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Nonlinear matrix equation Xs + A∗X−t1A + B∗X−t2B = Q has many applications in engineering;
control theory; dynamic programming; ladder networks; stochastic filtering; statistics and so forth.
In this paper, the Hermitian positive definite solutions of nonlinear matrix equationXs+A∗X−t1A+
B∗X−t2B = Q are considered, whereQ is a Hermitian positive definite matrix, A, B are nonsingular
complexmatrices, s is a positive number, and 0 < ti ≤ 1, i = 1, 2. Necessary and sufficient conditions
for the existence of Hermitian positive definite solutions are derived. A sufficient condition for the
existence of a unique Hermitian positive definite solution is given. In addition, some necessary
conditions and sufficient conditions for the existence of Hermitian positive definite solutions are
presented. Finally, an iterative method is proposed to compute the maximal Hermitian positive
definite solution, and numerical example is given to show the efficiency of the proposed iterative
method.

1. Introduction

We consider the nonlinear matrix equation

Xs +A∗X−t1A + B∗X−t2B = Q, (1.1)

where Q is an n × n Hermitian positive definite matrix, A,B are n × n nonsingular complex
matrices, s is a positive number, and 0 < ti ≤ 1, i = 1, 2. Here A∗ stands for the conjugate
transpose of the matrix A.

Nonlinear matrix equations with the form of (1.1) havemany applications in engineer-
ing; control theory; dynamic programming; ladder networks; stochastic filtering; statistics
and so forth. The solutions of practical interest are their Hermitian positive definite (HPD)
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solutions. The existence of HPD solutions of (1.1) has been investigated in some special cases.
Long et al. [1] studied (1.1)when s = 1, t1 = t2 = 1. In addition, there have been many papers
considering the Hermitian positive solutions of

Xs +A∗X−tA = Q. (1.2)

For instance, the authors [2–5] studied (1.2) when s = 1, t = 1. In Hasanov [6, 7], the authors
investigated (1.2) when s = 1, t ∈ (0, 1]. Then Peng et al. [8] proposed iterative methods for
the extremal positive definite solutions of (1.2) for s = 1 with two cases: 0 < t ≤ 1 and t ≥ 1.
Cai and Chen [9, 10] studied (1.2) with two cases: s and t are positive integers, and s ≥ 1,
0 < t ≤ 1 or 0 < s ≤ 1, t ≥ 1 respectively.

In this paper, we study the HPD solutions of (1.1). The paper is organized as follows.
In Section 2, we derive necessary and sufficient conditions for the existence of HPD solutions
of (1.1) and give a sufficient condition for the existence of a unique HPD solution of (1.1).
We also present some necessary conditions and sufficient conditions for the existence of
HPD solutions of (1.1). Then in Section 3, we propose an iterative method for obtaining
the maximal HPD solution of (1.1). We give a numerical example in Section 4 to show the
efficiency of the proposed iterative method.

We start with some notations which we use throughout this paper. The symbol Cm×n

denotes the set of m × n complex matrices. We write D > 0(D ≥ 0) if the matrix D is positive
definite(semidefinite). IfD−E is positive definite(semidefinite), then wewriteD > E(D ≥ E).
We use λ1(D) and λn(D) to denote the maximal and minimal eigenvalues of a matrix D. We
use ‖D‖ and ‖D‖F to denote the spectral and Frobenius norm of a matrix D, and we also use
‖b‖ to denote l2-norm of a vector b. We use XS and XL to denote the minimal and maximal
HPD solution of (1.1), that is, for any HPD solution X of (1.1), then XS ≤ X ≤ XL. The
symbol I denotes the n × n identity matrix. The symbol ρ(D) denotes the spectral radius
of D. Let [D,E] = {X | D ≤ X ≤ E} and (D,E) = {X | D < X < E}. For matrices D =
(d1, d2, . . . , dn) = (dij) and E, D ⊗ E = (dijE) is a Kronecker product and vec(D) is a vector
defined by vec(D) = (dT

1 , d
T
2 , . . . , d

T
n)

T .

2. Solvability Conditions and Properties of the HPD Solutions

In this section, we will derive the necessary and sufficient conditions for (1.1) to have anHPD
solution and give a sufficient condition for the existence of a unique HPD solution of (1.1).
We also will present some necessary conditions and sufficient conditions for the existence of
Hermitian positive definite solutions of (1.1).

Lemma 2.1 (see [11]). If D ≥ E > 0 (or D > E > 0), then Dp ≥ Ep > 0 (or Dp > Ep > 0) for all
p ∈ (0, 1], and Ep ≥ Dp > 0 (or Ep > Dp > 0) for all p ∈ [−1, 0).

Lemma 2.2 (see [12]). Let D and E be positive operators on a Hilbert space such that 0 < m1I ≤
D ≤ M1I, 0 < m2I ≤ E ≤ M2I, and 0 < D ≤ E. Then

Dq ≤
(
M1

m1

)q−1
Eq, Dq ≤

(
M2

m2

)q−1
Eq (2.1)

hold for any q ≥ 1.
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Lemma 2.3 (see [13]). Let f(x) = xt(ζ − xs), ζ > 0, x ≥ 0. Then

(1) f is increasing on [0, ((t/(s + t))ζ)1/s] and decreasing on [((t/(s + t))ζ)1/s,+∞);

(2) fmax = f(((t/(s + t))ζ)1/s) = (s/(s + t))(t/(s + t))t/sζ(t/s)+1.

