubljana, Pot Pomorščakov 4,
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In this contribution, we discuss the stress, deformation, and snap-through conditions of thin, axi-
symmetric, shallow bimetallic shells of so-called parabolic-conic and plate-parabolic type shells
loaded by thermal loading. According to the theory of the third order that takes into account the
balance of forces on a deformed body, we present a model with a mathematical description of
the system geometry, displacements, stress, and thermoelastic deformations. The equations are
based on the large displacements theory. We numerically calculate the deformation curve and the
snap-through temperature using the fourth-order Runge-Kutta method and a nonlinear shooting
method. We show how the temperature of both snap-through depends on the point where one
type of the rotational curve transforms into another.

1. Introduction

The development of machine sciences in recent centuries has led to the manufacture
of various devices from relatively simple mechanisms to the very complex mechanical
devices used by mankind in the process of transforming material goods. Although modern
equipment comes in very different forms, functions, and structure, owing to the importance
of smooth, reliable operation and their value, a demand for protection against a number of
overloads is expressed. It is especially necessary to provide reliable protection against thermal
overload for machines that convert one form of energy into another and heat up in the
process. For this purpose, elements are built into devices to serve as a “thermal fuse” turning
the machine off as soon as an individual part reaches the maximum permissible temperature.
Due to their operational reliability, both line and plane bimetallic structural elements are used
in protection against thermal overload, whose operation is based on the known physical
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fact that bodies expand with the increase of temperature. With a suitable technical act, we
can connect a bimetallic construction element, Figure 1, with electrical contacts and make
a so-called “thermal switch”. Displacements created on the bimetallic element due to a
combination of temperature and mechanical loads turn the device on and off dependent
on the temperature T . For this, it is of course necessary to know the connection between
the displacements and loading of the bimetallic construction element. Apart from material
properties, this connection is also dependent on the geometric properties of the bimetal, as the
line bimetallic construction elements respondwith different stresses and deformational states
to temperature loads as compared to plane construction elements. In practice, the difference
in the stability conditions is the most important. Thin and shallow bimetallic shells with
suitable material and geometric properties have the characteristic of snapping-through into
a new equilibrium position at a certain temperature. The result of such a fast snap-through
of a bimetallic shell acting as a switching element in a thermal switch is the instantaneous
shutdown of electric power and the machine. The snap-through of the bimetallic shell is a
dynamic occurrence that lasts a very short time and as such prevents the damaging sparking
and melting of electric contacts and extends the life expectancy of the thermal switch.

Panov, Timoshenko, Videgren, Witrick, Aggarwala, Saibel, Huai, Vasudevan, Johnson,
Keller, Reiss, Brodland, Cohen, Kosel, Batista, Drole, Jakomin, and some other authors have
engaged in the research of bimetallic shell elements in a homogenous temperature field. S.
Timoshenko [1] researched the problem of the stability of bimetallic lines and plates. The
authors Panov [2] and Wittrick et al. [3] researched the problem of the stability for shallow
axi-rotational symmetric spherical shells during heating. The related problem of stability of
a spherical shell under normal loads has been treated by Keller and Reiss [4]. The problem
of thermal stability of a multimetallic strip has been treated by Vasudevan and Johnson in
[5]. Aggarwala and Saibel researched the thermal stability of thin spherical shells [6]. The
occurrence of the snap-through of an open bimetallic shell was treated by Ren Huai [7]
using approximativemethods. The problem of finite axisymmetric deflection and snapping of
spherical shells which are point loaded at the apex and simply supported at the boundary is
analysed by Brodland andCohen, in [8]. Kosel et al. researched the stability conditions during
the temperature and mechanical loading of rotational axisymmetric [9–12] and translation
shells [13, 14] with and without an opening at the apex of the shell.

Apart from the spherical and parabolic bimetallic shells, the market also offers shells
with more complex initial geometries. “ElektronikWerkstatte” the manufacturer of bimetallic
shells from Eichgraben in Austria offers several different types of combined axisymmetric
shells (Figure 1, the first and the second shell from the left in the top row) that have an
advantage over spherical shells in that the temperature range of the snap-through (the
difference in temperature of the upper and lower snap-through) can be changed at the
constant of the initial bimetallic shell height. Even with a relatively small initial shell height,
using a suitable combination of a parabola and cone rotational curve, it is possible to achieve
snap-through of the shell only at very high temperature loads. Due to the smaller initial
height, it is important that the stresses in these shells are smaller relative to the stresses in
parabolic or spherical shells.

So, this time, we are discussing the stability and deformation conditions for a thin
axisymmetric shallow bimetallic shell, composed of a parabola and cone and a plane and
parabola. Apart from the temperature, the shell is additionally burdened with a force at
the apex and with pressure. When executing a nonlinear mathematical model for the snap-
through of a bimetallic translation shell, we will assume a small strain and the moderate
rotation of the shell element. In the strain tensor, we will also consider nonlinear terms, while
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Figure 1: Some of the different types of bimetallic shells made by the Austrian manufacturer “Elektronik
Werkstatte”.

placing equilibrium equations on the deformed part of the shell. For the first time, we will
show in both table and graphic form how the temperature of both snap-through depends on
the point where the parabolic shape of the rotational curve changes into a cone shape. Wewill
explain the effect of the concentrated force at the apex for the example of a bimetallic shell of
the plate-parabola type!

The defined thermoelastic problem will be solved with the following steps:

(1) defining the geometry of the undeformed shell,

(2) deriving the displacement vector as relation between the geometry of the
undeformed and the deformed shell,

(3) defining the geometry of the deformed shell,

(4) deriving the elements of the strain and stress tensor,

(5) introducing the forces and moments per unit of length,

(6) deriving the equilibrium equations of unit forces and moments acting in the
deformed shell element, and

(7) calculating the deformation curve and the snap-through temperature using the
fourth-order Runge-Kutta method and a nonlinear shooting method.

2. Geometry of the Undeformed Shell

The axisymmetric shape of the undeformed shell is formed by rotation of the curve y = y(x),
about the y axis [15], Figure 2. The middle surface of the undeformed axisymmetric shell
in the Lagrange Coordinate System is, therefore, defined by the function y = y(x). Figure 3
shows the middle surface of a thin rotationally symmetric bimetallic shell.

