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The aim of this paper is to introduce two approaches to near sets by using a special neighbourhood.
Some fundamental properties and characterizations are given. We obtain a comparison between
these new set approximations as well as set approximations introduced by Peters (2011, 2009, 2007,
2006).

1. Introduction

Rough set theory, proposed by Pawlak in 1982 [1, 2], can be seen as a new mathematical
approach to vagueness. The rough set philosophy is founded on the assumption that with
every object of the universe of discourse we associate some information (data, knowledge).
For example, if objects are patients suffering from a certain disease, symptoms of the
disease form information about patients. Objects characterized by the same information are
indiscernible (similar) in view of the available information about them. The indiscernibility
relation generated in this way is the mathematical basis of rough set theory. This under-
standing of indiscernibility is related to the idea of Gottfried Wilhelm Leibniz that objects are
indiscernible if and only if all available functionals take on identical values (Leibniz’s Law
of Indiscernibility: The Identity of Indiscernibles) [3]. However, in the rough set approach,
indiscernibility is defined relative to a given set of partial functions (attributes).

Any set of all indiscernible (similar) objects is called an elementary set and forms a ba-
sic granule (atom) of knowledge about the universe. Any union of some elementary sets is re-
ferred to as a crisp (precise) set. A set which is not crisp is called rough (imprecise, vague) set.

Consequently, each rough set has boundary region cases, that is, objects that cannot
with certainty be classified either as members of the set or of its complement. Obviously,
crisp sets have no boundary region elements at all. This means that boundary region cases
cannot be properly classified by employing available knowledge.
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Thus, the assumption that objects can be seen only through the information available
about them leads to the view that knowledge has a granular structure. Due to the granularity
of knowledge, some objects of interest cannot be discerned and appeared as the same
(identical or similar). Consequently, vague concepts, in contrast to precise concepts, cannot
be characterized in terms of information about their elements.

Ultimately, there is interest in selecting probe functions [4] that lead to descriptions of
objects that are minimally near each other. This is an essential idea in the near set approach
[5–7] and differs markedly from the minimum description length (MDL) proposed in 1983
by Jorma Rissanen. MDL depends on the identification of possible data models and possible
probability models. By contrast, NDP deals with a set X that is the domain of a description
used to identify similar objects. The term similar is used here to denote the presence of objects
that have descriptions that match each other to some degree.

The near set approach leads to partitions of ensembles of sample objects with measur-
able information content and an approach to feature selection. The proposed feature selection
method considers combinations of n probe functions taken r at a time in searching for those
combinations of probe functions that lead to partitions of a set of objects that has the highest
information content.

In this paper, we assume that any vague concept is replaced by a pair of precise con-
cepts, called the lower and the upper approximations of the vague concept. The lower ap-
proximation consists of all objects which surely belong to the concept, and the upper approx-
imation contains all objects which possibly belong to the concept. The difference between the
upper and the lower approximation constitutes the boundary region of the vague concept.
These approximations are two basic operations in rough set theory. There is a chance to be
useful in the analysis of sample data. The proposed approach does not depend on the joint
probability of finding a feature value for input vectors that belong to the same class. In ad-
dition, the proposed approach to measuring the information content of families of neighbor-
hoods differs from the rough set approach. The near set approach does not depend on prefer-
ential ordering of value sets of functions representing object features. The contribution of this
research is the introduction of a generalization of the near set approach to feature selection.

2. Preliminaries

Rough set theory expresses vagueness, not by means of membership, but by employing a
boundary region of a set. If the boundary region of a set is empty, it means that the set is
crisp, otherwise the set is rough (inexact). The nonempty boundary region of a set means
that our knowledge about the set is not sufficient to define the set precisely.

Suppose we are given a set of objects U called the universe and an indiscernibility
relation E ⊆ U ×U, representing our lack of knowledge about elements of U. For the sake of
simplicity, we assume that E is an equivalence relation and X is a subset of U. We want to
characterize the set X with respect to E. To this end we will need the basic concepts of rough
set theory given below [2].

The equivalence class of E determined by element x is [x]E(x) = {y ∈ X : E(x) =
E(x′)}. Hence E-lower, upper approximations and boundary region of a subset X ⊆ U are

E(X) = ∪{[x]E : [x]E ⊆ X};
E(X) = ∪{[x]E : [x]E ∩X /=φ

}
;

BNDE(X) = E(X) − E(X).