Lemma 2.4 (see [14]). IfD and E are Hermitian matrices of the same order with E > 0, thenDED+
E−1 ≥ 2D.

Lemma 2.5 (see [15]). If 0 < θ ≤ 1, and D and E are positive definite matrices of the same order
withD,E ≥ bI > 0, then ‖Dθ −Eθ‖ ≤ θbθ−1‖D −E‖ and ‖D−θ −E−θ‖ ≤ θb−(θ+1)‖D −E‖. Here ‖ · ‖
stands for one kind of matrix norm.

Lemma 2.6 (see [5]). Let D and E be two arbitrary compatible matrices. Then ρ(D∗E − E∗D) ≤
ρ(D∗D + E∗E).

Theorem 2.7. Equation (1.1) has an HPD solution if and only if A,B can factor as

A = (L∗L)t1/2sN1, B = (L∗L)t2/2sN2, (2.2)

where L is a nonsingular matrix and

(
LQ−1/2

N1Q
−1/2

N2Q−1/2

)
is column orthonormal.

Proof. If (1.1) has an HPD solution, then Xs > 0. Let Xs = L∗L be the Cholesky factorization,
where L is a nonsingular matrix. Then (1.1) can be rewritten as

Q−1/2L∗LQ−1/2 +Q−1/2A∗(L∗L)−t1/2s(L∗L)−t1/2sAQ−1/2

+Q−1/2B∗(L∗L)−t2/2s(L∗L)−t2/2sBQ−1/2 = I.

(2.3)

LetN1 = (L∗L)−t1/2sA, N2 = (L∗L)−t2/2sB, then A = (L∗L)t1/2sN1, B = (L∗L)t2/2sN2. Moreover,
(2.3) turns into

Q−1/2L∗LQ−1/2 +Q−1/2N∗
1N1Q

−1/2 +Q−1/2N∗
2N2Q

−1/2 = I, (2.4)

that is,

⎛
⎜⎜⎜⎝

LQ−1/2

N1Q−1/2

N2Q−1/2

⎞
⎟⎟⎟⎠

∗⎛
⎜⎜⎜⎝

LQ−1/2

N1Q−1/2

N2Q−1/2

⎞
⎟⎟⎟⎠ = I, (2.5)

which means that

(
LQ−1/2

N1Q
−1/2

N2Q
−1/2

)
is column orthonormal.
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Conversely, ifA,B have the decompositions as (2.2), letX = (L∗L)1/s, thenX is anHPD
matrix, and it follows from (2.2) and (2.4) that

Xs +A∗X−t1A + B∗X−t2B = L∗L +N∗
1N1 +N∗

2N2

= Q1/2
(
Q−1/2L∗LQ−1/2 +Q−1/2N∗

1N1Q
−1/2

+Q−1/2N∗
2N2Q

−1/2
)
Q1/2

= Q.

(2.6)

Hence (1.1) has an HPD solution.

Theorem 2.8. Equation (1.1) has an HPD solution if and only if there exist a unitary matrix V ∈
Cn×n, a column-orthonormal matrix U =

(
U1
U2

)
∈ C2n×n(in which U1, U2 ∈ Cn×n), and diagonal ma-

trices C > 0 and S ≥ 0 with C2 + S2 = I such that

A =
(
Q1/2V ∗C2VQ1/2)t1/2sU1SVQ1/2,

B =
(
Q1/2V ∗C2VQ1/2

)t2/2s
U2SVQ1/2.

(2.7)

Proof. If (1.1) has an HPD solution, we have by Theorem 2.7 that the matrix

(
LQ−1/2

N1Q
−1/2

N2Q
−1/2

)
is

column orthonormal. According to the CS decomposition theorem (Theorem 3.8 in [16]),
there exist unitary matrices P =

(
P1 0
0 P2

)
∈ C3n×3n (in which P1 ∈ Cn×n, P2 ∈ C2n×2n), V ∈ Cn×n,

such that

⎛
⎝P1 0

0 P2

⎞
⎠
⎛
⎜⎝

LQ−1/2

N1Q−1/2

N2Q−1/2

⎞
⎟⎠V ∗ =

⎛
⎝

C

S

0

⎞
⎠, (2.8)

where C = diag(cos θ1, . . . , cos θn), S = diag(sin θ1, . . . , sin θn), and 0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2.
Thus the diagonal matricesC, S ≥ 0 andC2+S2 = I. Furthermore, noting that L is nonsingular,
by (2.8), we have

C = P1LQ
−1/2V ∗ > 0, (2.9)

P2

(
N1

N2

)
Q−1/2V ∗ =

(
S

0

)
. (2.10)
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Equation (2.10) is equivalent to
(