From Figures 2 and 3, we can obtain the geometric properties of the undeformed shell.
Differential of the length in the meridian direction dsψ :

dsψ = rψdψ. (2.1)
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Differential of the length in the circular direction dsϕ is

dsϕ = rϕ sinψ dϕ = xdϕ. (2.2)

Meridian angle ψ

ψ = arctan
(
dy

dx

)
= arctan

(
y′) ≈ y′. (2.3)

The flexion curvature 1/rψ of the rotational curve y(x) in the meridian direction is, Figures 2
and 3

1
rψ

=
y′′√(

1 + y′2
)3 ≈ y′′. (2.4)

The flexion curvature 1/rϕ of the circle formed by rotation of the curve y = y(x), in the
circular direction is, Figures 2 and 3,

1
rϕ

=
sinψ
x

=
sin arctan

(
y′)

x
=

1
x

y′√
1 +
(
y′)2 ≈ y′

x
. (2.5)

The simplifications in (2.3), (2.4), and (2.5) are justified since we are discussing a shallow
shell, where,

y′(x)2 � 1, (2.6)

and consequently,

sinψ ≈ ψ, sinϕ ≈ ϕ, cosψ ≈ 1. (2.7)

3. Displacement Vector and Geometry of Deformed Shell

Due to the temperature change, the shell deforms into a new shape defined by the function
Y (X) in the Euler Coordinate System. Since we are discussing a thin double-layered shell, the
displacement field is selected to satisfy the Kirchhoff hypothesis [16]:

(1) straight lines perpendicular to the shell’s middle surface before deformation,
remain straight after deformation,

(2) the transverse normals do not experience elongation,

(3) the transverse normals rotate, so that they remain perpendicular to the shell’s
middle surface after deformation.

The reader should note that the Kirchhoff hypothesis stating that the thickness of the
shell before and after deformation remains the same when the shell is subjected to kinematic
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constraint is not realistic when large strains are admitted in the deformation process [17].
The so-called Zig-Zag theory is known in literature and describes a piecewise continuous
displacement field in the direction of the multilayered shell thickness and accomplishes the
continuity of transverse stresses at each layer [18–20]. However, given the fact that the ratio
between the thickness and length of bimetallic shells, used as safety constructional elements
against temperature overheating, is about 1/100, we found the Kirchhoff hypothesis is fully
acceptable for our mathematical model.

The new shape of the shell in a deformed state is axisymmetric due to the homoge-
neous temperature field and axisymmetric mechanical load. Therefore, the displacement v in
the circular direction as well as other shell properties relative to the angle ϕ do not change:

v = 0,
∂

∂ϕ
( ) = 0. (3.1)

The displacement vector �u of any point P on the middle surface of an undeformed
shell defines the point P ′ on the middle surface of a deformed shell

�u = u�eψ + v�eϕ +w�er, (3.2)

and with the supposition (3.1),

�u = u�eψ +w�er. (3.3)

Unit basis vectors �eψ, �eϕ and �er in the Cartesian coordinate system follow directly from the
system geometry, Figure 2,

�eψ =
(
cosψ cosϕ

)
�i +
(
sinψ

)
�j +
(
cosψ sinϕ

)�k,
�eϕ =

(− sinϕ
)
�i +
(
cosϕ

)�k,
�er =

(
sin ψ cosϕ

)
�i − (cosψ)�j + (sinψ sinϕ

)�k.
(3.4)

These vectors are mutually orthogonal because

�eψ�eϕ = �eψ�er = �eϕ�er = 0. (3.5)

Derivatives of these vectors with respect to the curvilinear coordinates ψ, ϕ, and r are [21]

∂�eψ

∂ψ
=
(− cosϕ sinψ

)
�i +
(
cosψ

)
�j − (sinϕ sinψ

)�k = −�er,

∂�eψ

∂ϕ
=
(− cosψ sinϕ

)
�i + 0�j +

(
cosϕ cosψ

)�k = �eϕ cosψ,

∂�eψ

∂r
= �0,

∂�eϕ

∂ψ
= �0,

∂�eϕ

∂ϕ
=
(− cosϕ

)
�i + 0�j +

(− sinϕ
)�k = − �er sinψ − �eψ cosψ,
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∂�eϕ

∂r
= �0,

∂�er
∂ψ

=
(
cosϕ cosψ

)
�i +
(
sinψ

)
�j +
(
cosψ sinϕ

)�k = �eψ,

∂�er
∂ϕ

=
(− sinϕ sinψ

)
�i + 0�j +

(
cosϕ sinψ

)�k = �eϕ sinψ,
∂�er
∂r

= �0,

(3.6)

and when simplified due to the supposition(2.7)

∂�eψ

∂ψ
= −�er,

∂�eψ

∂ϕ
= �eϕ,

∂�eψ

∂r
= �0,

∂�eϕ

∂ψ
= �0,

∂�eϕ

∂ϕ
= −ψ�er − �eψ,

∂�eϕ

∂r
= �0,

∂�er
∂ψ

= �eψ,
∂�er
∂ϕ

= ψ�eϕ,
∂�er
∂r

= �0.

(3.7)

Now, let us observe displacements on a thin shallow axisymmetric bimetallic shell in a
homogenous temperature field, Figure 3, which is additionally loaded with the force �F at
its apex.