(2.1)
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It is easily seen that approximations are in fact interior and closure operations in a
topology generated by the indiscernibility relation [8].

The rough membership function μE
X(x) is a measure of the degree that x belongs to X

in view of information expressed by E. It is defined as [9]

μE
X(x) : U −→ (0, 1), μE

X(x) =
|X ∩ [x]E|
|[x]E|

, (2.2)

where | ∗ | denotes the cardinality of ∗.
A rough set can also be characterized numerically by the accuracy measure of an

approximation [1] that is defined as

αE(X) =

∣
∣E(X)

∣
∣

∣∣∣E(X)
∣∣∣
. (2.3)

Obviously, 0 ≤ αE(X) ≤ 1. If αE(X) = 1, X is crisp with respect to E (X is precise with
respect to E), and otherwise, if αE(X) < 1, X is rough with respect to E (X is vague with
respect to E).

Underlying the study of near set theory is an interest in classifying sample objects by
means of probe functions associated with object features. More recently, the term feature is
defined as the form, fashion, or shape (of an object).

Let F denote a set of features for objects in a set X. For any feature a ∈ F, we associate
a function fa that maps X to some set Vfa (range of fa).

The value of fa(x) is a measurement associated with feature a of an object x ∈ X. The
function fa is called a probe function [4, 10].

The following concepts were introduced by Peters in [5–7].
GAS = (U,F,Nr, νB) is a generalized approximation space, where U is a universe of

objects, F is a set of functions representing object features, Nr is a neighbourhood family
function defined as

Nr(F) =
⋃

A⊆Pr(F)

[x]A, where Pr (F) = {A ⊆ F : |A| = r, 1 ≤ r ≤ |F|}, (2.4)

and νBr is an overlap function defined by

νBr : P(U) × P(U) −→ [0, 1], νBr (Y,Nr(B)∗X) =
|Y ∩Nr(B)∗X|
|Nr(B)∗X| , (2.5)

where Nr(B)∗X /=φ, Y is a member of the family of neighbourhoods Nr(B) and
νBr (Y,Nr(B)∗X) is equal to 1, ifNr(B)∗X = φ.

The overlap function νBr maps a pair of sets to a number in [0, 1], representing the
degree of overlap between the sets of objects with features Br .
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Nr(B)-lower, upper approximations and boundary region of a set X with respect to r
features from the probe functions B are defined as

Nr(B)∗X =
⋃

x:[x]Br ⊆X
[x]Br

;

Nr(B)∗X =
⋃

x:[x]Br ∩X /=φ

[x]Br
;

BNDNr(B)X = Nr(B)∗X −Nr(B)∗X.

(2.6)

Peters introduces the following meanings [5, 6].
Objects x and x′ are minimally near each other if ∃f ∈ B such that f(x′) = f(x). Set X

to be near to X′ if ∃x ∈ X, x′ ∈ X′ such that x and x′ are near objects. A set X is termed a near
set relative to a chosen family of neighborhoods Nr(B) if |BNDNr(B)X| ≥ 0.

3. Approach to Near Set Theory

We aim in this section to introduce a generalized approach to near sets by using new
neighbourhoods. Deduce a modification of some concepts.

Definition 3.1. Let B ⊆ F be probe functions on a nonempty set X, φi ∈ B. A general
neighbourhood of an element x ∈ X is

(x)φi,r
=
{
y ∈ X :

∣∣φi

(
y
) − φi(x)

∣∣ < r
}
, (3.1)

where | ∗ | is the absolute value of ∗ and r is the length of a neighbourhood with respect to the
feature φi.

Remark 3.2. We will replace the equivalence class in the approximations of near set theory
defined by Peters [5, 6] by the general neighbourhood defined in Definition 3.1.