N1
N2

)
= P ∗

2

(
S
0

)
VQ1/2. Let P ∗

2 be partitioned as P ∗
2 =(

U1 U3
U2 U4

)
, in whichUi ∈ Cn×n, i = 1, 2, 3, 4, then we have

(
N1

N2

)
=

(
U1 U3

U2 U4

)(
S

0

)
VQ1/2 =

(
U1SVQ1/2

U2SVQ1/2

)
, (2.11)

from which it follows that N1 = U1SVQ1/2, N2 = U2SVQ1/2. By (2.9), we have L =
P ∗
1CVQ1/2. Then by (2.2), we have

A = (L∗L)t1/2sN1 =
(
Q1/2V ∗C2VQ1/2

)t1/2s
U1SVQ1/2,

B = (L∗L)t2/2sN2 =
(
Q1/2V ∗C2VQ1/2

)t2/2s
U2SVQ1/2.

(2.12)

Conversely, assume thatA,B have the decomposition (2.7). LetX = (Q1/2V ∗C2VQ1/2)1/s,
which is an HPD matrix. Then it is easy to verify that X is an HPD solution of (1.1).

Theorem 2.9. If (1.1) has an HPD solution X, then X ∈ (M,N), where

M =
1
2

((
μ1

ν1

)(1−t1)/t1(
AQ−1A∗

)1/t1
+
(
μ2

ν2

)(1−t2)/t2(
BQ−1B∗

)1/t2)
,

N =
(
Q −A∗Q−t1/sA − B∗Q−t2/sB

)1/s
,

(2.13)

in which μ1 and ν1 are the minimal and maximal eigenvalues of AQ−1A∗ respectively, μ2 and ν2 are
the minimal and maximal eigenvalues of BQ−1B∗, respectively.

Proof. LetX be an HPD solution of (1.1), then it follows from 0 < Xs < Q and Lemma 2.1 that
X−ti > Q−ti/s, i = 1, 2. Hence

Xs = Q −A∗X−t1A − B∗X−t2B < Q −A∗Q−t1/sA − B∗Q−t2/sB. (2.14)

Thus we have

X <
(
Q −A∗Q−t1/sA − B∗Q−t2/sB

)1/s
= N. (2.15)

On the other hand, fromA∗X−t1A < Q, it follows that

Q−1/2A∗X−t1/2X−t1/2AQ−1/2 < I,

X−t1/2AQ−1A∗X−t1/2 < I,

AQ−1A∗ < Xt1 .

(2.16)
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Let μ1 and ν1 be the minimal and maximal eigenvalues of AQ−1A∗, respectively. Since 1/t1 ≥
1, and μ1I ≤ AQ−1A∗ ≤ ν1I, by Lemma 2.2, we get (μ1/ν1)(1−t1)/t1(AQ−1A∗)1/t1 < X.

Similarly, we have (μ2/ν2)(1−t2)/t2(BQ−1B∗)1/t2 < X, in which μ2 and ν2 are the minimal
and maximal eigenvalues of BQ−1B∗, respectively.

Hence we have X > 1/2((μ1/ν1)(1−t1)/t1(AQ−1A∗)1/t1 + (μ2/ν2)(1−t2)/t2(BQ−1B∗)1/t2) =
M.

Theorem 2.10. If A∗X−t1A + B∗X−t2B ≤ Q −M
s
for all X ∈ [M,Q1/s], and

p =
1
s

(
t1λ

−(s+t1)
n

(
M
)
‖A‖2F + t2λ

−(s+t2)
n

(
M
)
‖B‖2F

)
< 1, (2.17)

whereM is defined by (2.13), then (1.1) has a unique HPD solution.

Proof. By the definition of M, we haveM > 0. Hence λn(M) > 0.
We consider the map F(X) = (Q − A∗X−t1A − B∗X−t2B)1/s and let X ∈ Ω = {X | M ≤

X ≤ Q1/s}.Obviously, Ω is a convex, closed, and bounded set and F(X) is continuous on Ω.
By the hypothesis of the theorem, we have

Q1/s ≥ (Q −A∗X−t1A − B∗X−t2B
)1/s ≥ (Q −Q +M

s)1/s
= M, (2.18)

that is, M ≤ F(X) ≤ Q1/s. Hence F(Ω) ⊆ Ω.
For arbitraryX, Y ∈ Ω, we have

A∗X−t1A + B∗X−t2B ≤ Q −M
s
, A∗Y−t1A + B∗Y−t2B ≤ Q −M

s
. (2.19)

Hence

F(X) =
(
Q −A∗X−t1A − B∗X−t2B

)1/s ≥ (Q −Q +M
s)1/s

= M ≥ λn

(
M
)
I,

F(Y) =
(
Q −A∗Y−t1A − B∗Y−t2B

)1/s ≥ (Q −Q +M
s)1/s

= M ≥ λn

(
M
)
I.