The point P at the position P(x, y(x)) on the undeformed shell moves into the position
P ′ on the deformed shell with the coordinates P ′(X,Y (X)). The reader should note that both
the Euler (X,Y (X)) and Lagrange (x, y(x)) coordinate system have the same origin at point
(0, 0). So, when a force or temperature load is exerted on the shell the optional point P moves,
as we have shown in Figure 3, since the reaction force per unit of length �Ve acts in the opposite
direction. The connection between the Euler (X,Y (X)) and Lagrange (x, y(x)) Coordinate
System is, Figure 3,

�X = �x + �u, (3.8)

where

�u
(
x, y
)
=

[
cosψ sinψ

sinψ − cosψ

][
u

w

]
, (3.9)

from which we obtain

X = x +w sinψ + u cosψ ≈ x +wy′ + u, (3.10)

Y = y −w cosψ + u sinψ ≈ y −w. (3.11)

In (3.10), we also consider that the displacement u is small in comparison with the
displacement w, which in turn is small in comparison with the Lagrange coordinates x so
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that the Euler coordinates X is approximately

X = x +wy′ + u ≈ x. (3.12)

From Figure 3, we can also find geometric properties of the deformed shell.
The differential of the length dsψ in the meridian direction

dsψ = rψ dψ =
√
dX2 + dY 2 = dx

√
X ′2 + Y ′2. (3.13)

Meridian angle ψ is

ψ = arctan
(
dY

dX

)
≈ dY

dX
≈ dYdx

dXdx
=
Y ′

X′ ≈ Y ′. (3.14)

Flexion curvature 1/rψ in the meridian direction is

1
rψ

=

∣∣ X′ Y ′
X′′ Y ′′

∣∣√
(X′2 + Y ′2)3

∼= Y ′′. (3.15)

Flexion curvature 1/rϕ in the circular direction

1
rϕ

=
sinψ
X

≈ ψ

X
∼= dY

dX

1
X

∼= Y ′

X
. (3.16)

With (3.11) and (3.12) for Euler’s coordinates Y and X, we finally obtain

ψ = y′ −w′,
1
rψ

= y′′ −w′′,
1
rϕ

=
y′ −w′

x
. (3.17)

4. Strain and Stress Tensor

A shell’s deformation state is shown by the displacement vector �u in the middle, that is,
reference surface. This vector has two components: the displacement u in the meridian
direction and the displacement w in the radial direction. The elements of the strain tensor
E in the curvilinear orthogonal coordinate system are determined by the Green-Lagrange
strain tensor E for the middle surface of the shell [16]

E = ET =
1
2

[
�∇ ⊗ �u +

(
�∇ ⊗ �u

)T
+
(
�∇ ⊗ �u

)
·
(
�∇ ⊗ �u

)T]
, (4.1)

where the displacement vector �u is of the form (3.3). The vector operator �∇ is by definition

�∇ = �eψ
∂

∂sψ
+ �eϕ

∂

∂sϕ
+ �er

∂

∂z
= �eψ

1
rψ

∂

∂ψ
+ �eϕ

1
x

∂

∂ϕ
+ �er

∂

∂z
. (4.2)



Mathematical Problems in Engineering 9

The gradient of the displacement vector �u, while keeping in mind the derivatives of the unit
basis vectors (3.7) and supposition (3.1), in the Green-Lagrange strain tensor (4.1) is

grad �u = �∇ ⊗ �u =

⎛
⎜⎜⎝
p11, p12, p13

p21, p22, p23

p31, p32, p33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
rψ

(
∂u

∂ψ
+w
)
, 0,

1
rψ

(
∂w

∂ψ
− u
)

0,
1

rϕ ψ

(
u +wψ

)
, 0

∂u

∂z
, 0,

∂w

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(4.3)

All nine tensor elements are obtained once (4.3) is inserted into (4.1):

E =
1
2

⎛
⎝ 2p11 + p211 + p

2
12 + p

2
13, p12 + p21 + p11 p21 + p12 p22 + p13 p23,

p12 + p21 + p11p21 + p12p22 + p13 p23, 2p22 + p221 + p
2
22 + p

2
23,

p13 + p31 + p11p31 + p12p32 + p13p33, p23 + p32 + p21p31 + p22p32 + p23p33,

p13 + p31 + p11p31 + p12p32 + p13p33
p23 + p32 + p21p31 + p22p32 + p23p33

2p33 + p231 + p
2
32 + p

2
33

⎞
⎠,

(4.4)

or in explicit form

εψ =
1
rψ

(
∂u

∂ψ
+w
)
+

1
2r2ψ

(
u2 +w2 + 2w

∂u

∂ψ
− 2u

∂w

∂ψ
+
(
∂u

∂ψ

)2

+
(
∂w

∂ψ

)2
)
,

εϕ =
1
rϕ

(
1
ψ
u +w

)
+

1
2rϕ2

(
w2 +

2u w
ψ

+
1
ψ2

(
u2 + v2

))
,

εψr = εrψ =
1
2
∂u

∂z
+

1
2rψ

(
∂w

∂ψ
− u
)
+

1
2rψ

(
w
∂u

∂z
− u∂w

∂z
+
∂u

∂z

∂u

∂ψ
+
∂w

∂z

∂w

∂ψ

)
,

εrr=
∂w

∂z
+
1
2

((
∂u

∂z

)2

+
(
∂w

∂z

)2
)
,

εψϕ = 0, εϕψ = 0, εϕr = εrϕ = 0.

(4.5)

However, the strains in (4.4) and (4.5) are still cumbersome and can hardly be used in
practical computation. On the other hand, some nonlinear terms are relatively small and can
be neglected without any significant effect on the accuracy of the results. Let us find the terms
to be neglected.

In the case of rotationω of the shell element with the length dsψ in the direction of the
unit vector �eψ , Figure 4, we can express the differential of the displacement vector d�uwith

d�u = |d�u| (− cos θ �eψ + sin θ �er
)
= d�x grad �u = dsψ

(
p11�eψ + p13�er

)
, (4.6)

where θ is angle that the vector d�u forms with the basis unit vector �eψ , Figure 4.
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Figure 4: The shell middle surface displacement �u and displacement �uz depending on the local coordinate
z as well as the rotation of the shell element ω.

In the case of small strains |εψ | � 1, we have

∣∣∣d �X∣∣∣ = |d�x|(1 + εψ) ≈ |d�x|,

|d�u| ≈ |d�x|ω ≈ rψdψω = dsψω,
(4.7)

where ω as the rotation of the shell element is expressed in radians. It is also further evident
by comparing the coefficients in (4.6) that

p11 = −|d�u|
dsψ

cos θ = −ω cos θ p13 =
|d�u|∣∣dψ∣∣ sin θ = ω sin θ. (4.8)

If the shell element with the length dsψ in the direction of the unit vector �eψ completes the
rotation for the angle ω = 20◦ around the vector �eϕ, it follows that:

p11 ≈ −π
9

cos 80◦ ≈ −0.06 p13 ≈ π

9
sin 80◦ ≈ 0.34. (4.9)

A similar calculation can be performed for the rotation of the shell element with the length
dsϕ in the direction of the unit vector �eϕ.