Definition 3.3. Let φi ∈ B be a general relation on a nonempty set X. Hence, we can deduce a
special neighbourhood of an element x ∈ X as

x[φi] =
⋂

φi∈B

{(
y
)
φi,r

: x ∈ (
y
)
φi,r

}
. (3.2)

Remark 3.4. Let φi ∈ B be a general relation on a nonempty set X, where 1 ≤ i ≤ |B|. The
special neighbourhood of an element x with respect to two features is defined as

x[φiφj ] = x[φi] ∩ x[φj ], i /= j. (3.3)

Consequently,

x[φ1···φ|B|] = x[φ1] ∩ x[φ2] ∩ · · · ∩ x[φ|B|]. (3.4)
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Definition 3.5. Let B be probe functions defined on a nonempty set X. The family of special
neighbourhoods with respect to one feature is defined as

N[1](B) = ∪{x[φi] : x ∈ X, φi ∈ B
}
. (3.5)

Remark 3.6. The family of neighbourhoods with respect to two features is defined as

N[2](B) = ∪
{
x[φiφj ] : x ∈ X, φi, φj ∈ B, i /= j

}
. (3.6)

Consequently,

N[|B|] (B) = ∪{x[φ1···φ|B|] : x ∈ X
}
. (3.7)

Definition 3.7. Let B ⊆ F be probe functions representing features of x, y ∈ X. Objects x and y

are minimally near each other if ∃f ∈ B such that |f(y) − f(x)| < r, where r is the length of
a general neighbourhood defined in Definition 3.1 with respect to the feature f ∈ B (denoted
by xNfy).

Definition 3.8. Let Y, Y ′ ⊆ X and B ⊆ F. Set Y to be minimally near to Y ′ if ∃x ∈ Y , x′ ∈ Y ′ and
f ∈ B such that xNfx

′ (Denoted by YNfY
′).

Remark 3.9. We can determine a degree K of the nearness between the two sets X, Y as

K =

∣∣f ∈ B : XNfY
∣∣

|B| . (3.8)

Theorem 3.10. Let B ⊆ F be probe functions representing features of x, y ∈ X. Then x is near to y if
y ∈ x[φi], where φi ∈ B, 1 ≤ i ≤ |B|.

Proof. Obvious.

Theorem 3.11. Any subset of X is near to X.

Proof. From Definitions 3.7 and 3.8, we get the proof obviously.

Postulation 1. Every set X is a near set (near to itself) as every element x ∈ X is near to itself.

Definition 3.12. Let B be probe functions on a nonempty set X. The lower and upper
approximations for any subset A ⊆ X by using the special neighbourhood are defined as

N[i](A) = ∪{y ∈ N[i](B) : y ⊆ A
}
;

N[i](A) = ∪{y ∈ N[i](B) : y ∩A/=φ
}
.

(3.9)

Consequently, the boundary region is

bN[i] = N[i](A) −N[i](A), where 1 ≤ i ≤ |B|. (3.10)
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Definition 3.13. Let B be probe functions on a nonempty set X. The accuracy measure for any
subset A ⊆ X by using the special neighbourhood with respect to i features is

α[i](A) =

∣
∣
∣N[i](A)

∣
∣
∣

∣
∣
∣N[i](A)

∣
∣
∣
, N[i](A)/=φ. (3.11)

Remark 3.14. 0 ≤ α[i](A) ≤ 1, α[i](A) measures the degree of exactness of any subset A ⊆ X. If
α[i](A) = 1 then A is exact set with respect to i features.

Definition 3.15. Let B be probe functions on a nonempty set X. The new generalized lower
rough coverage of any subset Y of the family of special neighbourhoods is defined as

ν[i]
(
Y,N[i](D)

)
=

∣∣∣Y ∩N[i](D)
∣∣∣

∣∣∣N[i](D)
∣∣∣

, N[i](D)/=φ. (3.12)

IfN[i](D) = φ, then ν[i](Y,N[i](D)) = 1.

Remark 3.16. 0 ≤ ν[i](Y,N[i](D)) ≤ 1, ν[i](Y,N[i](D)) means the degree that the subset Y
covers the sure region (acceptable objects).

4. Modification of Our Approach to Near Sets

In this section, we introduce a modification of our approach introduced in Section 3. We
deduce some of generalized concepts. Finally, we prove that our modified approach in this
section is the best.

Definition 4.1. Let B be probe functions on a nonempty setX. The modified near lower, upper,
and boundary approximations for any subset A ⊆ X are defined as

N ′
[i](A) = ∪{y ∈ N[i](B) : y ⊆ A

}
;

N
′
[i](A) =

[
N ′

[i](A
c)
]c
;

bN ′
[i]
= N

′
[i](A) −N ′

[i](A), where 1 ≤ i ≤ |B|.