(2.20)

From (2.20), it follows that

∥∥F(X)s − F(Y)s
∥∥
F
=

∥∥∥∥∥
s−1∑
i=0

F(X)i(F(X) − F(Y))F(Y)s−1−i
∥∥∥∥∥
F

=

∥∥∥∥∥vec
[
s−1∑
i=0

F(X)i(F(X) − F(Y))F(Y)s−1−i
]∥∥∥∥∥

=

∥∥∥∥∥
s−1∑
i=0

vec
[
F(X)i(F(X) − F(Y))F(Y)s−1−i

]∥∥∥∥∥

=

∥∥∥∥∥
s−1∑
i=0

(
F(Y)s−1−i ⊗ F(X)i

)
vec(F(X) − F(Y))

∥∥∥∥∥
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≥
s−1∑
i=0

λs−1
n

(
M
)
‖vec(F(X) − F(Y))‖

= sλs−1
n

(
M
)
‖F(X) − F(Y)‖F.

(2.21)

According to the definition of the map F, we have

F(X)s − F(Y)s =
(
Q −A∗X−t1A − B∗X−t2B

) − (Q −A∗Y−t1A − B∗Y−t2B
)

= A∗(Y−t1 −X−t1)A + B∗(Y−t2 −X−t2)B. (2.22)

Combining (2.21) and (2.22), we have by Lemma 2.5 that

‖F(X) − F(Y)‖F ≤ 1

sλs−1
n

(
M
)∥∥F(X)s − F(Y)s

∥∥
F

=
1

sλs−1
n

(
M
)∥∥A∗(Y−t1 −X−t1)A + B∗(Y−t2 −X−t2)B∥∥

F

≤ 1

sλs−1
n

(
M
)(‖A‖2F

∥∥Y−t1 −X−t1∥∥
F + ‖B‖2F

∥∥Y−t2 −X−t2∥∥
F

)

≤ 1

sλs−1
n

(
M
)(t1λ−(t1+1)

n

(
M
)
‖A‖2F + t2λ

−(t2+1)
n

(
M
)
‖B‖2F

)
‖Y −X‖F

=
1
s

(
t1λ

−(s+t1)
n

(
M
)
‖A‖2F + t2λ

−(s+t2)
n

(
M
)
‖B‖2F

)
‖X − Y‖F

= p‖X − Y‖F.

(2.23)

Since p < 1, we know that the map F(X) is a contraction map in Ω. By Banach fixed
point theorem, the map F(X) has a unique fixed point in Ω and this shows that (1.1) has a
unique HPD solution in [M,Q1/s].

Theorem 2.11. If (1.1) has an HPD solution X, then

λn

(
Q−1/2A∗Q−t1/sAQ−1/2 +Q−1/2B∗Q−t2/sBQ−1/2

)
≤
(

t

s + t

)t/s s

s + t
, X ≤ α̂Q1/s,

(2.24)

where t = min{t1, t2}, and α̂ is a solution of the equation

yt(1 − ys) = λn

(
Q−1/2A∗Q−t1/sAQ−1/2 +Q−1/2B∗Q−t2/sBQ−1/2

)
(2.25)

in [(t/(s + t))1/s, 1].
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Proof. Consider the sequence defined as follows:

α0 = 1, αk+1 =

(
1 − λn

(
Q−1/2A∗Q−t1/sAQ−1/2 +Q−1/2B∗Q−t2/sBQ−1/2)

αt
k

)1/s

,

k = 0, 1, 2, . . . .
(2.26)

Let X be an HPD solution of (1.1), then

X =
(
Q −A∗X−t1A − B∗X−t2B

)1/s
< Q1/s = α0Q

1/s. (2.27)

Assuming that X < αkQ1/s, then by Lemma 2.1, we have

Xs = Q −A∗X−t1A − B∗X−t2B

< Q −A∗
(
αkQ

1/s
)−t1

A − B∗
(
αkQ

1/s
)−t2

B

< Q − A∗Q−t1/sA + B∗Q−t2/sB
αt
k

= Q1/2

(
I − Q−1/2A∗Q−t1/sAQ−1/2 +Q−1/2B∗Q−t2/sBQ−1/2

αt
k

)
Q1/2

≤ Q1/2

(
1 − λn

(
Q−1/2A∗Q−t1/sAQ−1/2 +Q−1/2B∗Q−t2/sBQ−1/2)

αt
k

)
Q1/2

= αs
k+1Q.

(2.28)

Therefore X < αk+1Q1/s. Then by the principle of induction, we get X < αkQ1/s, k = 0, 1, 2, . . ..
Noting that the sequence αk is monotonically decreasing and positive, hence αk is con-

vergent. Let limk→∞αk = α̂, then α̂ = (1 − λn(Q−1/2A∗Q−t1/sAQ−1/2 +Q−1/2B∗Q−t2/sBQ−1/2)/
α̂t)1/s, that is, α̂ is a solution of the equation yt(1 − ys) = λn(Q−1/2A∗Q−t1/sAQ−1/2 +
Q−1/2B∗Q−t2/sBQ−1/2).