In case of small strains and moderate shell rotations approximately up to 20◦, the
components of the displacement gradient are

{∣∣p11∣∣, ∣∣p22∣∣, ∣∣p33∣∣}� 1, (4.10)
{∣∣p13∣∣} < 1, (4.11)

due to which we ignore all nonlinear terms in Green-Lagrange strain tensor (4.4) except the
term p213.
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Thus, the displacement of the point P due to load is the largest in the direction of the
unit vector �er , while the displacement in the direction of the unit vectors �eψ is by absolute
value smaller

|u| < |w|. (4.12)

Further, we consider that the flexion curvature of the shallow shell in the meridian direction
is very small due to which it is true that

1
rψ
u ≈ y′′u� 1

rψ

dw

dψ
=
dw

dsψ
≈ dw

dx
= w′. (4.13)

So, the tensor elements (4.4) and (4.5) are finally

E =
1
2

⎛
⎜⎜⎝

2p11 + p213, 0, p13 + p31

0, 2p22, 0

p13 + p31, 0, 2p33

⎞
⎟⎟⎠, (4.14)

or

εψ =
1
rψ

(
∂u

∂ψ
+w
)
+

1
2r2ψ

(
∂w

∂ψ

)2

, εϕ =
1
rϕ

(
1
ψ
u +w

)
,

εψr = εrψ =
1
2
∂u

∂z
+

1
2rψ

∂w

∂ψ
, εr=

∂w

∂z
,

εψϕ = 0, εϕψ = 0, εϕr = εrϕ = 0.

(4.15)

With the introduction of the local coordinate zwith the centre of origin on the middle surface
of the shell, Figure 4, the elements of the strain tensor E are, due to the shell’s curvature,
also the function of the coordinate z. The relation between the displacement uz on the local
coordinate z and displacement u on the middle surface of the bimetallic shell, Figure 4, can
be found from the strain tensor element εψr , since Kirchhoff hypothesis states that the strait
lines perpendicular to the shell’s middle surface before deformation remain straight also after
deformation. In other words, the hypothesis declares that the shear strain εψr is zero

εψr =
1
2
∂u

∂z
+

1
2rψ

∂w

∂ψ
= 0. (4.16)

The solution to this equation with respect to the element u of the displacement vector �u is:

u(z) = uz = u − z

rψ

∂w

∂ψ
. (4.17)
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The normal strain εr in the transversal direction is equal to zero according to the second
assumption of Kirchhoff’s hypothesis:

εr = 0. (4.18)

Now, two nonzero elements of the Green-Lagrange strain tensor E (4.15) for the middle
surface of the shell can be recorded by means of relation (4.13) as

εψ = u′ +wy′′ +
1
2
(
w′)2,

εϕ =
u + y′w

x
.

(4.19)

Note again that when we form the strain tensor E, we retain the nonlinear term for strain εψ
in uz the meridian direction according to the third order of the large displacements theory.
Namely, it has been confirmed that taking into account this nonlinear term is crucial for the
accuracy of the results.

We calculate the strains εzψ and ε
z
ϕ at distance z from themiddle surface of the bimetallic

shell in the direction of the unit vector �er with (4.15), where we replace the displacement u
with the displacement uz.

Since we are working on a thin shell, where z� {rψ, rϕ}, we obtain

εzψ = (uz)′ +
w

rψ + z
+
1
2
(
w′)2 = (u − zw′)′ + w

rψ + z
+
1
2
(
w′)2 ≈ εψ − zw′′,

εzϕ =
1

rϕ + z

(
uz

ψ
+w
)

=
1

rϕ + z

(
u − zw′

ψ
+w
)

≈ εϕ − zw′

x
.

(4.20)

The relation between the strain and stress tensor is determined by Hooke’s law [22]

σzψ =
E

1 − μ2

(
μ εzϕ + ε

z
ψ − (1 + μ)α T),

σzϕ =
E

1 − μ2

(
μ εzψ + εzϕ −

(
1 + μ

)
α T
)
.

(4.21)

The symbol E denotes the Young’s modulus, the symbol μ denotes the Poisson’s ratio and
α is the thermal expansion coefficient. The symbol T denotes the shell’s relative temperature
relevant to the reference T0 for which the stress state in the shell is equal to zero:

σzψ(x, z, T0) = σ
z
ϕ(x, z, T0) = τ

z
ψr(x, z, T0) = 0. (4.22)
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Figure 5: Normal and sheer stresses in the element of a deformed shell.

5. Equilibrium of the Forces and Moments

Figure 5 shows an elementary small part of the bimetallic shell with the stresses that arise
on the cross-section planes of the shell. The forces dNψ, dNϕ, and dTψr and the bending
moments dMψ , dMϕ which act upon the ABCD planes are

dNψ = nψXdϕ, dNϕ = nϕrψdψ, dTψr = tψrXdϕ,

dMψ = mψXdϕ, dMϕ = mϕrψdψ.
(5.1)

With nψ, nϕ, tψr and mψ,mϕ in (5.1) the unit forces and unit moments, respectively, are
denoted. Since we are dealing with a thin bimetallic shell, these forces and moments have
the form

nψ =
∫δ/2
−δ/2

σzψdz, nϕ =
∫δ/2
−δ/2

σzϕdz,

mψ = −
∫δ/2
−δ/2

zσzψ dz, mϕ = −
∫δ/2
−δ/2

zσzϕdz.

(5.2)

The reader should note that the transversal shear force dTψr in (5.1) cannot be expressed
by a definite integral since the transversal shear strain εψr is disregarded according to the
Kirchhoff hypothesis. However, this assumption does not exclude the full consideration of
the shear force Tψr , which, in continuation, will be expressed with the equilibrium equations.
According to the Euler-Bernoulli beam theory assumptions, a similar example occurs for a
clamped thin beam when loaded with a transversal shear force.

As the shell element in Figure 6 is in equilibrium, we can write three equations for the
equilibrium of forces and moments in the meridian, circular and radial directions of the shell.
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Figure 6: Unit forces and moments in the element of a deformed shell and external pressure load p.