(4.1)

Definition 4.2. Let B be probe functions on a nonempty set X. The new accuracy measure for
any subset A ⊆ X is

α′
[i](A) =

∣∣∣N ′
[i](A)

∣∣∣
∣∣∣N

′
[i](A)

∣∣∣
, N

′
[i](A)/=φ. (4.2)
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Table 1: The values of the three features.

s a r

x1 0.51 1.2 0.53
x2 0.56 3.1 2.35
x3 0.72 2.8 0.72
x4 0.77 2 0.95

Theorem 4.3. Let A ⊆ X, then
(1) N[i](A) is near toN

′
[i](A) and N[i](A);

(2) bN ′
[i]
(A) is near toN[i](A) and N

′
[i](A);

(3) N
′
[i](A) is near toN[i](A);

(4) bN ′
[i]
(A) is near to bN[i] (A).

Proof. Obvious.

Remark 4.4. A set A is called a near set if |bN ′
[i]
(A)| ≥ 0.

Definition 4.5. Let B be probe functions on a nonempty set X. The new generalized lower
rough coverage of any subset Y of the family of special neighbourhoods is defined as

ν′[i]
(
Y,N ′

[i](D)
)
=

∣∣∣Y ∩N ′
[i](D)

∣∣∣
∣∣∣N ′

[i](D)
∣∣∣

, N ′
[i](D)/=φ. (4.3)

IfN ′
[i](D) = φ, then ν′[i](Y,N

′
[i](D)) = 1.

Now, we give an example to explain these definitions.

Example 4.6. Let s, a, r be three features defined on a nonempty set X = {x1, x2, x3, x4} as in
Table 1.

If the length of the neighbourhood of the feature s (resp., a and r) equals to 0.2 (resp.,
0.9 and 0.5), then

N1(B) = {ξ(s0.2), ξ(a0.9), ξ(r0.5)}, (4.4)

where ξ(s0.2) = {{x1, x2}, {x1, x2, x3}, {x2, x3, x4}, {x3, x4}}; ξ(a0.9) = {{x1, x4}, {x2, x3}, {x2, x3,
x4}, {x1, x3, x4}}; ξ(r0.5) = {{x1, x3, x4}, {x2}}. Hence,

N[1](B) = {{x2}, {x3}, {x4}, {x1, x2}, {x1, x4}, {x2, x3}, {x3, x4}, {x1, x3, x4}}. (4.5)

Also, we get

N2(B) = {ξ(s0.2, a0.9), ξ(s0.2, r0.5), ξ(a0.9, r0.5)}, (4.6)
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where ξ(s0.2, a0.9) = {{x1}, {x2, x3}, {x2, x3, x4}, {x3, x4}}; ξ(s0.2, r0.5) = {{x1}, {x2}, {x3, x4}};
ξ(a0.9, r0.5) = {{x1, x4}, {x2}, {x3, x4}, {x1, x3, x4}}. Hence,

N[2](B) = N[3](B) = {{x1}, {x2}, {x3}, {x4}, . . .}. (4.7)

Also, we find that

N3(B) = {{x1}, {x2}, {x3, x4}}. (4.8)

Theorem 4.7. Every rough set is a near set but not every near set is a rough set.

Proof. There are two cases to consider:

(1) |bN ′
[i]
(A)| > 0. Given a set A ⊆ X that has been approximated with a nonempty

boundary, this means A is a rough set as well as a near set;

(2) |bN ′
[i]
(A)| = 0. Given a set A ⊆ X that has been approximated with an empty

boundary, this means A is a near set but not a rough set.

The following example proves Theorem 4.7.

Example 4.8. From Example 4.6, if A = {x3, x4}, then N3(B)
∗A = N3(B)∗A = A, N[2](A) =

N[2](A) = A, and N ′
[1](A) = N

′
[1](A) = A. Hence A is a near set in each case, but is not

rough set with respect to three features by using the approximations introduced by Peters,
with respect to two features by using our approach defined in Section 3, and with respect to
only one feature by using our modified approach defined in Section 4.

Now the following example deduces a comparison between the classical and new
general near approaches by using the accuracy measures of them.

Example 4.9. From Example 4.6, we introduce Table 2, where Q(X) is a family of subsets of X
and II = α[2] = α[3] = α′

[2] = α′
[3].