Consider the function f(y) = yt(1 − ys), since

max
y∈[0,1]

= f

((
t

s + t

)1/s
)

=
(

t

s + t

)t/s s

s + t
, (2.29)

fromwhich it follows that λn(Q−1/2A∗Q−t1/sAQ−1/2+Q−1/2B∗Q−t2/sBQ−1/2) ≤ (t/(s + t))t/s(s/
(s + t)).
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Next we will prove that α̂ ∈ [(t/(s + t))1/s, 1]. Obviously, α̂ ≤ 1. On the other hand, for
the sequence αk, since α0 = 1 > (t/(s + t))1/s, we may assume that αk > (t/(s + t))1/s without
loss of generality. Then

αk+1=

(
1 − λn

(
Q−1/2A∗Q−t1/sAQ−1/2 +Q−1/2B∗Q−t2/sBQ−1/2)

αt
k

)1/s

≥
(
1 − 1

αt
k

(
t

s + t

)t/s s

s + t

)1/s

>

(
1 − 1

(t/(s + t))t/s

(
t

s + t

)t/s s

s + t

)1/s

=
(

t

s + t

)1/s

.

(2.30)

Hence αk > (t/(s + t))1/s, k = 0, 1, 2, . . .. So α̂ = limk→∞αk ≥ (t/(s + t))1/s.
Consequently, we have α̂ ∈ [(t/(s + t))1/s, 1].
This completes the proof.

Theorem 2.12. If (1.1) has an HPD solution, then

(
ρ(A)

)2 ≤ s

s + t1

(
t1

s + t1

)t1/s(
ρ(Q)

)(t1/s)+1, (2.31)

(
ρ(B)

)2 ≤ s

s + t2

(
t2

s + t2

)t2/s(
ρ(Q)

)(t2/s)+1. (2.32)

Proof. For any eigenvalue λ(A) of A, let x be a corresponding eigenvector. Multiplying left
side of (1.1) by x∗ and right side by x, we have

x∗Xsx + x∗A∗X−t1Ax + x∗B∗X−t2Bx = x∗Qx, (2.33)

which yields

x∗Xsx + |λ(A)|2x∗X−t1x + x∗B∗X−t2Bx = x∗Qx. (2.34)

Since X > 0, there exists an unitary matrix U such that X = U∗ΛU, where Λ = diag(η1, . . . ,
ηn) > 0. Then (2.34) turns into the following form:

x∗U∗ΛsUx + |λ(A)|2x∗U∗Λ−t1Ux ≤ x∗Qx. (2.35)

Let y = (y1, y2, . . . , yn)
T = Ux, then (2.35) reduces to

y∗Λsy + |λ(A)|2y∗Λ−t1y ≤ y∗UQU∗y, (2.36)
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from which we obtain

|λ(A)|2 ≤ y∗(UQU∗ −Λs)y
y∗Λ−t1y

≤ y∗(λ1(Q)I −Λs)y
y∗Λ−t1y

=
∑n

i=1 y
2
i

(
λ1(Q) − ηs

i

)
∑n

i=1 y
2
i η

−t1
i

. (2.37)

Form Lemma 2.3, we know that

ηt1
i

(
λ1(Q) − ηs

i

) ≤ s

s + t1

(
t1

s + t1

)t1/s

λ
(t1/s)+1
1 (Q), (2.38)

that is,

(
λ1(Q) − ηs

i

) ≤ s

s + t1

(
t1

s + t1

)t1/s

λ
(t1/s)+1
1 (Q)η−t1

i . (2.39)

Noting that y /= 0, we get

n∑
i=1

y2
i

(
λ1(Q) − ηs

i

) ≤ s

s + t1

(
t1

s + t1

)t1/s

λ
(t1/s)+1
1 (Q)

n∑
i=1

y2
i η

−t1
i . (2.40)

Consequently,

|λ(A)|2 ≤
∑n

i=1 y
2
i

(
λ1(Q) − ηs

i

)
∑n

i=1 y
2
i η

−t1
i

≤ s

s + t1

(
t1

s + t1

)t1/s

λ
(t1/s)+1
1 (Q). (2.41)

Then (ρ(A))2 ≤ (s/(s + t1))(t1/(s + t1))t1/sλ
(t1/s)+1
1 (Q).

Since Q > 0, clearly denote λ1(Q) = ρ(Q), and the last inequality implies directly
(2.31).

The proof of (2.32) is similar to that of (2.31), thus it is omitted here.

Theorem 2.13. If Q ≤ I and (1.1) has an HPD solution, then

ρ
(
As/t1 + (A∗)s/t1

)
≤ ρ(Q), ρ

(
As/t1 − (A∗)s/t1

)
≤ ρ(Q), (2.42)

ρ
(
Bs/t2 + (B∗)s/t2

)
≤ ρ(Q), ρ

(
Bs/t2 − (B∗)s/t2

)
≤ ρ(Q). (2.43)