In doing so, let us also remember that we are discussing a shallow shell, where the sinus
function of the meridian angle ψ can be replaced by its argument ψ, while the cosine of the
same angle is very close to one

sinψ ≈ ψ, cosψ ≈ 1. (5.3)

Equilibrium of the forces in the meridian direction is

(
dNψ + d

(
dNψ

)) − dNψ − dTψrdψ + prψdψXdϕ
dψ

2
− dNϕdϕ = 0. (5.4)

Equilibrium of the forces in the radial direction

(
dTψr + d

(
dTψr

)) − dTψr + prψdψXdϕ + dNψdψ + dNϕdϕ

(
ψ +

dψ

2

)
= 0. (5.5)
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The equilibrium equation of forces in the circular direction cannot be considered due to the
axisymmetric deformation. We write the moment equilibrium as

(
dMψ + d

(
dMψ

)) − dMψ − 2dMϕ

(
dϕ

2

)
− dTψrdX − dTψrψdY

+ prψdψXdϕ
(
dX

2
+
(
ψ +

dψ

2

)
dY

2

)

− dNψψdX + dNψdY + 2dNϕ
dϕ

2
dY

2
= 0,

(5.6)

where

d
(
dNψ

)
=
∂
(
dNψ

)
∂ψ

dψ = dnψXdϕ + nψdXdϕ,

d
(
dTψr

)
=
∂
(
dTψr

)
∂ψ

dψ = dtψrXdϕ + tψrdXdϕ,

d
(
dMψ

)
=
∂
(
dMψ

)
∂ψ

dψ = dmψXdϕ +mψdXdϕ.

(5.7)

After arranging and using (3.17), the equilibrium equations are

(
nψx
)′ − nϕ − tψrx(y −w)′′ = 0, (5.8)

(
tψrx
)′ + nϕ(y −w)′ + nψx(y −w)′′ + px = 0, (5.9)

(
mψx

)′ −mϕ − tψr x = 0. (5.10)

6. Solving Equilibrium Equations

The system of thermoelastic equations for a thin shallow axisymmetric bimetallic shell
consists of three equilibrium equations (5.8), (5.9), (5.10), the four equations (5.2) for unit
forces and moments, two equations (4.21) for stresses in the shell, two equations (4.20) for
strains outside the middle plan of the shell, and finally two equations (4.19) which relate
strains and displacements. Thus, the system has 13 equations and as many unknowns,
namely nψ , nϕ, tψr , mψ , mϕ, σzψ , σ

z
ϕ, ε

z
ψ , ε

z
ϕ, εψ , εϕ, u and w and can be reduced further in a

following way: first, we insert (4.20) into (5.2). After integration, we have

nψ = A
(
εψ + μ εϕ

) − PT, (6.1)

nϕ = A
(
εϕ + μ εψ

) − PT, (6.2)
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mψ = B
(
w′′ + μ

w′

x

)
−QT, (6.3)

mϕ = B
(
w′

x
+ μw′′

)
−QT, (6.4)

where A,B, P , and Q are constants as follows [13, 14]:

A =
Eδ

1 − μ2
, B =

Eδ3

12
(
1 − μ2

) , P =
Eδ

2
(
1 − μ) (α1 + α2), Q =

Eδ2(α2 − α1)
8
(
μ − 1

) . (6.5)

We now multiply (5.8)with (y′ −w′) and add (5.9). So, we obtain

(
nψx
)′(
y −w)′ + nψx(y −w)′′ + (tψrx)′ + px − tψrx

(
y −w)′(y −w)′′ = 0. (6.6)

We disregard the last nonlinear term of 10−3 magnitude order, since

(
y′ −w′)(y′′ −w′′) = Y ′Y ′′ =

1
2

(
Y

′2
)′ ≈ 10−3 � 1. (6.7)

In this way, we obtain the relation

(
tψrx
)′ = −

(
nψx
(
y −w)′)′ − px = −

(
nψx
(
y −w)′ +

∫
pxdx

)′
, (6.8)

and after integration

tψr =
1
x

(
c −
∫x
0
pxdx

)
− nψ

(
y −w)′, (6.9)

where c is a constant that depends exclusively on the external force F acting on the shell.
The relation (6.9) is inserted into (5.9) and (5.10).

(
nψx
)′ − nϕ = 0,

(
mψx

)′ −mϕ + nψx
(
y −w)′ − c +

∫x
0
pxdx = 0.

(6.10)

We now express the unit forces nψ , nϕ andmomentsmψ ,mϕ in the equations above with (6.1),
(6.2), (6.3), and (6.4), and the strains εψ , εϕ with the kinematic equations (4.19).Therefore, the
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dependent unknown variables by which we solve the differential equations (6.10) are the
elements u and w of the displacement vector �u

u +wy′ = x

(
u′ +

(
1 − μ)(w′)2

2
+w′(μy′ + x

(
w′′ + y′′)) + (xu′′ +w(y′′ + xy′′′))

)
, (6.11)

cx + Bw′ = x

(∫x
0
pxdx + Bw′′ − (w′ − y′)

×
(
−PTx +A

(
μu + μwy′ + x

(
u′ +

(w′)2

2
+wy′′

)))
+ Bxw′′′

)
.

(6.12)

We define the integration constant c in (6.12) by taking into account the equilibrium of forces
on the edge of the shell.

If a shallow shell is simply supported, the supporting force tψr per unit of length at
the edge of the shell is directed opposite to and in value equal to the sum of the force F and
pressure p acting on the shell, Figure 7

tψr
∣∣
x=a = − 1

2πa

(
F + 2π

∫a
0
p(x)xdx

)
, (6.13)

equation (6.13) is inserted into (6.9) from where the constant c is expressed

c =
−F
2π

. (6.14)

If the bimetallic shell serves as a thermal switch shutting down a device in the case of it
overheating, then it is necessary to assure that the shell can extend unrestricted in a horizontal
direction [10]. In continuation, we will discuss a simply supported shell. At the boundary of
the simply supported shell, the force and moment per unit of length are equal to zero

nψ(a) = nψ(−a) = mψ(a) = mψ(−a) = 0. (6.15)

We use (6.1) and(6.3)

−PT +A

(
u′ +

1
2
(
w′)2 + μ

(
u +wy′)
x

+wy′′
)∣∣∣∣∣

x=±a
= 0, (6.16)

−QT +
Bμw′

x
+ Bw′′

∣∣∣∣
x=±a

= 0. (6.17)

The displacement w at the apex of the shell is equal to zero in the chosen coordinate system:

w(0) = 0. (6.18)
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Figure 7: Loading of a simply roller supported shell with the force �F[N] and external pressure p[N/m2].