From Table 2, we note that when we use our generalized set approximations of near
sets with respect to one feature many of subsets become exact sets. Also, with respect
to two features, all subsets become completely exact. Consequently we consider that our
approximations are a start point of real-life applications in many fields of science.

5. Medical Application

If we consider that B = {a, s, r} in Example 4.6 represents measurements for a kind of diseases
and the set of objects X = {x1, x2, x3, x4} are patients, then for any group of patients, we can
determine the degree of this disease, by using the lower rough coverage based on the decision
class D as in the following examples.

Example 5.1. In Example 4.6, if the decision class D = {x1, x3} and we consider the following
groups of the patients: {x1, x3}, {x2, x3}, {x3, x4}, {x1, x2, x3} and {x2, x3, x4}, then, we get
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Table 2: Comparison between traditional and modificated approaches.

Q(X) α1 α2 α3 α[1] α′
[1] II

{x1} 0 1/3 1 0 0 1
{x2} 1/4 1/3 1 1/3 1 1
{x3} 0 0 0 1/4 1 1
{x4} 0 0 0 1/3 1 1
{x1, x2} 1/2 1/2 1 12 1 1
{x1, x3} 0 1/4 1/3 1/4 1/2 1
{x1, x4} 1/2 1/2 1/3 1/2 1 1
{x2, x3} 1/2 1/2 1/3 12 1 1
{x2, x4} 1/4 1/4 1/3 12 2/3 1
{x3, x4} 1/2 1/2 1 12 1 1
{x1, x2, x3} 3/4 3/4 1/2 34 1 1
{x1, x2, x4} 3/4 3/4 1/2 34 1 1
{x1, x3, x4} 3/4 3/4 1 34 1 1
{x2, x3, x4} 3/4 3/4 1 34 3/4 1

Table 3: The degree that some subsets Q(X) cover the sure region.

Q(X) ν1 ν2 ν3 ν′[1] II

{x1, x3} 1 1 1 1 1
{x2, x3} 1 0 0 1 12
{x3, x4} 1 0 0 1 12
{x1, x2, x3} 1 1 1 1 1
{x2, x3, x4} 1 0 0 1 12

the following results: N1(B)∗D = φ, N2(B)∗D = N3(B)∗D = {x1}, N ′
[1](D) = {x3}, and

N ′
[2](D) = N ′

[3](D) = {x1, x3}.

So these sets cover the acceptable objects by the following degrees in Table 3, where

II = ν′[2] = ν′[3]. (5.1)

Remark 5.2. If we want to determine the degree that the lower of the decision class D covers
the set Y , then we use the following formulas:

ν∗i (Y,Nr(B)∗D) =
|Y ∩Nr(B)∗D|

|Y | , Y /=φ;

ν∗′[i]
(
Y,N ′

[i](D)
)
=

∣∣∣Y ∩N ′
[i](D)

∣∣∣

|Y | , Y /=φ.

(5.2)

Example 5.3. In Example 4.6, if we are interested in the degree that the sure region (acceptable
objects) covers these groups, we get Table 4, where II = ν∗′[2] = ν∗′[3].
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Table 4: The degree that the sure region covers some subsets Q(X).

Q(X) ν∗1 ν∗2 ν∗3 ν∗′[1] II

{x1, x3} 0 12 12 12 1
{x2, x3} 0 0 0 12 12
{x3, x4} 0 0 0 1/2 12
{x1, x2, x3} 0 13 13 13 23
{x2, x3, x4} 0 0 0 1/3 1/3

From this table, we can say that our modified approach is better than the classical
approach of near set theory, as our lower approximations are increasing the acceptable
objects.

For example, when we used classical approximations the group {x1, x3} with respect
to one feature has no disease and with respect to three features has this disease with ratio
50%, unless this group is itself the decision class of this disease.

But when we used our modified set approximations with respect to two or three
features, we find the fact of this disease that the degree of disease in this group is 100%.

6. Conclusion

In this paper, we used a special neighborhood to introduce a generalization of traditional
set approximations. In addition we introduce a modification of our special approach to near
sets. Our approaches are mathematical tools to modify the traditional approximations. The
suggested methods of near approximations open a way for constructing new types of lower
and upper approximations.
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