Proof. If (1.1) has an HPD solution, we have by Theorem 2.7 that

A = (L∗L)t1/2sN1, B = (L∗L)t2/2sN2, (2.44)

and the matrix

(
LQ−1/2

N1Q
−1/2

N2Q
−1/2

)
is column orthonormal. From which we have

L∗L +N∗
1N1 +N∗

2N2 = Q. (2.45)
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Hence,

Q −
(
As/t1 + (A∗)s/t1

)
= L∗L +N∗

1N1 +N∗
2N2 − (L∗L)1/2Ns/t1

1 − (N∗
1

)s/t1(L∗L)1/2

=
(
(L∗L)1/2 −Ns/t1

1

)∗(
(L∗L)1/2 −Ns/t1

1

)

+N∗
2N2 +

(
N∗

1N1 −
(
N∗

1

)s/t1Ns/t1
1

)

≥ 0.
(2.46)

Similarly, we have Q + (As/t1 + (A∗)s/t1) ≥ 0.
Thus, −Q ≤ (As/t1 + (A∗)s/t1) ≤ Q. Hence ρ(As/t1 + (A∗)s/t1) ≤ ρ(Q).
On the other hand, by Lemma 2.6 and (2.2), we get

ρ
(
As/t1 − (A∗)s/t1

)
= ρ
(
(L∗L)1/2Ns/t1

1 − (N∗
1

)s/t1(L∗L)1/2
)

≤ ρ
(
L∗L +

(
N∗

1

)s/t1Ns/t1
1

)

≤ ρ
(
L∗L +N∗

1N1
)

≤ ρ(Q).

(2.47)

The proof of (2.43) is similar to that of (2.42).

If t1 = t2, we denote t = t1 = t2. Then (1.1) turns into

Xs +A∗X−tA + B∗X−tB = Q. (2.48)

Consider the following equations:

xs+t − λn(Q)xt + λ1(A∗A) + λ1(B∗B) = 0, (2.49)

xs+t − λ1(Q) xt + λn(A∗A) + λn(B∗B) = 0. (2.50)

We assume that A,B, and Q satisfy

λ1(A∗A) + λ1(B∗B) <
s

s + t
ξt∗λn(Q), (2.51)

where ξ∗ = ((t/(s + t))λn(Q))1/s. By (2.51) and Lemma 2.3, we know that (2.49) has two
positive real roots α2 < β1. We also get that (2.50) has two positive real roots α1 < β2. It is easy
to prove that

0 < α1 ≤ α2 < ξ∗ < β1 ≤ β2 < λ1/s
1 (Q). (2.52)
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We define matrix sets as follows:

ϕ1 = {X = X∗ | 0 < X < α1I},
ϕ2 = {X = X∗ | α1I ≤ X ≤ α2I},
ϕ3 =

{
X = X∗ | α2I < X < β1I

}
,

ϕ4 =
{
X = X∗ | β1I ≤ X ≤ β2I

}
,

ϕ5 =
{
X = X∗ | β2I < X < λ1/s

1 (Q)I
}
.

(2.53)

Theorem 2.14. Suppose thatA,B, and Q satisfy (2.51), that is,

λ1(A∗A) + λ1(B∗B) <
s

s + t

(
t

s + t

)t/s

λ
(t/s)+1
n (Q). (2.54)

Then

(i) Equation (2.48) has a unique HPD solution in ϕ4;

(ii) Equation (2.48) has no HPD solution in ϕ1, ϕ3, ϕ5.

Proof. Consider the map G(X) = (Q−A∗X−tA−B∗X−tB)1/s, which is continuous on ϕ4. Obvi-
ously, ϕ4 is a convex, closed, and bounded set. If X ∈ ϕ4,

λs
1(G(X)) = λ1

(
G(X)s

)
= λ1

(
Q −A∗X−tA − B∗X−tB

)

≤ λ1(Q) − λn(A∗A) + λn(B∗B)
λt
1(X)

≤ λ1(Q) − λn(A∗A) + λn(B∗B)
βt2

= βs2.

(2.55)

Hence, we have λ1(G(X)) < β2. One has

λs
n(G(X)) = λn

(
G(X)s

)
= λn

(
Q −A∗X−tA − B∗X−tB

)

≥ λn(Q) − λ1(A∗A) + λ1(B∗B)
λt
n(X)

≥ λn(Q) − λ1(A∗A) + λ1(B∗B)
βt1

= βs1.

(2.56)

Hence, we have λn(G(X)) < β1.
Thus, G(X) maps ϕ4 into itself.
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For arbitraryX, Y ∈ ϕ4, similar to (2.21) and (2.22), we have

∥∥G(X)s −G(Y)s
∥∥
F
≥ sβs−11 ‖G(X) −G(Y)‖F,

G(X)s −G(Y)s = A∗(Y−t −X−t)A + B∗(Y−t −X−t)B. (2.57)

Combining (2.57), we have by Lemma 2.5 and (2.49)

‖G(X) −G(Y)‖F ≤ 1
sβs−11

∥∥G(X)s −G(Y)s
∥∥
F

=
1

sβs−11

∥∥A∗(Y−t −X−t)A + B∗(Y−t −X−t)B∥∥
F

≤ 1
sβs−11

(
‖A‖22 + ‖B‖22

)∥∥Y−t −X−t∥∥
F

≤ 1
sβs−11

(λ1(A∗A) + λ1(B∗B))tβ−(t+1)1 ‖Y −X‖F

=
t

s

λ1(A∗A) + λ1(B∗B)
βs+t1

‖X − Y‖F

=
t

s

(
λn(Q)
βs1

− 1

)
‖X − Y‖F

< ‖X − Y‖F.