It is also demonstrated that this system of (6.11), (6.12), (6.16), (6.17), and (6.18) has
symmetry. Namely, if the displacement vector �u(x) = u �eψ+w �er is the solution to this system,
then the solution is also

�u(−x) = −u�eψ +w�er. (6.19)

due to which it is sufficient that we solve the system of equations only for positive x values
in the interval [0 ≤ x ≤ a]. For negative x, the displacement vector �u is defined by (6.19).
The boundary conditions for the displacement vector �u also follow from the mentioned
symmetry:

u(0) = 0, w(0) = 0, w′(0) = 0. (6.20)

The remaining conditions on the edges of the shell at x = a are defined with unit forces and
moments in the equations for boundary conditions (6.16) and (6.17).

Boundary value problem (BVP) for the snap-through of the system of a shallow
axisymmetric bimetallic shell is therefore composed of equilibrium equations (6.11) and
(6.12), boundary conditions (6.16) and (6.17) at the point x = a, and boundary conditions
(6.20) at the point x = 0

u +wy′ = x

(
u′ +

(
1 − μ) (w′)2

2
+w′(μy′ + x

(
w′′ + y′′)) + (xu′′ +w(y′′ + xy′′′))

)
,

cx + Bw′ = x
(∫x

0
pxdx + Bw′′ − (w′ − y′)

×
(
−PTx +A

(
μu + μwy′ + x

(
u′ +

(w′)2

2
+wy′′

)))
+ Bxw′′′

)
,

PT = A

(
u′ +

1
2
(
w′)2 + μ

(
u +wy′)
x

+wy′′
)∣∣∣∣∣

x=a

,

QT =
(
Bμw′

x
+ Bw′′

)∣∣∣∣
x=a

, u(0) = w(0) = w′(0) = 0.

(6.21)



Mathematical Problems in Engineering 19

7. Analysis of Stability Conditions in a Spherical-Conic Type
Bimetallic Shell

In continuation, we will discuss the snap-through and stability conditions during the loading
of a parabolic-conic shell composed of a parabola near the apex and of a cone for the rest,
Figures 8 and 9, where the rotational curve is determined by the function y

y(x) =

⎧⎨
⎩
kx2, x ≤ b,
k(a + b)x − abk, x > b,

(7.1)

with the following material and geometric properties:

k =
1

152 mm
, a = 15mm, δ = 0.3mm,

μ =
1
3
, a1 = 3.41 · 10−5 K, a2 = 1.41 · 10−5 K.

(7.2)

7.1. Analytic Solution in the Case of Flattened Parabolic Shell

The parameter b in the rotational curve function (7.1) defines the point at which the parabola
translates into a straight line. If in (7.1) the parameter b is equal to the horizontal radius of
the shell a, therefore, b = a, we obtain a parabolic shell with the rotational curve y(x) = kx2,
Figure 10. Let this parabolic shell be loaded only with the temperature T . Suppose also that
the shell at a certain temperature T = Tm is completely flattened, Figure 11. The displacement
function w(x) is in that case

w(x) = y(x) = kx2. (7.3)

We insert (7.3) into the boundary condition (6.17) and express the temperature Tm at which
the shell is flattened

Tm =
4kδ

3(α1 − α2) . (7.4)

With the displacement w as defined by (7.3), the moment equilibrium equation (6.12) is
identically satisfied

Bw′ − x
(
Bw′′ − (w′ − y′)

(
−PTx +A

(
μu + μwy′ + x

(
u′ +

(w′)2

2
+wy′′

)))
+ Bxw′′′

)

≡ 0,
(7.5)
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Figure 8: Example of a rotational curve of a parabolic-conic bimetallic shell.
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Figure 9: Example of the full shape of a parabolic-conic bimetallic shell.

and the equation for the equilibrium of forces becomes

2k2x3μ − u + xu′ + x2u′′ = 10k2x3, (7.6)

with the solution with respect to displacement u

u(x) =
kx
(
8(α1 + α2)δ + 3a2k(α1 − α2)

(
μ − 1

) − 3kx2(α1 − α2)
(
5 + μ

))
12(α1 − α2) , (7.7)

that at the same time also satisfies the boundary condition (6.16) at the point x = a and
the boundary condition (6.20) for the displacement u at the point x = 0. Therefore, at the
temperature T = Tm the parabolic shell is completely flattened. The reader should also note
that such a state of the shell is only stable with shells that are shallow enough!
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Figure 10: Initial shape of the parabolic shell.

7.2. Numeric Solution of the BVP

We solved the system of (6.21) using the nonlinear shooting method. First, the BVP (6.21)
was converted into the system of ordinary differential equations of the first order

y′
1 = y2 y′

3 = y4 y′
4 = y5,

y′
2 =

1
2x2

(
2y1 − 2xy2 − xy2

4 − 2x2y4y5 + xy3
4μ + 2y3y′ − 2xy4μy′ − 2xy3y′′ − 2x2y4y

′′

−2x2y3y
′′′
)
,

y′
5 =

1
2Bx2

(
2cx + 2By4 − 2PTx2y4 + 2Ax2y2y4 +Ax2y3

4 − 2Bxy5

+ 2Axy1y4μ − 2x
∫x
0
xpdx − 2Axy3μy

′2 + 2Ax2y3y4y
′′

+xy′
(
2PTx −A

(
2xy2 + xy2

4 + 2y1μ − 2y3y4μ
)
− 2Axy3y′′

))

y1(0) = 0, y3(0) = 0, y4(0) = 0,

PT = A

(
y2 +

1
2
(
y4
)2 + μ

(
y1 + y3y′)

x
+ y3y′′

)∣∣∣∣∣
x=a

, QT =
(
Bμy4
x

+ By5
)∣∣∣∣

x=a
,

(7.8)

when the substitution is introduced

u(x) = y1, u′(x) = y2, w(x) = y3, w′(x) = y4, w′′(x) = y5. (7.9)