(2.58)

Thus, we know that the map G(X) is a contraction map in ϕ4. By Banach fixed point
theorem, the map G(X) has a unique fixed point in ϕ4 and this shows that (2.48) has a unique
HPD solution in ϕ4.

Assume X is the HPD solution of (2.48), then

λs
1(X) = λ1(Xs) = λ1

(
Q −A∗X−tA − B∗X−tB

)

≤ λ1(Q) − λn(A∗A) + λn(B∗B)
λt
1(X)

,
(2.59)

that is, λs+t
1 (X) − λ1(Q)λt

1(X) + λn(A∗A) + λn(B∗B) ≤ 0. So, α1 ≤ λ1(X) ≤ β2, thus (2.48) has no
HPD solution in ϕ1, ϕ5.

λs
n(X) = λn(Xs) = λn

(
Q −A∗X−tA − B∗X−tB

)

≥ λn(Q) − λ1(A∗A) + λ1(B∗B)
λt
n(X)

,
(2.60)

that is, λs+t
n (X) − λn(Q)λt

n(X) + λ1(A∗A) + λ1(B∗B) ≥ 0. So, λn(X) ≤ α2 or λn(X) ≥ β1, thus
(2.48) has no HPD solution in ϕ3.

This completes the proof.
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3. Iterative Method for the Maximal HPD Solution

In this section, we consider the iterative method for obtaining the maximal HPD solution XL

of (1.1). We propose the following algorithmwhich avoids calculating matrix inversion in the
process of iteration.

Algorithm 1.

Step 1. Input initial matrices:

X0 = γQ1/s,

Y0 =
γ + 1
2γ

Q−1/s,
(3.1)

where γ ∈ (α̂, 1), and α̂ is defined in Theorem 2.11.

Step 2. For k = 0, 1, 2, . . ., compute

Yk+1 = Yk(2I −XkYk),

Xk+1 =
(
Q −A∗Yt1

k+1A − B∗Yt2
k+1B

)1/s
.

(3.2)

Theorem 3.1. If (1.1) has an HPD solution, then it has the maximal one XL. Moreover, to the se-
quences Xk and Yk generated by Algorithm 1, one has

X0 > X1 > X2 > . . . , lim
k→∞

Xk = XL; Y0 < Y1 < Y2 < · · · , lim
k→∞

Yk = X−1
L . (3.3)

Proof. Since XL is an HPD solution of (1.1), by Theorem 2.11, we have XL ≤ α̂Q1/s, thus

X0 = γQ1/s > α̂Q1/s ≥ XL, Y0 =
γ + 1
2γ

Q−1/s <
1
γ
Q−1/s <

1
α̂
Q−1/s ≤ X−1

L . (3.4)

By Lemmas 2.1 and 2.4, we have

Y1 = Y0(2I −X0Y0) = 2Y0 − Y0X0Y0 ≤ X−1
0 < X−1

L ,

Y1 − Y0 = Y0 − Y0X0Y0 = Y0

(
Y−1
0 −X0

)
Y0 =

1 − γ2

4γ
Q−1/s > 0.

(3.5)

According to Lemma 2.1 and Y1 < X−1
L , we have

X1 =
(
Q −A∗Yt1

1 A − B∗Yt2
1 B
)1/s

>
(
Q −A∗X−t1

L A − B∗X−t2
L B
)1/s

= XL,

Xs
1 −Xs

0 = −A∗
(
Yt1
1 − Yt1

0

)
A − B∗

(
Yt2
1 − Yt2

0

)
B < 0,

(3.6)

that is, Xs
1 < Xs

0, by Lemma 2.1 again, it follows that X1 < X0.
Hence X0 > X1 > XL, and Y0 < Y1 < X−1

L .
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Assume that Xk−1 > Xk > XL, and Yk−1 < Yk < X−1
L , we will prove the inequalities

Xk > Xk+1 > XL, and Yk < Yk+1 < X−1
L .

By Lemmas 2.1 and 2.4, we have

Yk+1 = 2Yk − YkXkYk ≤ X−1
k < X−1

L ,

Xk+1 =
(
Q −A∗Yt1

k+1A − B∗Yt2
k+1B

)1/s
>
(
Q −A∗X−t1

L A − B∗X−t2
L B
)1/s

= XL.
(3.7)

Since Yk ≤ X−1
k−1 < X−1

k , we have Y−1
k > Xk, thus we have by Lemma 2.1 that

Yk+1 − Yk = Yk

(
Y−1
k −Xk

)
Yk > 0,

Xs
k+1 −Xs

k = −A∗
(
Yt1
k+1 − Yt1

k

)
A − B∗

(
Yt2
k+1 − Yt2

k

)
B < 0,

(3.8)

that is, Xs
k+1 < Xs

k
, by Lemma 2.1 again, it follows that Xk+1 < Xk.

Hence we have by induction that

X0 > X1 > X2 > · · · > Xk > XL, Y0 < Y1 < Y2 < · · · < Yk < X−1
L (3.9)

are true for all k = 0, 1, 2, . . ., and so limk→∞Xk and limk→∞Yk exist. Suppose limk→∞Xk = X̂,
limk→∞Yk = Ŷ , taking the limit in the Algorithm 1 leads to Ŷ = X̂−1 and X̂ = (Q −A∗X̂−t1A −
B∗X̂−t2B)1/s. Therefore X̂ is an HPD solution of (1.1), thus X̂ ≤ XL. Moreover, as eachXk > XL,
so X̂ ≥ XL, then X̂ = XL. The theorem is proved.

Theorem 3.2. If (1.1) has an HPD solution and after k iterative steps of Algorithm 1, one has ‖I −
XkYk‖ < ε, then

∥∥∥Xs
k +A∗X−t1

k
A + B∗X−t2

k
B −Q

∥∥∥ ≤ ελ−1
n

(
M
)(

t1λ
(1−t1)/s
1 (Q)‖A‖2 + t2λ

(1−t2)/s
1 (Q)‖B‖2

)
,

(3.10)

whereM is defined by (2.13).

Proof. From the proof of Theorem 3.1, we haveQ−1/s < ((γ +1)/2γ)Q−1/s < Yk < X−1
k < X−1

L for

all k = 1, 2, . . .. Thus we have by Theorem 2.9 that Q−1/s < Yk < X−1
k

< M
−1
. And this implies

λ−1/s
1 (Q)I < Yk < X−1

k < λ−1
n

(
M
)
I. (3.11)

Since

Xs
k +A∗X−t1

k A + B∗X−t2
k B −Q =

(
Q −A∗Yt1

k A − B∗Yt2
k B
)
+A∗X−t1

k A + B∗X−t2
k B −Q

= A∗
(
X−t1

k
− Yt1

k

)
A + B∗

(
X−t2

k
− Yt2

k

)
B,

(3.12)
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we have by Lemma 2.5 that

∥∥∥Xs
k +A∗X−t1

k
A + B∗X−t1

k
B −Q

∥∥∥ =
∥∥∥A∗
(
X−t1

k
− Yt1

k

)
A + B∗

(
X−t2

k
− Yt2

k

)
B
∥∥∥

≤ ‖A‖2
∥∥∥X−t1

k
− Yt1

k

∥∥∥ + ‖B‖2
∥∥∥X−t2

k
− Yt2

k

∥∥∥

≤
(
t1λ

−(t1−1)/s
1 (Q)‖A‖2 + t2λ

−(t2−1)/s
1 (Q)‖B‖2

)∥∥∥X−1
k − Yk

∥∥∥

≤
(
t1λ

(1−t1)/s
1 (Q)‖A‖2 + t2λ

(1−t2)/s
1 (Q)‖B‖2

)∥∥∥X−1
k

∥∥∥‖I −XkYk‖

≤ ελ−1
n

(
M
)(

t1λ
(1−t1)/s
1 (Q)‖A‖2 + t2λ

(1−t2)/s
1 (Q)‖B‖2

)
.

(3.13)

4. Numerical Example

In this section, we give a numerical example to illustrate the efficiency of the proposed algo-
rithm. All the tests are performed by MATLAB 7.0 with machine precision around 10−16. We
stop the practical iteration when the residual ‖Xs

k
+A∗X−t1

k
A + B∗X−t2

k
B −Q‖

F
≤ 1.0e − 010.

Example 4.1. Let s = 5, t1 = 0.2, t2 = 0.5, and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 1 0 0

1 2 0 0 1 0

0 0 3 0 1 0

1 0 0 2 0 1

1 0 1 0 3 0

0 1 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 6 0 5 7

3 4 7 1 3 0

0 9 2 4 7 8

8 5 3 0 0 1

2 5 0 2 1 7

4 0 0 1 4 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

105 66 58 15 41 73

66 154 67 50 88 121

58 67 109 15 71 61

15 50 15 28 37 57

41 88 71 37 113 136

73 121 61 57 136 250

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.1)
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By calculating, α̂ ≈ 0.8397136, so we choose γ = 0.84. By using Algorithm 1 and iterating 29
steps, we obtain the maximal HPD solution XL of (1.1) as follows:

XL ≈ X29 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.6657 0.1110 0.2391 0.0105 0.0566 0.2624

0.1110 1.8337 0.2270 0.2870 0.2656 0.2483

0.2391 0.2270 1.7238 −0.0037 0.3058 0.0662

0.0105 0.2870 −0.0037 1.1501 0.1227 0.1739

0.0566 0.2656 0.3058 0.1227 1.5140 0.4831

0.2624 0.2483 0.0662 0.1739 0.4831 2.1751

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.2)

with the residual ‖X5
29 +A∗X−0.2

29 A + B∗X−0.5
29 B −Q‖

F
= 9.9360e − 011.
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