We chose the approximate values for y2(0) and y5(0) and calculated the approximate values
for the displacements u andw by the classic one-step fourth-order Runge-Kutta method [23].
Defining more exact values for y2(0) and y5(0) was carried out by the Newton method [24]
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Figure 11: Deformation of the parabolic shell at the temperature T = Tmp = 88.9◦C into a regular circular
plate shape.

for solving nonlinear equations. We wrote the shell deformation with the ratio ξ between the
current height h of the deformed shell and the initial height h0 of the undeformed shell

ξ =
h

h0
=
y(a) −w(a)

y(a)
. (7.10)

The program code was written in Mathematica package 7.01.0.
As the components u and w of the displacement vector �u at the temperature Tm for a

totally flattened parabolic shell are defined by (7.3) and (7.7), it is possible to calculate how
much the numeric results differ from the actual ones. In this manner, we can estimate the
accuracy of the chosen numeric method.

7.3. Temperature Loading of a Parabolic Shell

Let us first observe the stability conditions at temperature loading of a parabolic bimetallic
shell with b = a in (7.1). For this special example of a parabolic-conic shell, we calculated,
with the earlier mentioned method, the stability conditions at temperature loading. The
obtained results are identical to the results calculated by Wittrick et al. [3] for the parabolic
shell.

Figure 12 shows stability conditions for a parabolic shell with the material and
geometric properties in (7.2). The graph of the function of dimensionless temperature τ =
T/Tm depending on the ratio of heights ξ represents the stability circumstances during the
shell’s temperature load.

During the initial state of no temperature load τ = 0, at point O(1, 0), the ratio of
heights is equal to one. By increasing the dimensionless temperature τ , this ratio decreases.
As is clear in Figure 12, the segment on the curve between the point O and the point
A(ξu, τu) = A(0.44, 1.51), where the function τ(ξ) has a local maximum, is the region of
stable equilibrium. The upper snap-through of the shell will, therefore, occur at point A at
the temperature of τu = 1.51, because the segment between the points A and C(ξl, τl) =
C(−0.44, 0.49), where the function has a local minimum, is the region of unstable equilibrium.
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Figure 12: The function τ = τ(ξ) as an example of parabolic axisymmetric shell expressing the phenomenon
of a system snap-through between pointsAB in the process of heating up and the points CD in the process
of cooling.
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Figure 13: Rotational curves for an undeformed parabolic shell at the moment of the upper and lower
snap-through.

After the snap-through, the shell will occupy a new position of stable equilibrium in
point B(−0.91, 1.51) at the temperature τ = 1, 51. With further heating of the shell, the ratio ξ
continues to decrease.

During the cooling of the shell, we have the opposite phenomenon and at point C at
the temperature τl = 0.49 another lower snap-through. This time the shell snaps-through into
the stable equilibrium position at pointD(0.91, 0.49) at the temperature τ = 0.49. By reheating
the shell to the temperature of the upper snap-through τu = 1.51, we can repeat the complete
cycle of the snap-through of the shell. The shape of the shell in the characteristic stages of
temperature loading is clear in Figures 13 and 14.

From Figure 12, it follows that in a flattened state at the ratio of heights ξ = 0, the
shell cannot endure as the point (0, 1) belongs in unstable region between the points A and
C. Equation (7.4) determines the temperature Tm at which the shell flattens, Figure 11. If at
the temperature T = Tm the flattened shell deflects downwards so that the ratio of heights is
ξ < 0, then the temperature Tm of the shell is too high for an equilibrium state of the shell at
the ratio of heights ξ < 0. The apex of the shell accelerates downwards so that a new stable
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(a) (b) (c) (d) (e)

Figure 14: Geometry of a parabolic shell: (a) undeformed, (b) at the upper snap-through, (c) after the
upper snap-through, (d) at the lower snap-through, and (e) after the lower snap-through.
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Figure 15: Initial shape of the conic shell.

equilibrium state is established in the position (−0.78, 1). It is quite similar if the shell deflects
upwards ξ > 0 except that in this case, the temperature T = Tm for the ratio of heights ξ > 0
is too low to satisfy the conditions for equilibrium and consequently the apex of the shell
accelerates upwards so that the new stable equilibrium state is established in the position
(0.78, 1), Figure 12.

7.4. Temperature Loading of a Conic Shell

If in (7.1) b = 0, then the shell translates into a conic shape, Figure 15. We present an example
of a temperature loaded conic shell with material and geometric properties in (7.2) and a
rotational curve y(x)

y(x) = kx =
1

15mm
x. (7.11)

In comparison with the earlier described parabolic shell, the conic shell has a snap-through
at a lower temperature. The upper snap-through occurs at temperature τ = 1.00 and at
the height ratio ξ = 0.41, Figure 16(b). The shape of the shell after the snap-through is in
Figure 16(c). The repeated (lower) snap-through occurs at temperature τ = 0.98 and at the
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(a) (b) (c) (d) (e)

Figure 16: Geometry of a conic shell: (a) undeformed, (b) at the upper snap-through, (c) after the upper
snap-through, (d) at the lower snap-through, and (e) after the lower snap-through.
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Figure 17: The initial and deformed conic shell at the ratio of heights ξ = 1 and ξ = 0.

height ratio ξ = −0.09, Figure 16(d). The shell snaps-through into a new stabile equilibrium
position and assumes the shape on the diagram, Figure 16(e).

We would expect, like in the case of a flattened parabolic shell, Figure 11, that at a
certain temperature the conic shell would also flatten with the function y(x) = k x. It is
verified that it is not possible to identically satisfy (6.12)with the displacementw(x) = y(x) =
kx, thus a flattened state of a conic bimetallic shell is not possible. The shape of the deformed
conic shell at the ratio of heights ξ = 0 is shown in Figure 17.

7.5. Temperature Loading of a Parabolic-Conic Shell

We gradually increased the value of the parameter b in the equation system (6.21) and
calculated the temperature of both snap-throughs for a parabolic-conic type bimetallic shell.
The snap-through temperatures Tu and Tl at the parameter b values between 0 ≤ b ≤ a are
shown in Table 1.

We ascertained that the snap-through temperature is dependent from point b, where
the parabolic rotational curve translates into a conic one, Figure 18.

Figure 18 shows how both snap-through temperatures are relative to parameter b. At
the extreme point on the left at b = 0, an example of the conic shell is shown, and on the right
at b = 15, an example of parabolic shell is shown.

Both curves for the snap-through temperature have a local extreme. The highest
temperature at which the shell snaps-through for the first time (upper snap-through) is
Tu = 143◦C at b = 8.1mm. The lowest temperature of the return (lower) snap-through is
25◦C at b = 5.0mm. The difference in the temperature of the upper and lower snap-through
relevant to the parameter b is evident in Figure 19.
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Table 1: Snap-through temperatures of a parabolic-conic shell relevant to the parameter b.

b (mm) 0 1 2.5 4 5 6 7.5 10 12.5 15
Tu (C◦) 89 96 109 122 130 137 143 141 137 134
ξu 0.41 0.40 0.38 0.38 0.39 0.40 0.43 0.49 0.47 0.49
Tl (C◦) 87 92 82 31 25 28 39 43 44 44
ξl −0.09 −0.21 −0.54 −0.59 −0.60 −0.57 −0.49 −0.49 −0.5 0.48

Upper snap through

Lower snap through
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Figure 18: Snap-through temperatures of a parabolic-conic type of bimetallic shell.

7.6. Temperature and Force Loading of a Circular Plane-Parabolic Shell

In practice, a shell composed of a circular plane near the apex and a parabola at the edge is
frequent, Figure 20. Such a shell occurs with the curve rotation:

y(x) =

⎧⎪⎨
⎪⎩
0, x ≤ b,

1
(a2 − b2)x

2 +
b2

b2 − a2 , x > b.
(7.12)

We will again numerically discuss the example of a shell with material and geometric
properties in (7.2). The parameter b where the shell translates from a plane into a parabola
should have a value of b = 7.5mm. At first, the shell should be loaded only with temperature
T . The upper snap-through of such a shell occurs at the temperature T = 180◦C and the height
ratio of ξ = 0.48, Figure 21.

In comparison with a parabolic shell of equal material and geometric properties,
Figure 10, this shell has a snap-through at a much higher temperature. A parabolic shell
already translates into an unstable equilibrium state at the temperature Tu = τuTm = 134◦C,
when it snaps-through into a new stable equilibrium position. Therefore, with an equal initial
height h0, the combined shell has a higher temperature of the upper snap-through by 46◦C
or by 34%. Consequently, with an appropriate combination of a circular plate and parabola
it is possible to construct a shell with a low initial height that, despite this, will still have a
snap-through at a high temperature. Therefore, this is an important advantage of combined
shells in comparison with parabolic shells.

The effect of the concentrated force F[N], exerted at the apex of the shell is clear from
Figures 22 and 23. Due to the force, the shell already bends, even when not loaded with
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Figure 19: The difference in the temperature of the upper and lower snap-through relevant to the parameter
b.
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Figure 20: Undeformed shape of a plane-parabola type bimetallic shell.
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Figure 21: A plane-parabola type bimetallic shell at the moment of the upper snap-through at the
temperature T = 180◦C and height ratio ξ = 0.48.
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Figure 22: Deformation curve for a plane-parabola type bimetallic shell loaded with a concentrated force
F = 37.7N.
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Figure 23: The shape of the shell after loading with a concentrated force F = 37.7N.

temperature, into the shape shown in Figure 23. The concavity is most distinct near the apex.
The deformation curve is shown in Figure 22 in blue.

If such a shell is to snap-through it should be additionally heated a bit. The instability
and snap-through occurs at temperature Tu = 65◦C. The shape of the shell at the moment of
snap-through is shown in Figure 24, its deformation curve is shown in Figure 22 in red.

8. Conclusion

Simply supported, thin-walled, shallow bimetallic shells of mixed (combined) type have
the property to snap-through at a certain temperature into a new equilibrium position. The
temperature of the snap-through depends on the material and geometric properties of the
shell. As a special example, we analysed the conditions for parabolic, conic, parabolic-conic
and plate-parabolic type of shell that have both layers equally thick δ1 = δ2 = δ/2, and the
same Poisson’s ratio μ1 = μ2 = μ. Two parabolic shells of different rotational curves y1 = k1x2

and y2 = k2x2 have at the same temperature load T equal relative displacements

u1
a1

=
u2
a2
,

w1

a1
=
w2

a2
. (8.1)
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Figure 24: The shape of the shell at the moment of the upper snap-through when loaded with a force
F = 37.7N and temperature Tu = 65◦C.

If

k1a1 = k2a2,
δ1
a1

=
δ2
a2
. (8.2)

Conic shells with different functions of rotational curves y1 = k1x and y2 = k2x have equal
relative displacements (8.1) if the geometry parameters are such that

k1 = k2,
δ1
a1

=
δ2
a2
. (8.3)

A conic shell in comparison with a parabolic shell with equal material and geometric
properties snaps-through at lower temperatures, Table 1. With a suitable initial shape of a
parabolic-conic type bimetallic shell, we can change the upper Tu and lower Tl temperature
values at which snap-through occurs. By reducing the conic part of the shell at the expense
of the parabolic, the temperature of the upper snap-through increases. It is possible to
achieve the highest snap-through temperature Tu if the shell translates from a conic shape
to a parabolic approximately at the middle of the horizontal radius a. Therefore, for this
type of shell, it is possible to influence the upper and lower temperature snap-through
by changing the parameter b, and consequently with it the temperature at which a device
would at first shutdown, then after cooling sufficiently start up again. We have ascertained a
similar property of changing the temperature of both snap-throughs in parabolic shells with a
circular opening in the apex [9]. It is also possible to influence the snap-through temperature
by changing the force at the apex of the shell. At a certain force, the shell can snap-through
without heating.
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